JPH0147405B2 - - Google Patents

Info

Publication number
JPH0147405B2
JPH0147405B2 JP58082804A JP8280483A JPH0147405B2 JP H0147405 B2 JPH0147405 B2 JP H0147405B2 JP 58082804 A JP58082804 A JP 58082804A JP 8280483 A JP8280483 A JP 8280483A JP H0147405 B2 JPH0147405 B2 JP H0147405B2
Authority
JP
Japan
Prior art keywords
carbon
heat
temperature
conductivity
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58082804A
Other languages
Japanese (ja)
Other versions
JPS59207820A (en
Inventor
Kazumoto Murase
Toshihiro Oonishi
Masanobu Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58082804A priority Critical patent/JPS59207820A/en
Publication of JPS59207820A publication Critical patent/JPS59207820A/en
Publication of JPH0147405B2 publication Critical patent/JPH0147405B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 本発明は高い電気伝導度を有する炭素係熱処理
物に関する。さらに詳しくは、ハロゲン置換有機
化合物を気相熱分解させて得られる熱分解物を該
熱分解より高い温度で熱処理することを特徴とす
る高導電性炭素系熱処理物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat-treated carbon material having high electrical conductivity. More specifically, the present invention relates to a highly conductive carbon-based heat-treated product characterized in that a pyrolyzed product obtained by vapor-phase pyrolysis of a halogen-substituted organic compound is heat-treated at a temperature higher than that of the pyrolysis.

近年、天然もしくは人工の高純度のグラフアイ
トと電子受容体もしくは電子供与体(以下ドーパ
ントと称する)との錯化合物が金属並みの高い電
導度を示すことが発見され、高導電性材料として
注目されるようになつてきた。
In recent years, it has been discovered that complex compounds of natural or artificial high-purity graphite and electron acceptors or electron donors (hereinafter referred to as dopants) exhibit high electrical conductivity comparable to that of metals, and have attracted attention as highly conductive materials. It's starting to feel like this.

この種の高導電性炭素材料として、炭化水素化
合物を気相熱分解し、さらに超高温で熱処理して
得られる高配向高純度熱分解グラフアイトが知ら
れている。たとえば、メタンなどの炭化水素を高
温熱分解した生成物を一軸性の圧力を加えなが
ら、2800℃以上の超高温で熱処理することにより
製造される。
As this type of highly conductive carbon material, highly oriented high purity pyrolyzed graphite obtained by vapor phase pyrolysis of a hydrocarbon compound and further heat treatment at an ultra-high temperature is known. For example, it is produced by heat-treating the product of high-temperature pyrolysis of hydrocarbons such as methane at an ultra-high temperature of 2800°C or higher while applying uniaxial pressure.

また、メタンやベンゼンのような炭化水素を、
950℃〜1300℃で、鉄微粒子を触媒として用い、
繊維状の熱分解炭素が生成することが知られ、熱
処理をおこなうことにより電導度が向上すること
も知られている。
Also, hydrocarbons such as methane and benzene,
At 950℃~1300℃, using iron fine particles as a catalyst,
It is known that fibrous pyrolytic carbon is produced, and it is also known that conductivity can be improved by heat treatment.

このような炭素と水素のみをを含む炭化水素化
合物を気相熱分解して得られる炭素材料は2800℃
以上の熱処理をおこなうことによつてはじめてグ
ラフアイト構造になる。
Carbon materials obtained by gas-phase pyrolysis of hydrocarbon compounds containing only carbon and hydrogen can be heated to 2800℃.
A graphite structure is obtained only by performing the above heat treatment.

また、ドーパントと層間化合物を生成し、高導
電性材料となることが知られていた。すなわち、
従来金属なみの高導電材料として知られている炭
素材料は炭化水素化合物を出発原料とするグラフ
アイト構造が高度に発達したものに限られてお
り、ドーパントとの錯化合物の形成により、さら
に高導電性を発起するものであつた。
It was also known that it forms an intercalation compound with a dopant and becomes a highly conductive material. That is,
Conventionally, carbon materials known as highly conductive materials comparable to metals are limited to those with a highly developed graphite structure made from hydrocarbon compounds as starting materials. It was something that gave rise to sexuality.

しかしながら炭素原料を高温で熱処理すること
により必らずグラフアイト構造になるとは限らな
いのであつて、出発炭素材料の種類があとの熱処
理効果に大きな影響を与えることも知られてい
る。
However, it is known that heat treating a carbon raw material at high temperatures does not necessarily result in a graphite structure, and that the type of starting carbon material has a great influence on the subsequent heat treatment effect.

たとえば、ポリアクリロニトリル、ピツチ、レ
ーヨン等の有機物繊維を熱処理して得られる炭素
繊維をさらに高温で熱処理をおこなつても殆んど
導電性は向上せず、3000℃で熱処理しても電導度
は103S/cm以下の電導度を示すだけであり、また
ドーパントの錯化合物形成による導電性の向上効
果は殆んどみられない。炭素繊維は軽量で、強
度、弾性に優れた工業材料として広く用いられる
が導電性は金属材料に比し劣つているため発熱体
や高導電性の必要のない静電防止材としての使用
にとどまつているのが現状である。
For example, even if carbon fibers obtained by heat-treating organic fibers such as polyacrylonitrile, pitch, and rayon are heat-treated at higher temperatures, the conductivity hardly improves; It only shows an electrical conductivity of 10 3 S/cm or less, and there is almost no effect of improving electrical conductivity due to the formation of a complex compound of the dopant. Carbon fiber is lightweight and widely used as an industrial material with excellent strength and elasticity, but its electrical conductivity is inferior to metal materials, so its use is limited to heating elements and antistatic materials that do not require high conductivity. This is the current situation.

一方、ハロゲンを含有する化合物の熱分解に関
しては、日本化学会誌494、1690(1979)に黒鉛基
材上、700℃〜1100℃の低温で1,2−ジクロル
エチレンの熱分解をおこない、炭素被覆体を製造
する方法が知られている。しかしこの方法で得ら
れた熱分解炭素化物は最高350S/cm程度の電導
度を示すもので高導電性とはいえない。
On the other hand, regarding the thermal decomposition of compounds containing halogens, 1,2-dichloroethylene was thermally decomposed on a graphite substrate at a low temperature of 700℃ to 1100℃, and carbon Methods of manufacturing coatings are known. However, the pyrolytic carbonized product obtained by this method exhibits a maximum electrical conductivity of about 350 S/cm, which cannot be said to be highly electrically conductive.

本発明者らはハロゲンを含有する化合物を広く
検討した結果、新らしい事実を発見し本発明に致
つた。
The present inventors extensively studied compounds containing halogen, and as a result, discovered a new fact and arrived at the present invention.

すなわち、1,2ジクロルエチレンのみなら
ず、ハロゲンを含有する化合物、なかでも飽和ま
たは炭素−炭素二重結合を有し、かつハロゲンを
含有する有機化合物を用いると、炭化水素よりよ
り低温で熱分解を受け易く、950℃以下で耐熱性
成形体基材上に均一に光沢ある熱分解炭素沈着物
ができることを見出した。これは、ドーパントを
作用させても電導度は殆んど変化しないものであ
つた。しかも意外なことに熱分解温度よりさらに
高い温度で熱処理を行うと導電性が著しく向上す
ることを見出した。
In other words, when using not only 1,2 dichloroethylene but also halogen-containing compounds, especially organic compounds that have saturated or carbon-carbon double bonds and also contain halogens, it is possible to heat them at lower temperatures than hydrocarbons. It has been found that a uniformly glossy pyrolytic carbon deposit can be formed on a heat-resistant molded substrate that is susceptible to decomposition at temperatures below 950°C. This indicates that the conductivity hardly changes even when a dopant is applied. Moreover, it was surprisingly discovered that conductivity was significantly improved when heat treatment was performed at a temperature higher than the thermal decomposition temperature.

さらにこのような2次的な熱処理された熱分解
炭素化物はドーパントとの錯化が容易に起り、電
導度がさらに向上することを見出し本発明に達し
た。
Furthermore, the inventors have discovered that such a secondary heat-treated pyrolytic carbonized product can be easily complexed with a dopant, thereby further improving the electrical conductivity, thereby achieving the present invention.

このようなハロゲン化合物の熱分解物の熱処理
によつて、著しく導電性が向上し、しかもドーパ
ントとの作用で電導度がさらに向上することは従
来知られていないことであつた。
It has not been previously known that heat treatment of such a thermally decomposed product of a halogen compound significantly improves the conductivity, and that the conductivity is further improved by the action of a dopant.

すなわち、本発明の目的は飽和または炭素−炭
素二重結合を有し、かつハロゲン原子を含有する
有機化合物を不活性雰囲気下500℃以上の温度で
熱分解し、これをさらに高温で熱処理することを
特徴とする高導電性炭素系熱処理物および炭素系
熱処理物とドーパントを必須成分とする高導電性
成物を提供することにある。
That is, the purpose of the present invention is to thermally decompose an organic compound having a saturated or carbon-carbon double bond and containing a halogen atom at a temperature of 500°C or higher in an inert atmosphere, and then heat-treating it at a higher temperature. An object of the present invention is to provide a highly conductive carbon-based heat-treated product and a highly conductive composition containing the carbon-based heat-treated product and a dopant as essential components.

本発明のハロゲン化合物は少なくとも1つ以上
のハロゲン原子を有する有機化合物を用いること
ができる。ハロゲン原子は塩素、臭素ヨウ素が好
ましい。
As the halogen compound of the present invention, an organic compound having at least one halogen atom can be used. The halogen atom is preferably chlorine or bromine-iodine.

本発明のでは、飽和または炭素−炭素二重結合
を有する不飽和有機ハロゲン化合物一般が広く用
いられる。飽和有機ハロゲン化合物としてはエチ
ルヨージド、プロピルヨージド等が例示される。
導電性に与える熱処理効果が特に大きいものはハ
ロゲン置換不飽和化合物である。すなわち、芳香
環に直接ハロゲン原子が置換されたハロゲン置換
芳香族類; 例えばクロルベンゼン、ブロムベンゼン、ヨー
ドベンゼン、p−ジブロムベンゼン、p−ジヨー
ドベンゼン、O−ジヨードベンゼン、 芳香環に隣接する炭素にハロゲン原子が置換さ
れた化合物類; 例えばベンジルクロリド、ベンジルブロミド、
ベンジルヨージド、ベンジリデンジブロミド、ベ
ンジリデイントリクロリド、p−キシリレンジク
ロリド、p−キシリレンジブロミド、O−キシリ
レンクロリド、O−キシリレンジブロミド、p−
キシリデンテトラブロミド、 二重結合に直接ハロゲン原子が置換されたハロ
ゲン置換脂肪族類; 例えば塩化ビニル、臭化ビニル、1,2−ジク
ロルエチレン、1,2−ジブロムエチレン、二重
結合に隣接する炭素にハロゲン原子が置換された
脂肪族化合物類; 例えばアリルクロリド、アリルブロミド、アリ
ルヨージド、1,4−ジブロム−2−ブテン、
1,4−ジクロル−2−ブテン、あるいは脂環
族、ヘテロ環化合物であつてもよく3,6−ジク
ロル−1−シクロヘキセン、1ークロロメチルシ
クロペンテン、1−クロロメチルノルボルナジエ
ン等が例示される。
In the present invention, saturated or unsaturated organic halogen compounds having a carbon-carbon double bond are widely used. Examples of the saturated organic halogen compound include ethyl iodide and propyl iodide.
Halogen-substituted unsaturated compounds have a particularly large heat treatment effect on conductivity. That is, halogen-substituted aromatics in which a halogen atom is directly substituted on the aromatic ring; for example, chlorobenzene, bromobenzene, iodobenzene, p-dibromobenzene, p-diiodobenzene, O-diiodobenzene, etc. adjacent to the aromatic ring. Compounds in which a halogen atom is substituted on the carbon; for example, benzyl chloride, benzyl bromide,
Benzyl iodide, benzylidene dibromide, benzylidene trichloride, p-xylylene dichloride, p-xylylene dibromide, O-xylylene chloride, O-xylylene dibromide, p-
Xylidene tetrabromide, halogen-substituted aliphatics with a halogen atom directly substituted on the double bond; e.g. vinyl chloride, vinyl bromide, 1,2-dichloroethylene, 1,2-dibromoethylene, Aliphatic compounds in which halogen atoms are substituted on adjacent carbons; for example, allyl chloride, allyl bromide, allyl iodide, 1,4-dibromo-2-butene,
It may be 1,4-dichloro-2-butene, or an alicyclic or heterocyclic compound, and examples thereof include 3,6-dichloro-1-cyclohexene, 1-chloromethylcyclopentene, and 1-chloromethylnorbornadiene.

なかでもハロゲン置換不飽和化合物は1000℃以
下の熱分解温度で均質に、光沢のある熱分解炭素
が容易に沈積生成し、熱処理による効果が著し
い。特に二重結合に隣接する炭素にハロゲンを有
する化合物、例えば芳香環に隣接する炭素にハロ
ゲン原子が置換する化合物、あるいは脂肪族二重
結合に隣接する炭素にハロゲン原子が置換する化
合物が特に好ましい。すなわち、アリールハライ
ド、ベンジルハライドなどに代表される化合物群
である。
Among these, halogen-substituted unsaturated compounds easily produce homogeneous, glossy pyrolytic carbon deposited at a pyrolysis temperature of 1000°C or less, and the effect of heat treatment is remarkable. Particularly preferred are compounds having a halogen on a carbon adjacent to a double bond, such as a compound having a halogen atom substituted on a carbon adjacent to an aromatic ring, or a compound having a halogen atom substituted on a carbon adjacent to an aliphatic double bond. That is, it is a group of compounds typified by aryl halides, benzyl halides, and the like.

熱分解おこなうにあたつては、例えば粉末状に
分解生成物が得られるような場合には特に基材が
存在していてなくても目的物を独立に取得するこ
とができる。炭素被覆成形体とする場合には基材
の形状、種類は任意に選べる。例えば成形体基材
には粉状、球状、不定形状、繊維状、シート状、
テープ状、管状、その他任意の異形成形体などの
形状を有するものを用いることができる。
When carrying out thermal decomposition, for example, when a decomposition product is obtained in the form of a powder, the target product can be obtained independently even without the presence of a base material. In the case of forming a carbon-coated molded article, the shape and type of the base material can be selected arbitrarily. For example, molded body base materials include powder, spherical, irregularly shaped, fibrous, sheet-like,
It is possible to use a shape such as a tape shape, a tube shape, or any other irregularly shaped shape.

本発明では、耐熱性を有する基材が好ましく、
例えば耐熱性樹脂、石英ガラス、アルミナ、窒化
ケイ素、炭化ケイ素、窒化ホウ素、炭素等の次の
熱処理工程で基材の形態が保持される成形体をあ
げることができる。
In the present invention, a base material having heat resistance is preferable,
Examples include molded bodies made of heat-resistant resin, quartz glass, alumina, silicon nitride, silicon carbide, boron nitride, carbon, etc., which retain the shape of the base material during the subsequent heat treatment step.

熱分解温度はそれぞれの化合物によつて異るが
一般に500℃以上が用いられる。特にできるだけ
低温で熱分解を行なうと煤の発生が抑制され、光
沢ある炭素沈積物を生成させることができる。こ
の現象は炭化水素化合物が煤になりやすいのと対
象的であり、ハロゲン化合物の一つの特徴であ
る。高導電性を賦与するための熱処理は、ハロゲ
ン化合物の熱分解より高い温度、8500℃以下の温
度範囲で行なわれる。炭素系被覆物を均一に沈積
させるためには外熱式間接加熱法が好ましい。
Thermal decomposition temperature varies depending on each compound, but generally 500°C or higher is used. In particular, if the thermal decomposition is carried out at as low a temperature as possible, the generation of soot can be suppressed and shiny carbon deposits can be produced. This phenomenon is in contrast to the tendency of hydrocarbon compounds to turn into soot, and is one of the characteristics of halogen compounds. The heat treatment for imparting high conductivity is carried out at a temperature higher than the thermal decomposition of the halogen compound, in the temperature range of 8500° C. or lower. External indirect heating is preferred in order to uniformly deposit the carbon-based coating.

熱分解および熱処理は不活性雰囲気でこれを行
なう必要がある。
Pyrolysis and heat treatment must be carried out in an inert atmosphere.

熱分解においてはハロゲン置換化合物をそのま
まあるいは不活性雰囲気ガス、例えばアルゴン、
窒素等に同伴させ加熱部へ導入してもよいし、あ
るいは減圧した加熱部に導入することができる。
In thermal decomposition, the halogen-substituted compound may be used as it is or in an inert atmosphere gas such as argon,
It may be introduced into the heating section along with nitrogen or the like, or it may be introduced into the heating section under reduced pressure.

このようにして得られた熱分解物は10〜103S/
cmの電導性を示すものとなる。留意すべきこと
は、このまま常法によりドーピングをおこなつて
も殆んど導電性が向上しないことである。
The pyrolysis product obtained in this way is 10 to 10 3 S/
It shows conductivity of cm. What should be noted is that even if doping is performed by a conventional method, the conductivity will hardly improve.

すなわち、次の熱処理工程を経ることによりは
じめて高導電性が発現し、さらにドーピングによ
る導電性向上効果が現われる。
In other words, high conductivity is achieved only after the next heat treatment step, and the effect of improving conductivity due to doping appears.

熱処理温度は基材の形態が保持される温度によ
り制限されるが、例えば石英ガラス成形基材では
1200℃以下、セラミツク成形基材では2000℃以
下、さらに炭素系成形基材では3500℃以下でおこ
なうことができる。熱処理時間には特に限定する
ものはないが、一般には1分〜120分の範囲で充
分である。
The heat treatment temperature is limited by the temperature at which the shape of the base material is maintained; for example, for quartz glass molded base materials,
It can be carried out at 1200°C or lower, 2000°C or lower for ceramic molded base materials, and 3500°C or lower for carbon molded base materials. There is no particular limitation on the heat treatment time, but generally a time in the range of 1 minute to 120 minutes is sufficient.

この様にして得られる炭素系熱処理物の電導性
はもとの熱分解物よりも著しく大きく102
104S/cmに向上する。すなわち易黒鉛化炭素構造
を有すると考えられる。800℃〜2500℃というよ
うな比較的低温でこのような導電性を示すことは
全く予想もしないことであつた。
The electrical conductivity of the carbon-based heat-treated product thus obtained is significantly higher than that of the original pyrolyzed product, ranging from 10 2 to
Improved to 10 4 S/cm. In other words, it is considered to have an easily graphitizable carbon structure. It was totally unexpected that it would exhibit such conductivity at relatively low temperatures of 800°C to 2500°C.

さらに重要なことは、この熱処理物の電子受容
体もしくは電子供与体によるドーピング処理によ
り、電導度がさらに向上し、103〜105S/cmに達
することである。ドーパントについては特に限定
しないが、従来グラフアイトあるいはポリアセチ
レン、ポリピロールなどの共役系高分子において
高導電性が見出されている化合物を効果的に用い
ることができる。
More importantly, by doping this heat-treated product with an electron acceptor or an electron donor, the conductivity is further improved, reaching 10 3 to 10 5 S/cm. The dopant is not particularly limited, but compounds that have been found to have high conductivity in conjugated polymers such as graphite, polyacetylene, and polypyrrole can be effectively used.

そのドーピングの方法は、公知の方法すなわ
ち、ドーパントと直接気相もしくは液相で接触さ
せる方法、電気化学的な方法、イオンインプラン
テーシヨン等により実施することができる。
The doping method can be carried out by a known method, ie, a method of direct contact with a dopant in a gas phase or liquid phase, an electrochemical method, an ion implantation method, or the like.

具体的には電子受容体としてはハロゲン化合物
類:臭素等、ルイス酸類:三塩化鉄、五フツ化砒
素、五フツ化アンチモン、三フツ化ホウ素、三酸
化硫黄、三塩化アルミ、五塩化アンチモン等、プ
ロトン酸類:硝酸、硫酸、クロルスルホン酸等、 電子供与体としては、アルカリ金属類:リチウ
ム、カリウム、ルビジウム、セシウム等、アルカ
リ土類金属類:カルシウム、ストロンチウム、バ
リウム等、その他希土類金属:(Sm、Eu、Yo)、
酸アミド類:カリウムアミド、カルシウムアミド
等が例示される。ドーピング量は特に制限はない
が、好ましい含有量は熱処理物の重量当り0.1%
〜150%、特には10%〜100%である。
Specifically, electron acceptors include halogen compounds: bromine, etc., Lewis acids: iron trichloride, arsenic pentafluoride, antimony pentafluoride, boron trifluoride, sulfur trioxide, aluminum trichloride, antimony pentachloride, etc. , protonic acids: nitric acid, sulfuric acid, chlorosulfonic acid, etc., electron donors: alkali metals: lithium, potassium, rubidium, cesium, etc., alkaline earth metals: calcium, strontium, barium, etc., other rare earth metals: ( Sm, Eu, Yo),
Acid amides: potassium amide, calcium amide, etc. are exemplified. There is no particular restriction on the amount of doping, but the preferred content is 0.1% per weight of the heat-treated product.
~150%, especially 10% to 100%.

本発明における炭素系熱処理物およびドーパン
トとの高導電性組成物は導電性を与える各種の用
途に用いることができる。また炭素系基材の導電
性をさらに高めるばかりでなく、石英ガラス、セ
ラミツク等の絶縁性成形基材の表面の著しい高導
電化処理が容易にできることが特徴であり、電
子、電気材料の種々の応用が可能である。
The highly conductive composition of the carbon-based heat-treated material and the dopant according to the present invention can be used in various applications that provide conductivity. In addition to further increasing the conductivity of carbon-based substrates, it is also characterized by the ability to easily process the surfaces of insulating molded substrates such as quartz glass and ceramics to significantly increase their conductivity, making it ideal for a variety of electronic and electrical materials. Application is possible.

以下に実施例によつて本発明をさらに詳しく述
べるが本発明はこれに限定されるものではない。
The present invention will be described in more detail with reference to Examples below, but the present invention is not limited thereto.

実施例 1 抵抗線加熱式横型管状電気炉(450mmL)に石
英ガラス製炉芯管(30mmφ×700mmL)を挿入
し、一方の炉芯管端部に原料を貯え供給するため
のガラス製容器を入れ、さらにその上手より不活
性ガスが導入できるように装置を組立てた。電気
炉中央の炉芯管内に石英板(2cm×5cm)基材と
して置いた。
Example 1 A quartz glass furnace core tube (30 mmφ x 700 mmL) was inserted into a resistance wire-heated horizontal tubular electric furnace (450 mmL), and a glass container for storing and supplying raw materials was inserted into one end of the furnace core tube. Furthermore, the device was constructed so that inert gas could be introduced from the top. A quartz plate (2 cm x 5 cm) was placed as a base material in the furnace core tube at the center of the electric furnace.

p−キシリレンジクロリド2grを原料として上
記ガラス製容器に入れ、窒素ガスを毎分100ml流
通させ電気炉内を950℃に昇温した。さらに石英
ガラス製炉芯管の電気炉より露出した部分に原料
加熱用のリボンヒーターを巻きつけ、その後p−
キシリレンジクロリドをリボンヒーターで、180
℃に加熱し、気相で炉芯管内に流し込み熱分解を
おこなつた。1時間熱分解を継続した後、電気炉
およびリボンヒーターの電源を切り室温に冷却し
た後サンプルを取り出した。石英板上には均質な
銀白色の光沢ある熱分解炭素の沈積物が生じてい
た。この熱分解沈積物の電導度は84/S/cmを示
した。
2 grams of p-xylylene dichloride as a raw material was placed in the above-mentioned glass container, and 100 ml of nitrogen gas was passed per minute to raise the temperature in the electric furnace to 950°C. Furthermore, a ribbon heater for heating the raw material is wrapped around the exposed part of the quartz glass furnace core tube from the electric furnace, and then p-
xylylene dichloride with a ribbon heater, 180
It was heated to ℃ and poured into the furnace core tube in the gas phase to perform thermal decomposition. After continuing the thermal decomposition for 1 hour, the electric furnace and ribbon heater were turned off, and the sample was taken out after cooling to room temperature. A homogeneous, silvery-white, shiny deposit of pyrolytic carbon had formed on the quartz plate. The electrical conductivity of this pyrolysis deposit was 84/S/cm.

得られた沈積物は薄膜フイルム状で石英板上よ
り剥ぐことができた。これをグラフアイト通電加
熱型管状炉を用いて、アルゴンガス雰囲気下、
2500℃、および2750℃で15分間熱処理をおこなつ
た。
The obtained deposit was in the form of a thin film and could be peeled off from the quartz plate. This was carried out in an argon gas atmosphere using a graphite electrically heated tubular furnace.
Heat treatment was performed at 2500°C and 2750°C for 15 minutes.

得られた熱処理物の電導度は各々5.7×103S/
cm、9.7×103S/cmに向上した。さらに電子受容
体化合物として無水硫酸を併用し、常法により室
温で3日間気相ドーピングをおこなつたところ
各々の電導度は9.9×104S/cm、7.1×104S/cmと
さらに向上した。
The electrical conductivity of the heat-treated products obtained was 5.7×10 3 S/
cm, improved to 9.7×10 3 S/cm. Furthermore, when sulfuric anhydride was used as an electron acceptor compound and gas phase doping was performed at room temperature for 3 days using a conventional method, the conductivities were further improved to 9.9×10 4 S/cm and 7.1×10 4 S/cm. did.

熱処理をおこなわない熱分解沈積物は無水硫酸
の気相ドーピング操作により電導度は向上しなか
つた。
The electrical conductivity of the pyrolysis deposits without heat treatment was not improved by vapor phase doping with sulfuric anhydride.

実施例 2 実施例1で石英板のかわりに、ポリアクリロニ
トリル系炭素繊維(直径7μ)を基材に用いた以
外は同様の条件で、p−キシリレンジクロリドの
950℃熱分解を1時間おこなつた。得られた熱分
解炭素被覆炭素繊維を走査型電子顕微鏡で観察す
ると、約0.5μの厚みの炭素層が均質に被覆されて
いた。
Example 2 P-xylylene dichloride was prepared under the same conditions as in Example 1 except that polyacrylonitrile carbon fiber (diameter 7μ) was used as the base material instead of the quartz plate.
Pyrolysis at 950°C was carried out for 1 hour. When the obtained pyrolytic carbon-coated carbon fiber was observed with a scanning electron microscope, it was found that it was uniformly coated with a carbon layer having a thickness of about 0.5 μm.

これをグラフアイト通電加熱型管状炉を用いて
アルゴン雰囲気下2500℃で15分間熱処理をおこな
つた。得られた熱処理物の電導度は1.7×103S/
cmに向上した。さらにこれを無水硫酸で3日間気
相ドーピングをおこなつたところ、1.4×104S/
cmとさらに向上した。また、硝酸でドーピングを
おこなつたものは2.0×104S/cmであつた。一方
基材に用いた炭素繊維は同一条件で2500℃熱処理
したところ1.2×103S/cmであつたが、無水硫酸
でドーピングしたものは5×103S/cm硝酸でドー
ピングしたものは6×103S/cmと電導度の向上は
少なかつた。この事実は熱分解炭素被覆炭素繊維
の導電性向上への寄与が大きいことを示してい
る。
This was heat-treated at 2500°C for 15 minutes in an argon atmosphere using a graphite electrically heated tubular furnace. The electrical conductivity of the obtained heat-treated product is 1.7×10 3 S/
improved to cm. Furthermore, when this was subjected to gas phase doping with anhydrous sulfuric acid for 3 days, the result was 1.4×10 4 S/
cm and further improved. In addition, the doping rate with nitric acid was 2.0×10 4 S/cm. On the other hand, when the carbon fiber used as the base material was heat-treated at 2500°C under the same conditions, it was 1.2 × 10 3 S/cm, but the value doped with sulfuric anhydride was 5 × 10 3 S/cm, and the value doped with nitric acid was 6 The improvement in conductivity was small at ×10 3 S/cm. This fact indicates that the pyrolytic carbon-coated carbon fiber makes a large contribution to improving conductivity.

実施例 3 実施例1で石英板のかわりにアルミナ繊維(直
径20μ)、および石英短繊維(径110μ)を基材に
用いた以外は同様の条件でp−キシリレンジクロ
リドの950℃熱分解を1時間おこなつた。いずれ
も各繊維上に均質な熱分解炭素被覆ができた。得
られた、各繊維の電導度は各々120S/cm、
180S/cmであつた。
Example 3 P-xylylene dichloride was thermally decomposed at 950°C under the same conditions as in Example 1 except that alumina fibers (diameter 20μ) and quartz short fibers (diameter 110μ) were used as the base material instead of the quartz plate. I did it for an hour. In both cases, a homogeneous pyrolytic carbon coating was formed on each fiber. The electrical conductivity of each fiber obtained was 120S/cm,
It was 180S/cm.

熱分解炭素被覆アルミナ繊維を1500℃で、また
熱分解炭素被覆石英ウールを1200℃で熱処理した
ところ前者は1.7×103S/cm、後者は870S/cmに
電導度が向上した。これを無水硫酸でドーピング
したものは電導度が各々3.0×103S/cm、1.0×
103S/cmとさらに向上した。
When pyrolytic carbon-coated alumina fibers were heat-treated at 1500°C and pyrolytic carbon-coated quartz wool was heat-treated at 1200°C, the electrical conductivity of the former improved to 1.7×10 3 S/cm and the latter to 870 S/cm. When this was doped with sulfuric anhydride, the conductivity was 3.0×10 3 S/cm and 1.0×
This was further improved to 10 3 S/cm.

熱処理をおこなわない炭素被覆各繊維は無水硫
酸でドーピングを行なつても電導度は向上しなか
つた。
The conductivity of carbon-coated fibers that were not heat-treated did not improve even when doped with anhydrous sulfuric acid.

実施例 4 実施例1のp−キシリレンジクロリドのかわり
にアリルクロリドあるいはエチルヨージドを用
い、蒸発加熱リボンヒーターは用いず室温で蒸発
させたほかは実施例1と同様に熱分解を実施し
た。900℃、1時間での熱分解沈積物の電導度は
各々568S/cm、210S/cm2であつた。石英板基材
より剥がしたフイルム状物を2500℃で15分間熱処
理をおこなつた物の電導度は各々7.6×1033/cm、
2.1×103S/cmに向上した。
Example 4 Thermal decomposition was carried out in the same manner as in Example 1, except that allyl chloride or ethyl iodide was used instead of p-xylylene dichloride in Example 1, and the evaporation was performed at room temperature without using the evaporative heating ribbon heater. The electrical conductivities of the pyrolysis deposits at 900° C. for 1 hour were 568 S/cm and 210 S/cm 2 , respectively. The conductivity of the film-like material peeled off from the quartz plate base material and heat-treated at 2500℃ for 15 minutes was 7.6×10 3 3/cm, respectively.
It improved to 2.1×10 3 S/cm.

実施例 5 実施例1のp−キシリレンクロリドのかわりに
p−ジヨードベンゼンを用いた。900℃、1時間
熱分解を実施した。熱分解沈積物の電導度は
300S/cmであつた。石英板基材より剥がしたフ
イルム状物を2500℃で15分間熱処理をおこなつた
物の電導度は6.3×103S/cmに向上した。
Example 5 In place of p-xylylene chloride in Example 1, p-diiodobenzene was used. Pyrolysis was carried out at 900°C for 1 hour. The electrical conductivity of pyrolysis deposits is
It was 300S/cm. The film-like material peeled off from the quartz plate base material was heat-treated at 2500°C for 15 minutes, and its electrical conductivity improved to 6.3×10 3 S/cm.

Claims (1)

【特許請求の範囲】 1 飽和または炭素−炭素二重結合を有し、かつ
ハロゲン原子を含有する有機化合物を不活性雰囲
気下、500℃以上の温度で熱分解し、ついでさら
に高温でかつ3500℃以下の温度で熱処理すること
により得られる高導電性炭素系熱処理物。 2 飽和または炭素−炭素二重結合を有し、かつ
ハロゲン原子を含有する有機化合物を不活性雰囲
気下500℃以上の温度で熱分解し、ついでさらに
高温でかつ3500℃以下の温度で熱処理することに
より得られる炭素系熱処理物とドーパントを必須
成分とする高導電性組成物。
[Claims] 1. An organic compound having a saturated or carbon-carbon double bond and containing a halogen atom is thermally decomposed at a temperature of 500°C or higher in an inert atmosphere, and then at an even higher temperature and 3500°C. Highly conductive carbon-based heat-treated material obtained by heat treatment at the following temperatures. 2. Thermal decomposition of an organic compound having a saturated or carbon-carbon double bond and containing a halogen atom at a temperature of 500°C or higher in an inert atmosphere, and then heat-treating it at an even higher temperature and a temperature of 3500°C or lower. A highly conductive composition containing a carbon-based heat-treated product obtained by and a dopant as essential components.
JP58082804A 1983-05-13 1983-05-13 Highly electrically conductive carbon based heat-treated material Granted JPS59207820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58082804A JPS59207820A (en) 1983-05-13 1983-05-13 Highly electrically conductive carbon based heat-treated material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58082804A JPS59207820A (en) 1983-05-13 1983-05-13 Highly electrically conductive carbon based heat-treated material

Publications (2)

Publication Number Publication Date
JPS59207820A JPS59207820A (en) 1984-11-26
JPH0147405B2 true JPH0147405B2 (en) 1989-10-13

Family

ID=13784593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58082804A Granted JPS59207820A (en) 1983-05-13 1983-05-13 Highly electrically conductive carbon based heat-treated material

Country Status (1)

Country Link
JP (1) JPS59207820A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2222346B (en) * 1988-08-24 1993-02-17 Mitsubishi Pencil Co Process for producing acoustic carbon diaphragm
GB2222345B (en) * 1988-08-24 1993-02-17 Mitsubishi Pencil Co Process for producing acoustic carbon diaphragm
JPH05502656A (en) * 1989-06-14 1993-05-13 テンプル ユニバーシティー オブ ザ コモンウェルス システム オブ ハイヤーエデュケーション Method for preparing graphite flakes and films by low temperature pyrolysis
JP5252617B2 (en) * 2006-09-04 2013-07-31 国立大学法人 筑波大学 Method for producing film-like carbon material and film-like carbon material

Also Published As

Publication number Publication date
JPS59207820A (en) 1984-11-26

Similar Documents

Publication Publication Date Title
US4808475A (en) Highly electroconductive graphite continuous filament and process for preparation thereof
US4952423A (en) Production of a transparent electric conductor
US4701317A (en) Highly electroconductive films and process for preparing same
WO2002049412A1 (en) Branched vapor-grown carbon fiber, electrically conductive transparent composition and use thereof
US20130087552A1 (en) Method of preparing carbon-carbon composite fibers, and carbon heating element and carbon heater prepared by using the fibers
US3741797A (en) Low density high-strength boron on beryllium reinforcement filaments
US4131697A (en) Method of coating carbon filaments with silicon carbide
JPH0147405B2 (en)
US3564565A (en) Process for adherently applying boron nitride to copper and article of manufacture
US4599193A (en) Highly electroconductive pyrolyzed product retaining its original shape and composition formed therefrom
JPH0359089B2 (en)
EP0477297A1 (en) Process for production of graphite flakes and films via low temperature pyrolysis
US4778625A (en) Electroconductive polymer and process for preparation thereof
JP2777903B2 (en) Heat-resistant and corrosion-resistant inorganic material and method for producing the same
EP0308907B1 (en) Transition-metal-carbon composites and methods for making
JPS6011215A (en) Carbonaceous material having high electric conductivity and its composition
JPH0147404B2 (en)
US3620836A (en) Borocarbon-coated filaments
JPS6312760A (en) Conductive fiber and its production
JPS6411666B2 (en)
JPS6110016A (en) Production of highly electrically conductive carbon material and its composition
JPH05209365A (en) Production of electrically conductive carbon fiber obtained by vapor growth
JPH0522649B2 (en)
JPS62124273A (en) Formation of electrically conductive graphite film
JPS63244524A (en) Superconductive wire material