JPS62113134A - Formation of micropattern - Google Patents

Formation of micropattern

Info

Publication number
JPS62113134A
JPS62113134A JP25400185A JP25400185A JPS62113134A JP S62113134 A JPS62113134 A JP S62113134A JP 25400185 A JP25400185 A JP 25400185A JP 25400185 A JP25400185 A JP 25400185A JP S62113134 A JPS62113134 A JP S62113134A
Authority
JP
Japan
Prior art keywords
electron beam
coating
pattern
polymer
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25400185A
Other languages
Japanese (ja)
Inventor
Yoko Kawasaki
陽子 川崎
Yasuhiro Yoneda
泰博 米田
Kazumasa Saito
斎藤 和正
Masashi Miyagawa
昌士 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP25400185A priority Critical patent/JPS62113134A/en
Publication of JPS62113134A publication Critical patent/JPS62113134A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

PURPOSE:To enable slip of pattern position to be eliminated and a submicron pattern high in precision to be formed by coating an electron beam resist with a solution of the salt type complex of polymer polycations and tetracyanoquinodimethane. CONSTITUTION:A thin film is formed on the electron beam resist by coating it with a solution of the salt type complex of polymer cations and tetracyanoquinodimethane having a high electric conductivity of 10<-9>-10<-10>S.cm<-1> in order to prevent accumulation of electrostatic charge generated at the time of electron beam scanning. The complex is soluble in many kinds of solvents, and good in film-forming property at the time of coating the substrate to be treated by the spin coating method, and it can be formed into a uniform electrically conductive film free from any pinhole as thin as 0.05-0.4mum. As the polymer polycations, polyvinylbenzyltriethylammonium, poly-4-vinyl-N-methylpyridinium, and the like can be enumerated.

Description

【発明の詳細な説明】 〔概要〕 高分子ポリカチオンとテトラシアノキノジメタンとの塩
型錯体溶液を従来の電子線レジストの上に被覆して使用
することによりパターンの位置ずれを無くした微細パタ
ーンの形成方法。
[Detailed Description of the Invention] [Summary] A fine pattern that eliminates pattern misalignment by coating a conventional electron beam resist with a salt-type complex solution of a polymeric polycation and tetracyanoquinodimethane. How to form a pattern.

〔産業上の利用分野〕[Industrial application field]

本発明は位置ずれの無い微細パターン形成方法に関する
The present invention relates to a method for forming fine patterns without positional displacement.

大量の情報を高速に処理する方法として情報処理装置の
主体を占める半導体装置は高集積化による大容量化が進
んでおり、LSIよりも一段と容量の大きなVLS I
が実用化されている。
Semiconductor devices, which are the mainstay of information processing equipment as a means of processing large amounts of information at high speed, are increasing in capacity due to high integration, and VLSI, which has a much larger capacity than LSI,
has been put into practical use.

ここで、高集積化は単位素子の小形化により行われでお
り、最小パタ゛−ン幅は1μm以下にまで微少化したも
のが用いられている。
Here, high integration is achieved by miniaturizing unit elements, and the minimum pattern width is reduced to 1 μm or less.

ここで微細パターンの形成には写真食刻技術(ホトリソ
グラフィ又は電子線リソグラフィ)が用いられている。
Here, photolithography (photolithography or electron beam lithography) is used to form the fine pattern.

すなわち真空薄着法やスパッタ法などの物理的方法や化
学気相成長法(Chemical Vapor Dep
ositton略称CVO法)などの化学的方法で被処
理基板    上に金属や絶縁物などの薄膜を形成し、
これにレジストを被覆した後、パターンを描画したマス
クを通して紫外線を照射して選択露光し、ポジ形レジス
トを用いる場合は光照射部が現像液に可溶となり、一方
ネガ形レジストを用いる場合は光照射部が不溶となる性
質を利用して、レジストパターンを作り、これに化学エ
ツチング或いは反応イオンエ、チングのようなドライエ
ツチングを行うことにより微細パターンが作られている
That is, physical methods such as vacuum thin deposition method and sputtering method, and chemical vapor deposition method (Chemical Vapor Deposition method)
A thin film of metal or insulator is formed on the substrate using a chemical method such as ositton (CVO method).
After coating this with resist, selective exposure is performed by irradiating ultraviolet rays through a mask with a pattern drawn on it. When using a positive resist, the light irradiated area becomes soluble in the developer, while when using a negative resist, it is exposed to ultraviolet rays. A resist pattern is created by taking advantage of the property that the irradiated area is insoluble, and a fine pattern is created by performing dry etching such as chemical etching or reactive ion etching on the resist pattern.

然しltから紫外線露光によるパターン形成法では波長
による制限から微細パターンの形成は1μm以上の線幅
のものに限られ、これ以下の微細パターンの形成は困難
である。
However, in the pattern forming method using lt to ultraviolet exposure, the formation of fine patterns is limited to lines with a line width of 1 μm or more due to wavelength limitations, and it is difficult to form fine patterns with a line width smaller than this.

一方、電子線の波長は加速電圧により異なるが0.1 
人程度であり、光の波長に較べて4桁以上も短いために
大きな解像力が期待でき、0.1 μm幅のパターン形
成も可能となる。
On the other hand, the wavelength of an electron beam varies depending on the accelerating voltage, but is 0.1
Since it is about the size of a human and is more than four orders of magnitude shorter than the wavelength of light, it can be expected to have great resolution, and it is also possible to form patterns with a width of 0.1 μm.

そのため微細パターンの形成には従来の紫外線露光に変
わって電子線露光が使用されている。
For this reason, electron beam exposure is used instead of conventional ultraviolet exposure to form fine patterns.

然し、電子線露光を行うと電子は負の電荷をもつために
レジストの表面に電荷の蓄積が起こり、そのためにパタ
ーンの位置ずれが生ずると云う問題がある。
However, when electron beam exposure is performed, since electrons have a negative charge, charge is accumulated on the surface of the resist, which causes a problem in that the position of the pattern is shifted.

〔従来の技術〕[Conventional technology]

先に記したように電子線は波長が短いために1μm以下
のレジストパターンの描画が可能となる以外に電子線を
走査して直接に描画できることからマスクが不要となり
、そのためマスクの製作時間や光学的欠陥が無くなると
共にコストの低減が達成される。
As mentioned earlier, since the electron beam has a short wavelength, it is possible to draw resist patterns of 1 μm or less, and since the electron beam can be scanned and drawn directly, there is no need for a mask, which reduces the mask manufacturing time and optics. Cost reduction is achieved along with the elimination of physical defects.

然し、一方では電子は負の電荷をもつために電子線走査
部(以下略して露光部)に電荷の蓄積が起こり、この蓄
積電荷のにじみによりパターンの位置ずれを生じると云
う問題がある。
However, on the other hand, since electrons have a negative charge, charges are accumulated in the electron beam scanning section (hereinafter simply referred to as the exposure section), and this accumulated charge bleeds, causing a pattern misalignment.

この位置ずれは従来のようにバクーン幅および間隔がμ
m単位の場合は問題とはならないが、1μm以下の所謂
るサブミクロン(Sub−micron)パターンの場
合は問題となっている。
This positional misalignment is caused by the conventional bag width and spacing
Although this is not a problem in the case of m units, it is a problem in the case of so-called sub-micron patterns of 1 μm or less.

然し、従来はこの問題については有効な対策が講じられ
ていない。
However, no effective measures have been taken to date to deal with this problem.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上記したように電子線露光を行う場合は露光部に電荷
の蓄積を生じ、このにじみによる位置ずれを如何にして
解決するかが課題である。
As described above, when performing electron beam exposure, charge is accumulated in the exposed portion, and the problem is how to solve the positional shift caused by this bleeding.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題は高分子ポリカチオンとテトラシアノキノシ
メタンとからなる塩型錯体溶液を電子線レジスト上に被
覆して使用するパターン形成方法の実施により解決する
ことができる。
The above problem can be solved by implementing a pattern forming method in which an electron beam resist is coated with a salt-type complex solution consisting of a polymeric polycation and tetracyanoquinosimethane.

〔作用〕[Effect]

本発明は高分子ポリカチオンとテトラシアノギノジメタ
ン(略称TCNQ)とからなる塩型錯体の導電率が10
=〜10−” S−cm−’であり、従来より使用され
ているレジストの導電率が10−16〜10−”S・c
m−’であるのに較べて蟲かに高い値をもつことを利用
し、この薄膜を従来のレジスト上に塗布することにより
電子線走査の際に発生する電荷の蓄積を解消するもので
ある。
In the present invention, the conductivity of a salt-type complex consisting of a polymeric polycation and tetracyanoginodimethane (abbreviated as TCNQ) is 10.
= ~10-"S-cm-', and the conductivity of conventionally used resists is 10-16 to 10-"S-c.
Taking advantage of the fact that it has an extremely high value compared to m-', this thin film is coated on top of conventional resist to eliminate the accumulation of charge that occurs during electron beam scanning. .

すなわち上記の錯体は各種の溶剤に可溶性であり、また
スピンコード法で被処理基板上に塗布する際に成膜性が
良く、ピンホールのない均一な膜が形成できることから
、上記の錯体を従来のレジスト上に0.05〜0.4 
μm程度に薄く塗布して導電性とするものである。
In other words, the above complex is soluble in various solvents, has good film forming properties when applied onto a substrate to be processed using a spin code method, and can form a uniform film without pinholes. 0.05-0.4 on the resist of
It is applied to a thickness of about μm to make it conductive.

ここで高分子ポリカチオンとしてはポリビニルヘンシル
トリエチルアンモニウム、ポリ−4−ビニル−N−メチ
ルピリジウム、ポリジアリルジメチルアンモニウム、ポ
リジアリルジメチルアンモニウムスルホン、ポリ−N、
N、N ’ 、N ′−テトラメチルへキサメチレンバ
ラギシレンジアンモニウムなどを挙げることができる。
Here, the polymeric polycations include polyvinylhensyltriethylammonium, poly-4-vinyl-N-methylpyridium, polydiallyldimethylammonium, polydiallyldimethylammonium sulfone, poly-N,
Examples include N, N', N'-tetramethylhexamethylene diammonium.

〔実施例〕〔Example〕

ポリビニルベンジルトリエチルアンモニウムとリチウム
(Li)−TCNQ塩を別々にエタノールに溶解し、そ
れぞれ0.04モル/βのン容液にした。
Polyvinylbenzyltriethylammonium and lithium (Li)-TCNQ salt were separately dissolved in ethanol, each having a volume of 0.04 mol/β.

この両者を混合し窒素(N2)気流中で室温条件で1時
間攪拌してポリビニルヘンシルトリエチルアンモニウム
−TCNQ塩型錯体を合成した。
The two were mixed and stirred for 1 hour at room temperature in a nitrogen (N2) stream to synthesize a polyvinylhensyltriethylammonium-TCNQ salt type complex.

次に本発明の実施例としてシリコン(Si)基板上に架
橋型メタクリレートレジストをスピンコードした後に2
00°Cで15分間ヘーキング処理して膜厚が1μmの
ポジ型レジスト層を形成した。
Next, as an example of the present invention, after spin-coding a cross-linked methacrylate resist on a silicon (Si) substrate,
A positive resist layer having a thickness of 1 μm was formed by a haking treatment at 00° C. for 15 minutes.

かかる基板の上にスピンコード法により上記錯体の5重
量%シクロヘキサノン溶液を塗布して厚さが0.2μm
の導電性塗膜を形成し、80℃で30分間ベーギングし
て乾燥させた。
A 5% by weight cyclohexanone solution of the above complex was applied onto the substrate by a spin-coating method to a thickness of 0.2 μm.
A conductive coating film was formed and dried by baking at 80° C. for 30 minutes.

次に基板を電子線露光装置にセントし、加速電圧20K
V、露光量3 X 1O−5C/cm2の条件で走査し
てパターンの描画を行った後、シクロヘキサノンとジメ
チルホルムアミドとの10=1の混合溶液を用いて3分
間現像し、引き続いてイソプロピルアルコールで30秒
間リンスしてレジストパターンを作った。
Next, place the substrate in an electron beam exposure device and apply an acceleration voltage of 20K.
After scanning and drawing a pattern under the conditions of V, exposure amount 3 x 1O-5C/cm2, it was developed for 3 minutes using a mixed solution of cyclohexanone and dimethylformamide in a ratio of 10=1, and then developed with isopropyl alcohol. A resist pattern was created by rinsing for 30 seconds.

このような導電処理を行って形成したパターンには従来
のレジストのみを用いて形成した際に生ずる位置ずれは
全く見られなかった。
In the pattern formed by performing such conductive treatment, no positional shift that occurs when forming using only a conventional resist was observed.

〔発明の効果〕〔Effect of the invention〕

以上記したように本発明の実施により電子線露光の際の
電荷蓄積がなくなるのでパターンの位置ずれの問題は解
消され、これにより精度の高いサブミクロンパターンの
形成が可能になる。
As described above, by carrying out the present invention, there is no charge accumulation during electron beam exposure, so the problem of pattern misalignment is resolved, thereby making it possible to form highly accurate submicron patterns.

Claims (1)

【特許請求の範囲】[Claims] 高分子ポリカチオンとテトラシアノキノジメタンとから
なる塩型錯体溶液を電子線レジスト上に被覆して使用す
ることを特徴とする微細パターンの形成方法。
A method for forming a fine pattern, characterized by using a salt type complex solution consisting of a polymeric polycation and tetracyanoquinodimethane, coated on an electron beam resist.
JP25400185A 1985-11-13 1985-11-13 Formation of micropattern Pending JPS62113134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25400185A JPS62113134A (en) 1985-11-13 1985-11-13 Formation of micropattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25400185A JPS62113134A (en) 1985-11-13 1985-11-13 Formation of micropattern

Publications (1)

Publication Number Publication Date
JPS62113134A true JPS62113134A (en) 1987-05-25

Family

ID=17258880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25400185A Pending JPS62113134A (en) 1985-11-13 1985-11-13 Formation of micropattern

Country Status (1)

Country Link
JP (1) JPS62113134A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290166A (en) * 1988-09-28 1990-03-29 Fujitsu Ltd Pattern forming material
EP0382046A2 (en) * 1989-02-06 1990-08-16 Hoechst Aktiengesellschaft Electrically conductive resist composition, process for its production and its use
JP2010020046A (en) * 2008-07-10 2010-01-28 Nissan Chem Ind Ltd Anti-static film forming composition for upper layer of electron beam resist

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290166A (en) * 1988-09-28 1990-03-29 Fujitsu Ltd Pattern forming material
EP0382046A2 (en) * 1989-02-06 1990-08-16 Hoechst Aktiengesellschaft Electrically conductive resist composition, process for its production and its use
JP2010020046A (en) * 2008-07-10 2010-01-28 Nissan Chem Ind Ltd Anti-static film forming composition for upper layer of electron beam resist

Similar Documents

Publication Publication Date Title
KR930000293B1 (en) Fine pattern forming method
US5314772A (en) High resolution, multi-layer resist for microlithography and method therefor
US20100178615A1 (en) Method for reducing tip-to-tip spacing between lines
JPH02103547A (en) Formation of conductive layer
JP2883798B2 (en) Semiconductor device patterning method
JPS62113134A (en) Formation of micropattern
JPH0722156B2 (en) Method for forming pattern of semiconductor device
CN111133380B (en) Photoresist patterning on silicon nitride
US5139922A (en) Method of making resist pattern
JPS62113136A (en) Resist composition
JPH02251962A (en) Fine pattern forming material and pattern forming method
CN117355205A (en) Josephson junction preparation method and system
JP2516968B2 (en) Flattening material for two-layer electron beam resist
JPS59124133A (en) Method of forming negative type resist image
JP2867509B2 (en) Method of forming resist pattern
JPS62113139A (en) Negative type resist composition
JPS6256947A (en) Composition for flattened layer for resist having two-layered structure
JP2548308B2 (en) Pattern formation method
JPS6259950A (en) Ionizing radiation sensitive positive type resist
JP2555657B2 (en) Lower layer resist for two-layer electron beam resist
JPH06192440A (en) Conductive organic thin film
JP2586584B2 (en) Fine pattern forming method
JPS6151414B2 (en)
JPS63254728A (en) Forming method for resist pattern
JPH0337295B2 (en)