JPS62113139A - Negative type resist composition - Google Patents

Negative type resist composition

Info

Publication number
JPS62113139A
JPS62113139A JP25400285A JP25400285A JPS62113139A JP S62113139 A JPS62113139 A JP S62113139A JP 25400285 A JP25400285 A JP 25400285A JP 25400285 A JP25400285 A JP 25400285A JP S62113139 A JPS62113139 A JP S62113139A
Authority
JP
Japan
Prior art keywords
tcnq
salt
negative type
solution
type resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25400285A
Other languages
Japanese (ja)
Inventor
Yoko Kawasaki
陽子 川崎
Yasuhiro Yoneda
泰博 米田
Kazumasa Saito
斎藤 和正
Masashi Miyagawa
昌士 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP25400285A priority Critical patent/JPS62113139A/en
Publication of JPS62113139A publication Critical patent/JPS62113139A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To prevent accumulation of electrostatic charge and to enable a micropattern to be formed without any slip of its position by partially converting polyvinylbenzyl chloride into quaternary ammonium, reacting it with lithium.tetracyanoquinodimethane (TCNQ) salt to partially form a salt type complex, and using the electrically conductive negative type resist composition thus obtained. CONSTITUTION:Polyvinylbenzyl chloride having a molecular weight of about 40,000, and a dispersion degree of 1.5 is dissolved in 1,4-dioxane, triethylamine is added, stirred with heating until the cloudy solution becomes transparent, and 60% of the chloromethyl groups of the polymer is converted into trimethylammonium groups. The ethanol solution of this polymer and a solution of lithium-TCNQ are mixed and stirred in a nirogen gas stream at room temperature to convert all the cation groups into the TCNQ salt complex. A silicon substrate is coated by the spin coating method with a cyclohexanone solution of this negative type resist material thus prepared, and then it is baked.

Description

【発明の詳細な説明】 〔概要〕 ネカ型レジストであるポリビニルベンジルクロライドを
部分的にポリビニルベンジルトリエチルアンモニウム・
テトラシアノキノジメタン錯体とすることにより導電性
をもたせたレジスト。
[Detailed Description of the Invention] [Summary] Polyvinylbenzyl chloride, which is a negative type resist, is partially treated with polyvinylbenzyltriethylammonium.
A resist that has electrical conductivity by forming a tetracyanoquinodimethane complex.

〔産業上の利用分野〕[Industrial application field]

本発明iよ導電性をもつネガ型レジスト組成物に関する
The present invention relates to a negative resist composition having electrical conductivity.

大量の情報を高速に処理する方法として情報処理装置の
主体を占める半導体装置は高集積化による大容量化が進
んでおり、LSIよりも一段と容量の大きなVLS I
が実用化されている。
Semiconductor devices, which are the mainstay of information processing equipment as a means of processing large amounts of information at high speed, are increasing in capacity due to high integration, and VLSI, which has a much larger capacity than LSI,
has been put into practical use.

ここで、高集積化は単位素子の小形化により行われてお
り、最小パターン幅は1μm以下にまで微少化したもの
が用いられている。
Here, high integration is achieved by miniaturizing unit elements, and the minimum pattern width is reduced to 1 μm or less.

ここで微細パターンの形成には写真食刻技術(ホトリソ
グラフィ又は電子線リソグラフィ)が用いられている。
Here, photolithography (photolithography or electron beam lithography) is used to form the fine pattern.

すなわち真空蒸着法やスパンタ法などの物理的方法や化
学気相成長法(Che+5ical Vapor De
position略称CVO法)などの化学的方法で被
処理基板上に金属や絶縁物などの薄膜を形成し、これに
レジストを被覆した後、パターンを描画したマスクを通
して紫外線を照射して選択露光し、ポジ形レジストを用
いる場合は光照射部が現像液に可溶となり、一方ネガ形
レジストを用いる場合は光照射部が不溶となる性質を利
用して、レジストパターンを作り、これに化学エツチン
グ或いは反応イオンエツチングのようなドライエツチン
グを行うことにより微細パターンが作られている。
That is, physical methods such as vacuum evaporation method and spunter method, and chemical vapor deposition method (Che+5ical vapor deposition method) are used.
A thin film of metal or insulator is formed on the substrate to be processed using a chemical method such as CVO method (abbreviated as CVO method), and after coating this with resist, selective exposure is performed by irradiating ultraviolet rays through a patterned mask. When using a positive resist, the light irradiated area becomes soluble in the developer, while when using a negative resist, the light irradiated area becomes insoluble to create a resist pattern, which is then subjected to chemical etching or reaction. Fine patterns are created by performing dry etching such as ion etching.

然しなから紫外線露光によるパターン形成法では波長に
よる制限から微細パターンの形成は1μm以上の線幅の
ものに限られ、これ以下の微細パターンの形成は困難で
ある。
However, in the pattern forming method using ultraviolet light exposure, the formation of fine patterns is limited to lines with a line width of 1 μm or more due to wavelength limitations, and it is difficult to form fine patterns with a line width smaller than this.

一方、電子線の波長は加速電圧により異なるが0.1人
程度であり、光の波長に較べて4桁以上も短いために大
きな解像力が期待でき、0.1 μm幅のパターン形成
も可能となる。
On the other hand, the wavelength of an electron beam varies depending on the accelerating voltage, but it is about 0.1 μm, which is more than 4 orders of magnitude shorter than the wavelength of light, so it can be expected to have great resolution, and it is also possible to form patterns with a width of 0.1 μm. Become.

そのため微細パターンの形成には従来の紫外線露光に代
わって電子線露光が使用されている。
Therefore, electron beam exposure is used instead of conventional ultraviolet exposure to form fine patterns.

然し、電子線露光を行うと電子は負の電荷をもつために
レジストの表面に電荷の蓄積が起こり、そのためにパタ
ーンの位置ずれが生ずると云う問題がある。
However, when electron beam exposure is performed, since electrons have a negative charge, charge is accumulated on the surface of the resist, which causes a problem in that the position of the pattern is shifted.

〔従来の技術〕[Conventional technology]

先に記したように電子線は波長が短いために1μm以下
のレジストパターンの描画が可能となる以外に電子線を
走査して直接に描画できることからマスクが不要となり
、そのためマスクの製作時間や光学的欠陥が無くなると
共にコストの低減が達成される。
As mentioned earlier, since the electron beam has a short wavelength, it is possible to draw resist patterns of 1 μm or less, and since the electron beam can be scanned and drawn directly, there is no need for a mask, which reduces the mask manufacturing time and optics. Cost reduction is achieved along with the elimination of physical defects.

然し、一方では電子は負の電荷をもつために電子線走査
部(以下略して露光部)に電荷の蓄積が起こり、この蓄
積電荷のにじみによりパターンの位置ずれを生じると云
う問題がある。
However, on the other hand, since electrons have a negative charge, charges are accumulated in the electron beam scanning section (hereinafter simply referred to as the exposure section), and this accumulated charge bleeds, causing a pattern misalignment.

この位置ずれは従来のようにパターン幅および間隔がμ
m単位の場合は問題とはならないが、1μm以下の所謂
るサブミクロン(Sub−micron)パターンの場
合は問題となっている。
This misalignment is caused by the pattern width and spacing being
This is not a problem in the case of m units, but it is a problem in the case of so-called sub-micron patterns of 1 μm or less.

然し、従来はこの問題については有効な対策が講じられ
ていない。
However, no effective measures have been taken to date to deal with this problem.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上記したように電子線露光を行う場合は露光部に電荷
の蓄積を生じ、このにじみによる位置ずれを如何にして
解決するかが課題である。
As described above, when performing electron beam exposure, charge is accumulated in the exposed portion, and the problem is how to solve the positional shift caused by this bleeding.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題はポリビニルベンジルクロライドを部分的に
4級アンモニウム化し、リチウム・テトラシアノキノジ
メタン塩を反応させて部分的に塩型錯体とした導電性ネ
ガ型レジスト組成物の使用により解決することができる
The above problem can be solved by using a conductive negative resist composition in which polyvinylbenzyl chloride is partially converted into quaternary ammonium and partially converted into a salt-type complex by reacting with lithium tetracyanoquinodimethane salt. can.

〔作用〕[Effect]

本発明は高分子ポリカチオンにテトラシアノキノジメタ
ン(略称TCNQ)が反応してなる塩型錯体の導電率が
10″″9〜10” S−cm−’であり、各種のレジ
スト材料の導電率が1O−IS〜10−” S  −c
m−’であるのに較べ皇かに高い導電率を示すことに着
目してなされたものである。
In the present invention, the conductivity of a salt-type complex formed by reacting a polymeric polycation with tetracyanoquinodimethane (abbreviated as TCNQ) is 10''9 to 10''S-cm-', and the conductivity of various resist materials is Rate is 1O-IS ~ 10-”S-c
This was done by focusing on the fact that it exhibits significantly higher conductivity than that of m-'.

そしてレジストを低抵抗化する方法として本発明はレジ
ストを構成する高分子を部分的に高分子ポリカチオン・
TCNQ塩型錯体とすることによりレジストに導電性を
与えるものである。
As a method for lowering the resistance of a resist, the present invention partially replaces the polymers constituting the resist with polymeric polycations.
By forming a TCNQ salt type complex, conductivity is imparted to the resist.

この場合、部分W換の程度はレジストの感光性が損なわ
れない範囲に限定され、本発明の方法により合成したレ
ジストの導電率は10−12〜IQ−155−em−’
となる。
In this case, the degree of partial W exchange is limited to a range that does not impair the photosensitivity of the resist, and the conductivity of the resist synthesized by the method of the present invention is 10-12 to IQ-155-em-'
becomes.

〔実施例〕〔Example〕

ポリビニルベンジルクロライド(分子量:4×104、
分散度71.5)の5gを1.4−ジオキサン100m
1に溶解し、トリエチルアミン1.5gを加え、80℃
で2時間加温して白濁した溶液が透明になるまで攪拌し
た。
Polyvinylbenzyl chloride (molecular weight: 4 x 104,
5g of dispersion degree 71.5) was added to 100m of 1,4-dioxane.
1, add 1.5 g of triethylamine, and heat at 80°C.
The mixture was heated for 2 hours and stirred until the cloudy solution became clear.

このようにしてポリマのクロロメチル基の60%を部分
的にトリエチルアンモニウム化した。
In this way, 60% of the chloromethyl groups of the polymer were partially converted into triethylammonium.

かかるポリマの0.02モル/!エタノール溶液と0.
04モルフ Nリチウム(Li)・TCNQ溶液を混合
し、窒素(N2)気流下の室温で1時間に互って攪拌し
、カチオン部分を総てTCNQ塩錯体にした。
0.02 mol/! of such polymer! Ethanol solution and 0.
The 04 morph N lithium (Li).TCNQ solutions were mixed and stirred for 1 hour at room temperature under a nitrogen (N2) stream to convert all the cationic moieties into TCNQ salt complexes.

このようにして合成したネガ型レジスト材料を20重量
%シクロヘキサノン溶液にし、シリコン(Si)基板上
にスピンコードした後、80℃で30分に互ってベーキ
ングした。
The negative resist material thus synthesized was made into a 20% by weight cyclohexanone solution, spin-coded onto a silicon (Si) substrate, and then baked at 80° C. for 30 minutes.

この基板を電子線露光装置にセットし、加速電圧20K
V、露光量I X 1O−5C/cm2の条件でパター
ンの描画を行い、アセトンで1分間現像した後にイソプ
ロピルアルコール(略称IPA)でリンス処理シた。
This substrate was set in an electron beam exposure device, and the acceleration voltage was 20K.
A pattern was drawn under the conditions of V and exposure amount I x 1O-5C/cm2, and after developing with acetone for 1 minute, it was rinsed with isopropyl alcohol (abbreviated as IPA).

このようにして形成したパターンには従来のネガ型レジ
ストを用いて形成した場合に生ずる位置ずれは全く見ら
れなかった。
In the pattern formed in this way, no positional shift that occurs when forming using a conventional negative resist was observed.

〔発明の効果〕〔Effect of the invention〕

本発明によればレジスト材料が導電性を有するので電子
線露光の際に生ずる電荷の蓄積を防ぐことができ、これ
により位置ずれのない微細パターンの形成が可能となる
According to the present invention, since the resist material has conductivity, it is possible to prevent the accumulation of electric charge that occurs during electron beam exposure, thereby making it possible to form a fine pattern without positional deviation.

Claims (1)

【特許請求の範囲】[Claims] ポリビニルベンジルクロライドを部分的に4級アンモニ
ウム化し、リチウム・テトラシアノキノジメタン塩を反
応させて高分子ポリカチオン・テトラシアノキノジメタ
ン塩型錯体とすることを特徴とするネガ型レジスト組成
物。
A negative resist composition characterized in that polyvinylbenzyl chloride is partially converted into quaternary ammonium and reacted with lithium/tetracyanoquinodimethane salt to form a polymeric polycation/tetracyanoquinodimethane salt type complex.
JP25400285A 1985-11-13 1985-11-13 Negative type resist composition Pending JPS62113139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25400285A JPS62113139A (en) 1985-11-13 1985-11-13 Negative type resist composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25400285A JPS62113139A (en) 1985-11-13 1985-11-13 Negative type resist composition

Publications (1)

Publication Number Publication Date
JPS62113139A true JPS62113139A (en) 1987-05-25

Family

ID=17258892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25400285A Pending JPS62113139A (en) 1985-11-13 1985-11-13 Negative type resist composition

Country Status (1)

Country Link
JP (1) JPS62113139A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100442A (en) * 1986-10-13 1988-05-02 Mitsubishi Electric Corp Non-electrifiable resist
EP0382046A2 (en) * 1989-02-06 1990-08-16 Hoechst Aktiengesellschaft Electrically conductive resist composition, process for its production and its use
US5168030A (en) * 1986-10-13 1992-12-01 Mitsubishi Denki Kabushiki Kaisha Positive type o-quinone diazide photo-resist containing antistatic agent selected from hydrazones, ethylcarbazole and bis(dimethylamino)benzene

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100442A (en) * 1986-10-13 1988-05-02 Mitsubishi Electric Corp Non-electrifiable resist
US5168030A (en) * 1986-10-13 1992-12-01 Mitsubishi Denki Kabushiki Kaisha Positive type o-quinone diazide photo-resist containing antistatic agent selected from hydrazones, ethylcarbazole and bis(dimethylamino)benzene
EP0382046A2 (en) * 1989-02-06 1990-08-16 Hoechst Aktiengesellschaft Electrically conductive resist composition, process for its production and its use

Similar Documents

Publication Publication Date Title
JP2902727B2 (en) Charged particle beam irradiation method and observation method
JP2551632B2 (en) Pattern forming method and semiconductor device manufacturing method
US6017658A (en) Lithographic mask and method for fabrication thereof
KR19980702064A (en) How to create photolithographic structures
JP2707785B2 (en) Resist composition and pattern forming method
JPS62113139A (en) Negative type resist composition
US4439464A (en) Composition and method for forming amorphous chalcogenide films from solution
JPH02251962A (en) Fine pattern forming material and pattern forming method
US20190101829A1 (en) Photoresist patterning on silicon nitride
JPS62113136A (en) Resist composition
JPS62113134A (en) Formation of micropattern
JP2516968B2 (en) Flattening material for two-layer electron beam resist
US4456678A (en) High resolution lithographic resist of negative working cationic vinyl polymer
JP2712413B2 (en) Method of forming resist and fine pattern
EP0348961B1 (en) Fine pattern forming material and pattern forming method
JPS5828571B2 (en) Resist formation method for microfabrication
US4677048A (en) Process of using N-alkynyl polyvinylpyridinium resists having electron and deep U.V. sensitivity
JP2555657B2 (en) Lower layer resist for two-layer electron beam resist
JPS6259950A (en) Ionizing radiation sensitive positive type resist
JPS6013432B2 (en) Method for forming Al or Al alloy pattern
JPH0693122B2 (en) Highly sensitive radiation resist
JPH0434553A (en) Photosensitive resin composition and pattern forming method using the composition
JPS6256947A (en) Composition for flattened layer for resist having two-layered structure
US6541782B2 (en) Electron beam photolithographic process
JPS60102735A (en) Method of treating electron beam resist