JPS62113042A - Material tester - Google Patents

Material tester

Info

Publication number
JPS62113042A
JPS62113042A JP25261285A JP25261285A JPS62113042A JP S62113042 A JPS62113042 A JP S62113042A JP 25261285 A JP25261285 A JP 25261285A JP 25261285 A JP25261285 A JP 25261285A JP S62113042 A JPS62113042 A JP S62113042A
Authority
JP
Japan
Prior art keywords
metal piece
piece
test
metal
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25261285A
Other languages
Japanese (ja)
Inventor
Masayoshi Sugaya
菅谷 政義
Bunji Ishii
石井 文治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25261285A priority Critical patent/JPS62113042A/en
Publication of JPS62113042A publication Critical patent/JPS62113042A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the application of biased load, by attaching a metal piece to both axial ends faces of sample piece to impart a compression or tension load to a sample piece by expanding or contracting the metal piece. CONSTITUTION:A metal piece 2 is attached to both end faces of a sample piece 1. These test piece 1, metal piece 2 are mounted into a frame 3 entirely firm. Here, when a part containing the metal piece 2 is heated with a heater/ cooler 4 up to T deg.C, the metal piece 2 thermally expands to make both end faces thereof adhere to the frame 3. Thereafter, as the metal piece 2 cools, adhesion effect between the metal piece 2 and the frame 3 increases to contract the metal piece 2. Thus, a tension stress works on the test piece 1. Then, when the metal piece 2 is heated with the unit 4 up to T2 deg.C (T2>T), a contraction stress works on the test piece 1 with thermal expansion of the metal piece 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は材料試験装置に係り、特にセラミックス等の
脆性材料の引張圧縮試験に適した材料試験装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a material testing device, and particularly to a material testing device suitable for tensile compression testing of brittle materials such as ceramics.

〔従来の技術〕[Conventional technology]

セラミックスは、高温領域において高強度、高耐食性が
ありしかも軽量で線膨張係数、熱伝導率が小さいなどの
利点を有することから近年これらの特性の要求される各
分野に利用されつつある。
Ceramics have advantages such as high strength and high corrosion resistance in high-temperature regions, light weight, and low coefficient of linear expansion and thermal conductivity, and have recently been used in various fields where these properties are required.

例えばガスタービンのような高温、腐食環境下でしかも
高い応力のかかる構造部材としての適用には、有効かつ
将来性に大きいものがある。
For example, it is effective and has great potential for application as a structural member such as a gas turbine, which is exposed to high temperatures and corrosive environments and is subject to high stress.

一方セラミックスは、高温、腐食雰囲気下で長時間の一
定応力や繰返し応力などの苛酷な条件下で使用すると、
その材料特性が変化し、比較的低い応力で破壊すること
がある。このようなりリープや疲労等の現象は構造設計
や寿命予測を行う上で重要な因子であり、したがってセ
ラミックスを構造材料として使用する場合その特性を十
分に把握しておく必要がある。
On the other hand, when ceramics are used under harsh conditions such as high temperatures, corrosive atmospheres, long-term constant stress, and repeated stress,
Its material properties change and it can fracture at relatively low stresses. Phenomena such as leap and fatigue are important factors in structural design and life prediction, and therefore, when using ceramics as a structural material, it is necessary to fully understand their characteristics.

しかし、セラミックスが構造材料として注目をあびてき
たのは最近のことであり、その特性評価方法は確立され
ているとは言えない。また、従来の金属材料の特性評価
方法はセラミックスが脆性材料であるため、そのまま適
用できないことが多し亀。
However, it is only recently that ceramics have attracted attention as structural materials, and it cannot be said that methods for evaluating their characteristics have been established. In addition, conventional methods for evaluating the characteristics of metal materials cannot be applied directly to ceramics because they are brittle materials.

セラミックスの機械的な試験方法としては丸棒試験片を
用いた引張−圧縮疲労試験、板状試験片を用いた片持曲
げ試験や3点曲げ、4点曲げの両振試験等が常温から1
300℃程度の高温までの範囲で行われているが、主に
曲げ疲労試験が実施されることが多く、丸棒試験片を用
いた引張、圧縮の疲労試験はほとんど実施されていない
のが実情である。
Mechanical testing methods for ceramics include tensile-compressive fatigue tests using round bar test pieces, cantilever bending tests using plate test pieces, and bioscillatory tests of 3-point bending and 4-point bending.
Although it is carried out at high temperatures up to around 300°C, bending fatigue tests are often carried out, and the reality is that tensile and compressive fatigue tests using round bar specimens are almost never carried out. It is.

一般にセラミックスの強度は表面および内部の欠陥に支
配されるため、従来から行われている曲げ疲労試験では
内部欠陥の挙動を的確に把握することが回置であり、か
かるセラミックスに特有の強度の体積依存性の観点から
すれば、上記曲げ疲労試験よりも実用部材に近い状態の
試験である引張圧縮疲労試験を行う方が望ましい。
In general, the strength of ceramics is controlled by surface and internal defects, so in conventional bending fatigue tests, it is important to accurately understand the behavior of internal defects. From the viewpoint of dependence, it is more desirable to perform a tension compression fatigue test, which is a test in a state closer to that of a practical member, than the above-mentioned bending fatigue test.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

セラミックス材料が金属材料と異なる最も大きな点は、
その延性がきわめて劣しいことである。
The biggest difference between ceramic materials and metal materials is
Its ductility is extremely poor.

したがってセラミックス材料の引張圧縮試験をする際に
、荷重の中心軸がわずかにずれても剪断力や曲げ応力が
生じ、低応力で破壊したり、また試験片支持部に応力集
中が生じその個所で破断するという問題があり、真の強
度を測定できない場合が多い。
Therefore, when performing tensile compression tests on ceramic materials, even if the central axis of the load shifts slightly, shearing force or bending stress is generated, which can result in fracture at low stress levels, or stress concentration at the specimen support. There is a problem of breakage, and true strength cannot often be measured.

かかる問題点を解決するため、例えば「特開昭55−1
13935号」公報に記載されているように、試験片の
肩部を棒状体に係合させて荷重を付与する試験方法が提
案されている。また同様の手法を引張圧縮試験に適用し
たものとして、第2図に示すようなものがある。図にお
いて、セラミックスからなる試験片aはその両端部が支
持具すを介してチャックボディCに取着され、またその
端面をチャックボディCに固定された留め具dで支承さ
れている。しかしてこのように試験片aを把持したチャ
ックボディCは、通常の引張圧縮用オートグラフ、また
は油圧サーボ式疲労試験機のロッドeに接続され荷重を
付与されるようになっている。
In order to solve such problems, for example,
No. 13935, a test method has been proposed in which the shoulder of a test piece is engaged with a rod-shaped body to apply a load. Furthermore, there is a method shown in FIG. 2 in which a similar method is applied to a tensile compression test. In the figure, both ends of a test piece a made of ceramics are attached to a chuck body C via supports, and the end faces are supported by fasteners d fixed to the chuck body C. However, the chuck body C, which grips the test piece a in this manner, is connected to a rod e of an ordinary tension-compression autograph or a hydraulic servo fatigue testing machine, and is loaded with the rod e.

上記試験片の支持具すとしては、BN粉末の流動性体、
アルミ箔あるいはアルミ管など塑性変形を利用したもの
や、ゴム板など種々のものが利用され、これを試験片と
チャックボディとの間に介挿することによって−に起曲
げ応力や剪断力が生ずるのをある程度防止することがで
きる。
As a support for the above test piece, a fluid body of BN powder,
Various materials are used, such as aluminum foil or aluminum tubes that utilize plastic deformation, and rubber plates, and by inserting these between the test specimen and the chuck body, bending stress and shearing force are generated. can be prevented to some extent.

ところがそのようにして曲げ応力等の発生を防ぐには、
試験中に支持具すを試行錯誤的に動かして調整をしなけ
ればならず、この作業に多大な時間を要するという問題
がある。
However, in order to prevent the occurrence of bending stress etc. in this way,
There is a problem in that during the test, the support must be moved and adjusted by trial and error, and this work takes a lot of time.

また、引張荷重と圧縮荷重を交互に付与する引張圧縮試
験では、荷重方向の逆転を繰り返しているうちに支持具
すが塑性変形して試験片aと止め具dの間に間隙を生ず
るようになり、この状態で荷重を引張から圧縮に移行す
ると、周波数が高い場合には衝撃荷重が発生するため試
験片が破損する惧れがある。
In addition, in a tension-compression test in which a tensile load and a compressive load are applied alternately, as the loading direction is repeatedly reversed, the support deforms plastically, creating a gap between the test specimen a and the stopper d. If the load is shifted from tension to compression in this state, there is a risk that the test piece will be damaged because an impact load will occur if the frequency is high.

本発明は」二起曲げ応力等の発生を防止するとともに衝
撃荷重の発生を抑えることにより、セラミックス等の脆
性材料の強度測定に好適な材料試験装置を得ることを目
的としている。
An object of the present invention is to obtain a material testing device suitable for measuring the strength of brittle materials such as ceramics by preventing the occurrence of double bending stress and the like and suppressing the occurrence of impact loads.

〔問題点を解決するための手段〕[Means for solving problems]

4一 本発明は、試験片の軸方向両端面に取着された金属片と
、この金属片を介して前記試験片の膨張または/および
収縮を拘束するフレームと、前記金属片を加熱または/
および冷却する手段とを備えた材料試験装置である。
41 The present invention provides a metal piece attached to both axial end faces of a test piece, a frame that restrains expansion and/or contraction of the test piece via this metal piece, and a frame that restrains expansion and/or contraction of the test piece through the metal piece.
and cooling means.

〔作 用〕[For production]

本発明は試験片の軸方向両端面に金属片を取着して全体
を強固なフレーム内に収納し、上記金属片を膨張あるい
は収縮させて試験片に圧縮あるいは引張荷重を付与する
もので、金属片を膨張・収縮させるのに外部から加熱冷
却を行う。すなわち、金属片の線膨張係数をα、ギヤン
グ率E、試験片を装架したときの温度をT/、加熱また
は冷却時の温度をTとすれば、試験片に作用する応力σ
はσ=Eα(T−T’ ) となり、金属片の温度を制御することにより付与する荷
重の方向および大きさを任意に設定することができる。
In the present invention, metal pieces are attached to both axial end faces of a test piece, the whole is housed in a strong frame, and the metal pieces are expanded or contracted to apply a compressive or tensile load to the test piece. External heating and cooling are used to expand and contract the metal piece. In other words, if the linear expansion coefficient of the metal piece is α, the Guyang's modulus is E, the temperature when the test piece is mounted is T/, and the temperature during heating or cooling is T, then the stress acting on the test piece is σ
σ=Eα(T-T'), and by controlling the temperature of the metal piece, the direction and magnitude of the applied load can be arbitrarily set.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示すものであって、試験片
]−の両端面には金属片2が取着さオシ、これら試験片
1および金属片2全体が強固なフレーム3内に装架され
ている。このフレーム3の外側の」−記金属片2に相当
する位h¥tには、冷媒を通すためのステンレス管や加
熱のためのヒータ等を巻回してなる加熱冷却装置4が装
着されている。また試験片1の両端部にはフレーム3の
内壁に摺接するようガイド5が形成されて才9す、他方
、フレーム3の内壁には試験片1にIj、える−1〕記
加熱冷却装置4による熱影響を軽減するため、中心部に
試験片1を摺動可能に支持する孔を備えた熱しゃへい板
6が固定されている。なお試験片1の被4Iす宇部から
適宜離間した部位には、モニタ装置7に接続されたA 
EセンザI3が取着されている。
FIG. 1 shows an embodiment of the present invention, in which metal pieces 2 are attached to both end faces of a test piece, and the entire test piece 1 and metal piece 2 are housed in a strong frame 3. It is mounted on. A heating/cooling device 4 made of a stainless steel tube for passing a refrigerant, a heater for heating, etc., is installed on the outside of the frame 3 at a point corresponding to the metal piece 2. . Further, guides 5 are formed at both ends of the test piece 1 so as to be in sliding contact with the inner wall of the frame 3. On the other hand, a heating and cooling device 4 is provided on the inner wall of the test piece 1. In order to reduce the thermal influence caused by heat, a heat shielding plate 6 having a hole for slidably supporting the test piece 1 is fixed in the center. A monitor connected to the monitor device 7 was installed at a portion of the test piece 1 that was appropriately spaced from the 4I section.
E sensor I3 is attached.

金属片2ば試験ノ11に接着さ汎でいるが、この接着方
法には同和−SL和系、固相−固相系、固相−液相系な
ど各種の公知の接合方法がある。なかでも、同相−気相
系接合方法が耐熱性に優れている。試験片1に引張り荷
重を付与するには金属片2をフレーム3側にも接着した
おく必要があるが、この金属片2とフレーム3の接着に
ついては以下に述べるように試験の一部として行うこと
ができる。
The metal piece 2 is generally bonded to the test No. 11, and there are various known bonding methods such as Dowa-SL bonding system, solid phase-solid phase system, and solid phase-liquid phase system. Among these, the in-phase-vapor phase bonding method has excellent heat resistance. In order to apply a tensile load to the test piece 1, it is necessary to adhere the metal piece 2 to the frame 3 side as well, but the adhesion between the metal piece 2 and the frame 3 is performed as part of the test as described below. be able to.

また、金属片2の材料は熱膨張率の大きいものが望まし
いが、与える温度差によって適宜のものとしてよい。
Further, it is desirable that the material of the metal piece 2 has a large coefficient of thermal expansion, but it may be made of an appropriate material depending on the temperature difference to be applied.

上記の構成において、試験片1には次の方法で応力を負
荷する。
In the above configuration, stress is applied to the test piece 1 in the following manner.

まず、両端面に金属片2が接着された試験片1をフIノ
ーム3に装架し、金属片2を含む部分を高温(T℃)に
加熱して、この温度で上記のいずれかの方法により金属
片2をフレーム3に接着する。
First, a test piece 1 with metal pieces 2 glued to both end faces is mounted on the probe 3, the part containing the metal pieces 2 is heated to a high temperature (T°C), and at this temperature one of the above-mentioned The metal piece 2 is glued to the frame 3 by a method.

このとき、加熱温度T’Cは金属片2が熱膨張して両端
面がフレーム3に十分に接着する温度である。
At this time, the heating temperature T'C is a temperature at which the metal piece 2 thermally expands and both end surfaces are sufficiently bonded to the frame 3.

しかして接着終了後、加熱冷却装置4の冷却部分によっ
て金属片2を71’Cまで冷却すると、冷却に伴ない金
属片2とフレーム3の接着部分の接着効果が増大すると
共に、金属片2が収縮するために試験片1には次式で表
される引張応力が作用する。
After the bonding is completed, when the metal piece 2 is cooled down to 71'C by the cooling part of the heating/cooling device 4, the adhesion effect between the bonded part of the metal piece 2 and the frame 3 increases as it cools, and the metal piece 2 In order to contract, a tensile stress expressed by the following equation acts on the test piece 1.

σT−Eα(T−T□)   ・・・(])ここでαは
金属片2の線膨張係数、Eは同じくヤング率である。
σT−Eα(T−T□) (]) Here, α is the linear expansion coefficient of the metal piece 2, and E is also Young's modulus.

次に、加熱冷却装置4によって金属片2を加熱すると、
T℃で試験片に作用する応力は零になり、これを越える
温度T2℃まで加熱すれば試験片1には金属片2の熱膨
張によって σ2−I3α(T2− T )    ・・・■で表わ
される圧縮応力が作用することとなる。
Next, when the metal piece 2 is heated by the heating and cooling device 4,
The stress acting on the test piece becomes zero at T°C, and if it is heated to a temperature exceeding this temperature T2°C, the stress on test piece 1 becomes σ2-I3α(T2-T)...expressed as ■ due to the thermal expansion of metal piece 2. Compressive stress will be applied.

上記のように一定のヒー1へサイクルを繰返すことによ
って、試験片1に引張荷重および圧縮荷重を繰返し負荷
することができる。このときの荷重の大きさは、■、■
式から明らかな如く金属片2の物性値および加熱温度に
依存するから、これらを変えることにより自在に変化さ
せることができる。さらに試験中のき裂の検出は、熱し
ゃへい板6に保護されたAEセンサ7を用いて、モニタ
装置8で監視することができる。
By repeating the cycle to a constant heat 1 as described above, a tensile load and a compressive load can be repeatedly applied to the test piece 1. The magnitude of the load at this time is ■,■
As is clear from the equation, it depends on the physical property values of the metal piece 2 and the heating temperature, so it can be changed freely by changing these. Furthermore, detection of cracks during the test can be monitored by a monitor device 8 using an AE sensor 7 protected by a heat shield plate 6.

〔発明の効果〕〔Effect of the invention〕

以上のとおりであるから、本発明によれば機械的な誤差
によって荷重が偏って負荷されることが−8〜 なく、したがって応力集中や曲げ応力の発生が防止され
る。さらに引張から圧縮へ荷重を逆転する際にも衝撃荷
重が全く発生しないから1本発明はセラミックス等の脆
性材料の試験装置としてきわめて優れている。
As described above, according to the present invention, a load is not applied unbalancedly due to mechanical error, and therefore stress concentration and bending stress are prevented from occurring. Furthermore, even when the load is reversed from tension to compression, no impact load is generated at all, so the present invention is extremely excellent as a testing device for brittle materials such as ceramics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る材料試験装置を示す断
面図、第2図は従来の材料試験装置の概要を示す断面図
である。 1・・・試験片、2・・・金属片、3・・・フレーム、
4・・・加熱冷却装置、 5・・・ガイド、6・・・熱
しゃへい板、 7・・・モニタ装置、8・・・AEセン
サ 代理人 弁理士 則 近 憲 佑 同  三俣弘文 第1図 第2図
FIG. 1 is a sectional view showing a material testing device according to an embodiment of the present invention, and FIG. 2 is a sectional view showing an outline of a conventional material testing device. 1... Test piece, 2... Metal piece, 3... Frame,
4...Heating/cooling device, 5...Guide, 6...Heat shielding plate, 7...Monitor device, 8...AE sensor representative Patent attorney Noriyuki Chika Yudo Hirofumi Mitsumata Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)試験片の軸方向両端面に取着された金属片と、こ
の金属片を介して前記試験片の膨張または/および収縮
を拘束するフレームと、前記金属片を加熱または/およ
び冷却する手段とを備えた材料試験装置。
(1) A metal piece attached to both axial end faces of a test piece, a frame that restrains expansion and/or contraction of the test piece via this metal piece, and heating and/or cooling of the metal piece. A material testing device comprising means.
(2)金属片は試験片およびフレームに接着されている
特許請求の範囲第1項記載の材料試験装置。
(2) The material testing device according to claim 1, wherein the metal piece is bonded to the test piece and the frame.
(3)試験片にはAEセンサが取着されている特許請求
の範囲第1項または第2項記載の材料試験装置。
(3) A material testing device according to claim 1 or 2, wherein an AE sensor is attached to the test piece.
JP25261285A 1985-11-13 1985-11-13 Material tester Pending JPS62113042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25261285A JPS62113042A (en) 1985-11-13 1985-11-13 Material tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25261285A JPS62113042A (en) 1985-11-13 1985-11-13 Material tester

Publications (1)

Publication Number Publication Date
JPS62113042A true JPS62113042A (en) 1987-05-23

Family

ID=17239791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25261285A Pending JPS62113042A (en) 1985-11-13 1985-11-13 Material tester

Country Status (1)

Country Link
JP (1) JPS62113042A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459448U (en) * 1990-09-28 1992-05-21
JPH0694588A (en) * 1992-09-10 1994-04-05 Shimadzu Corp Material testing device
JP2009210526A (en) * 2008-03-06 2009-09-17 Institute Of Physical & Chemical Research Extending apparatus
JP2010531996A (en) * 2007-06-27 2010-09-30 コーニング インコーポレイテッド Method and apparatus for elastic modulus measurement of non-solid ceramic materials by resonance
JP2013125002A (en) * 2011-12-16 2013-06-24 Yuasa System Kiki Kk Constant temperature test device
JP2014066604A (en) * 2012-09-26 2014-04-17 Mitsubishi Heavy Ind Ltd Fatigue testing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459448U (en) * 1990-09-28 1992-05-21
JPH0694588A (en) * 1992-09-10 1994-04-05 Shimadzu Corp Material testing device
JP2010531996A (en) * 2007-06-27 2010-09-30 コーニング インコーポレイテッド Method and apparatus for elastic modulus measurement of non-solid ceramic materials by resonance
JP2009210526A (en) * 2008-03-06 2009-09-17 Institute Of Physical & Chemical Research Extending apparatus
JP2013125002A (en) * 2011-12-16 2013-06-24 Yuasa System Kiki Kk Constant temperature test device
JP2014066604A (en) * 2012-09-26 2014-04-17 Mitsubishi Heavy Ind Ltd Fatigue testing device

Similar Documents

Publication Publication Date Title
Getting et al. Effect of pressure on the emf of chromel‐alumel and platinum‐platinum 10% rhodium thermocouples
CN109520857B (en) High-flux small sample creep and creep crack propagation test device and using method thereof
Szusta et al. Experimental study of the low-cycle fatigue life under multiaxial loading of aluminum alloy EN AW-2024-T3 at elevated temperatures
JPH05506924A (en) Thermal expansion driven indentation stress-strain system
Hyde et al. Some considerations on specimen types for small sample creep tests
JPS62113042A (en) Material tester
Slot et al. Experimental procedures for low-cycle-fatigue research at high temperatures: Experimental approach is described for testing laboratory specimens of the hourglass type using servocontrolled, hydraulic testing machines
Schuh et al. Tensile fracture during transformation superplasticity of Ti–6Al–4V
Carden Thermal fatigue evaluation
CN112417740A (en) Accurate measurement method for low-temperature fracture elongation of aluminum alloy for aerospace
Noguchi et al. Thermo-mechanical fatigue behavior of nickel-based 23Cr-45Ni-7W alloy for boiler pipes and tubes
Roebuck et al. Characterisation of Nimonic 90 by the use of miniaturised multiproperty mechanical and physical tests
Carden et al. High-Temperature Low-Cycle Fatigue Experiments on Hastelloy X
Nachtigall Strain-cycling fatigue behavior of ten structural metals tested in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K)
Winstone Influence of prestress on the yield surface of the cast nickel superalloy Mar-M002 at elevated temperature
Sheffler et al. Thermal Fatigue Behavior of T-111 and ASTAR 811C in Ultrahigh Vacuum
Kschinka et al. An encapsulation technique for conducting mechanical properties tests of metallic specimens in a controlled environment without a retort
Sehitoglu Crack-growth studies under selected temperature-strain histories
Halford et al. Fatigue, creep fatigue, and thermomechanical fatigue life testing
RU2169355C1 (en) Method determining modulus of elasticity of metal materials under cryogenic and increased temperatures and gear for its realization
Macey Gigacycle Fatigue Testing of Metals Using Ultrasonic Resonance
Kitamura et al. Mechanical behavior on residual stress in a tungsten-copper duplex structure after cyclic heat loads for a divertor application
Roth et al. Creep of 304 LN and 316 L stainless steels at cryogenic temperatures
JPS62144044A (en) Tensile testing of ceramics
Zhang et al. NONTRADITIONAL FLOW STRESS TESTING OF Ti-6Al-4V: CAPTURING CRITICAL TRANSITIONS IN MATERIAL BEHAVIOR DURING COOLING