JPS62144044A - Tensile testing of ceramics - Google Patents

Tensile testing of ceramics

Info

Publication number
JPS62144044A
JPS62144044A JP28424385A JP28424385A JPS62144044A JP S62144044 A JPS62144044 A JP S62144044A JP 28424385 A JP28424385 A JP 28424385A JP 28424385 A JP28424385 A JP 28424385A JP S62144044 A JPS62144044 A JP S62144044A
Authority
JP
Japan
Prior art keywords
test piece
groove
pin
ceramics
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28424385A
Other languages
Japanese (ja)
Inventor
Kiyoshi Fukuda
清 福田
Hideyuki Hirata
英之 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28424385A priority Critical patent/JPS62144044A/en
Publication of JPS62144044A publication Critical patent/JPS62144044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To enable accurate measurement of tensile strength or creep strength, by a method wherein a groove is provided in the perimeter of a support of a round-bar test piece, a plurality of pins each with a curved tip are engaged with the groove to transmit a tension force through a pin. CONSTITUTION:A round-bar test piece is made up of an evaluating part 1a and a support part 1b formed in a large diameter at both ends thereof. The support 1b is provided with a hemispherical groove 1d in the perimeter and the groove 1d is engaged by a pin 2 made of ceramics. The pin 2 is fitted into a hole 3b of a cylinder 3a of a pull rod 3 formed to cover the test piece support part 1b and the end thereof is supported with a ring 5 retained by a stopper 4 from outside. When a tension force is transmitted to the pull rod 3, uniform shear force and bending moment act on each pin 2. This allows an axial force alone to work on the test piece 1 thereby prevent rupture of the support part 1b before the evaluating part 1a is done.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミックスの引張試験方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for tensile testing ceramics.

〔従来の技術〕[Conventional technology]

セラミックスは、高温領域において高強度高耐食性があ
りしかも軽量で線膨張係数、熱伝導率が小さいなどの利
点を有することから近年これらの特性の要求される各分
野に利用されつつある。例えばガスタービンのような高
温、腐食環境下でしかも高い応力のかかる構造材として
の適用には、有効かつ将来性に大きいものがある。
Ceramics have advantages such as high strength and high corrosion resistance in high-temperature regions, light weight, and low coefficient of linear expansion and thermal conductivity, and have recently been used in various fields where these characteristics are required. For example, it is effective and has great potential for application as a structural material that is exposed to high stress in high temperature and corrosive environments such as in gas turbines.

一方セラミックスは、高温、腐食雰囲気下で長時間の一
定応力や繰返し応力などの苛酷な条件下で使用すると、
その材料特性が変化し、比較的低い応力で破壊すること
がある。このようなりリープや疲労等の現象は構造設計
や寿命予測を行う上で重要な因子であり、したがってセ
ラミックスを構造材料として使用する場合その特性を十
分に把握しておく必要がある。
On the other hand, when ceramics are used under harsh conditions such as high temperatures, corrosive atmospheres, long-term constant stress, and repeated stress,
Its material properties change and it can fracture at relatively low stresses. Phenomena such as leap and fatigue are important factors in structural design and life prediction, and therefore, when using ceramics as a structural material, it is necessary to fully understand its characteristics.

しかし、セラミックスが構造材料として注目をあびてき
たのは最近のことであり、その特性評価方法は確立され
ているとは言えない。また、従来の金属材料の特性評価
方法はセラミックスが脆性材料であるため、そのまま適
用できないことが多い。
However, it is only recently that ceramics have attracted attention as structural materials, and it cannot be said that methods for evaluating their characteristics have been established. Furthermore, conventional methods for evaluating the characteristics of metal materials cannot be applied directly to ceramics because they are brittle materials.

セラミックスの機械的な試験方法としては丸棒試験片を
用いた引張−圧縮試験、板状試験片を用いた片持曲げ試
験や3点曲げ、4点曲げの両振試験等が常温から130
0°C程度の高温までの範囲で行われているが、主に曲
げ試験が実施されることが多く、丸棒試験片を用いた引
張、圧縮試験はほとんど実施されていないのが実情であ
る。
Mechanical testing methods for ceramics include tensile-compression tests using round bar test pieces, cantilever bending tests using plate-shaped test pieces, and bioscillatory tests of 3-point bending and 4-point bending.
Although it is carried out at high temperatures up to around 0°C, bending tests are often carried out, and the reality is that tension and compression tests using round bar test pieces are almost never carried out. .

一般にセラミックスの強度は表面および内部の欠陥に支
配されるため、従来から行われている曲げ試験では内部
欠陥の挙動を適確に把握することが困難であり、かかる
セラミックスに特有の強度の体積依存性の観点からすれ
ば、上記曲げ試験よりも実用部材に近い状態の試験であ
る引張圧縮試験を行う方が望ましい。
In general, the strength of ceramics is controlled by surface and internal defects, so it is difficult to accurately understand the behavior of internal defects in conventional bending tests, and the strength of ceramics is dependent on volume. From the viewpoint of performance, it is more desirable to perform a tension compression test, which is a test in a state closer to that of a practical member, than the above-mentioned bending test.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

セラミックス材料が金属材料と異なる最も大きな点は、
その延性がきわめて劣しいことである。
The biggest difference between ceramic materials and metal materials is
Its ductility is extremely poor.

したがってセラミックス材料の引張試験をする際に、荷
重の中心軸がわずかにずれてもせん断力や曲げ応力が生
じ、その結果低応力で破壊したり、また試験片持部に応
力集中が生じその個所で破断するという問題があり、真
の強度を測定できない場合が多い。
Therefore, when performing a tensile test on ceramic materials, even if the center axis of the load shifts slightly, shearing force or bending stress is generated, resulting in fracture at low stress levels, or stress concentration at the specimen holding part. There is a problem that the material breaks at a certain point, and the true strength cannot be measured in many cases.

かかる問題点を解決するため、例えば「特開昭55−1
13935号」公報に記載されているように、試験片の
肩部を棒状体に係合させて荷重を付与する試験方法が提
案されている。しかしながら、この方法では試験片肩部
の形状を厳密に左右対称に形成しなければその効果がな
く、現状のセラミックス加工技術によってはそのような
試験片を得ること自体が困難であるという事情がある。
In order to solve such problems, for example,
No. 13935, a test method has been proposed in which the shoulder of a test piece is engaged with a rod-shaped body to apply a load. However, this method is ineffective unless the shape of the test piece shoulders is made strictly symmetrical, and it is difficult to obtain such a test piece using current ceramic processing technology. .

本発明は、容易に正確な引張強度もしくはクリープ強度
を知ることのできるセラミックスの引張試験方法を得る
ことを目的としている。
An object of the present invention is to obtain a tensile test method for ceramics that allows easy and accurate determination of tensile strength or creep strength.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、丸棒状の試験片の支持部に溝を周設し、この
溝に先端が曲面に形成されたピンを複数係合させ、これ
らのピンを介して引張力を伝達するセラミックスの引張
試験方法である。
The present invention provides a groove in the supporting part of a round rod-shaped test piece, engages a plurality of pins with curved tips in the groove, and transmits tensile force through these pins. This is a test method.

〔作用〕[Effect]

本発明は上記のように試験片支持部の溝に複数のピンを
係合させて引張力を付与するものであるから、前述の試
験片肩部を棒状体で支持する方法に比べ、応力が各ピン
に分散されて支持部に印加されるので試験片が破断しに
くく、また試験片の支持部に周設される溝には前述の試
験片肩部に必要な程の精度は要しないので加工が容易で
ある等の効果を奏する。さらに、本発明では従来もつと
も破断しゃすい部位であってた試験片肩部の形状を支持
部に関係なく最適化することができるから、破断を確実
に試験片評価部で起こすことができ、正確な引張強度ま
たはクリープ強度を求めることができる。
As described above, the present invention applies tensile force by engaging a plurality of pins in the grooves of the test specimen support, so the stress is reduced compared to the method described above in which the shoulder of the test specimen is supported by a rod-shaped body. Since the voltage is distributed to each pin and applied to the support part, the test piece is difficult to break, and the groove provided around the support part of the test piece does not require the precision required for the shoulder part of the test piece mentioned above. It has the advantage of being easy to process. Furthermore, according to the present invention, the shape of the shoulder of the test piece, which has conventionally been a part prone to breakage, can be optimized regardless of the supporting part, so the breakage can be reliably caused in the test piece evaluation section and accurately. Tensile strength or creep strength can be determined.

[実施例〕 第1図は本発明の実施の態様を示すもので、丸棒状の試
験片1は評価部1aとその両端に大径に形成された支持
部1bとからなり、この評価部1aと支持部1bは滑ら
かに接続して肩部1cが形成されている。上記支持部1
bには断面が半球状の溝1dが周設され、この溝1dに
はセラミックスで形成されたピン2が係合されている。
[Example] Fig. 1 shows an embodiment of the present invention, in which a round bar-shaped test piece 1 consists of an evaluation section 1a and support sections 1b formed with a large diameter at both ends of the evaluation section 1a. and the support portion 1b are smoothly connected to form a shoulder portion 1c. The support part 1
A groove 1d having a hemispherical cross section is provided around b, and a pin 2 made of ceramic is engaged with this groove 1d.

ピン2は試験片支持部1bを覆うように形成されたプル
ロッド3の筒部3aの孔3bに嵌合され、さらにその端
部を上記プルロット3に嵌め込まれストッパ4で係止さ
れたリング5の外側から支持されている。またプルロッ
ド3は自在継手6を介して図示しない駆動装置に接続さ
れ、こうして駆動装置からの引張力が自在継手6、プル
ロット3、ピン2を介して試験片1に伝達されるように
なっている。
The pin 2 is fitted into a hole 3b of a cylindrical portion 3a of a pull rod 3 formed to cover the test piece support portion 1b, and its end is fitted into a ring 5 which is fitted into the pull rod 3 and locked by a stopper 4. Supported from the outside. Further, the pull rod 3 is connected to a drive device (not shown) via a universal joint 6, so that the tensile force from the drive device is transmitted to the test piece 1 via the universal joint 6, the pull rod 3, and the pin 2. .

第2図は試験片支持部1bの軸方向断面を示すもので、
(a)はピン2を120°間隔で、(b)はピン2を9
0”間隔でそれぞれ配設したものである。このようにピ
ン2は試験片1の中心軸について放射状に等間隔で配設
され、またピン2の先端部の形状は、はぼ球面に近いも
のに形成される。
FIG. 2 shows an axial cross section of the test piece support part 1b.
(a) pin 2 at 120° intervals, (b) pin 2 at 9
The pins 2 are arranged radially at equal intervals about the central axis of the test piece 1, and the shape of the tip of the pin 2 is close to a spherical surface. is formed.

かかる構成で引張試験を実施すれば、溝1dが試験片1
の中心軸について対称にかつ、均一な形状に形成されて
いる限り、各ピン2には均一なせん断力および曲げモー
メンI−が作用し、この結果試験片1には軸方向力のみ
が作用することとなる。
If a tensile test is carried out with such a configuration, the groove 1d is the same as the test piece 1.
As long as the pins 2 are formed in a uniform shape and symmetrical about the central axis of That will happen.

また、たとえ溝】dに加工上不可避な誤差や凹凸があっ
ても、試験片支持部1bの形状はこれらの誤差等に基い
て生ずる曲げ応力やせん断力に十分抗しゐ う林ものであり、したがってこのようなときでも評価部
1aが破断する以前に支持部1bが破断してしまうこと
はない。しかも試験片肩部1cは本発明においては試験
片1自体を支持するのに何ら関与していないから、その
形状を曲げ応力等に対して最適化することができ、した
がって、たとえ試験時に曲げ応力等が作用してもそれに
よって直ちに支持部1bと評価部1aの接続部である肩
部ICが破断してしまうのを回避することができる。
Furthermore, even if there are errors or irregularities in the groove d that are unavoidable during processing, the shape of the specimen supporting portion 1b is such that it can sufficiently withstand the bending stress and shearing force generated due to these errors. Therefore, even in such a case, the support part 1b will not break before the evaluation part 1a breaks. Moreover, since the test piece shoulder 1c does not take any part in supporting the test piece 1 itself in the present invention, its shape can be optimized against bending stress, etc. Even if such a problem occurs, it is possible to prevent the shoulder IC, which is the connecting part between the support part 1b and the evaluation part 1a, from breaking immediately.

さらにピン2の先端を球面ないし曲面状にしておくこと
で、ピン2と溝1dの係合はより最適な状態で安定化す
ることとなる。
Furthermore, by making the tip of the pin 2 spherical or curved, the engagement between the pin 2 and the groove 1d is stabilized in a more optimal state.

第3図は試験片1の支持部1bに断面楕円状の溝1eを
周設したもので、このように支持部に周設する溝の断面
形状は試験片材料や試験条件に応じて適宜に選択するこ
とができる。
Fig. 3 shows a groove 1e with an elliptical cross section provided around the supporting portion 1b of the test piece 1. The cross-sectional shape of the groove provided around the supporting portion can be adjusted as appropriate depending on the test piece material and test conditions. You can choose.

〔発明の効果〕〔Effect of the invention〕

以上述べたとおり、本発明は丸棒状の試験片の支持部に
溝を周設しこの溝に複数のピンを係合させて行なう試験
方法であるから、本発明によれば試験片に曲げや捩り等
の応力が生じにくく、この結果評価部に軸方向力以外の
力が作用して低応力で試験片が破断するのを防止するこ
とができる。
As described above, the present invention is a test method in which a groove is provided around the supporting portion of a round bar-shaped test piece and a plurality of pins are engaged with the groove. Stresses such as torsion are less likely to occur, and as a result, it is possible to prevent the test piece from breaking due to low stress due to force other than axial force acting on the evaluation section.

したがってより高い精度で引張試験やクリープ試験を行
なうことができる。
Therefore, tensile tests and creep tests can be performed with higher accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の実施の態様を示す図で、
第1図は試験片の装着の様子を示す一部切欠断面図、第
2図はピンの配置の様子を示す断面図、第3図は他の態
様に係る試験片の装着の様子を示す一部切欠断面図であ
る。 1・・・試験片      1a・・・評価部1b・・
・支持部      1c・・・肩部ld、Is・・・
溝       2・・・ピン3・・・プルロッド  
  3a・・・筒部3b・・・孔        4・
・・ストッパ5・・・リング      6・・・自在
継手代理人 弁理士 則 近 憲 佑 同  三俣弘文 第1図 (α) 第2図 第3 (b) 図
1 to 3 are diagrams showing embodiments of the present invention,
Fig. 1 is a partially cutaway cross-sectional view showing how the test piece is attached, Fig. 2 is a cross-sectional view showing how the pins are arranged, and Fig. 3 is a cross-sectional view showing how the test piece is attached according to another embodiment. FIG. 1... Test piece 1a... Evaluation part 1b...
・Support part 1c...Shoulder part ld, Is...
Groove 2...Pin 3...Pull rod
3a... Cylinder part 3b... Hole 4.
...Stopper 5...Ring 6...Universal joint agent Patent attorney Nori Chika Ken Yudo Hirofumi Mitsumata Fig. 1 (α) Fig. 2 Fig. 3 (b) Fig.

Claims (1)

【特許請求の範囲】[Claims] 丸棒状の試験片の支持部に溝を周設し、この溝に先端が
曲面に形成されたピンを複数係合させ、これらのピンを
介して引張力を伝達するセラミックスの引張試験方法。
A tensile test method for ceramics in which a groove is provided around the support of a round rod-shaped test piece, a plurality of pins each having a curved tip are engaged with the groove, and tensile force is transmitted through these pins.
JP28424385A 1985-12-19 1985-12-19 Tensile testing of ceramics Pending JPS62144044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28424385A JPS62144044A (en) 1985-12-19 1985-12-19 Tensile testing of ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28424385A JPS62144044A (en) 1985-12-19 1985-12-19 Tensile testing of ceramics

Publications (1)

Publication Number Publication Date
JPS62144044A true JPS62144044A (en) 1987-06-27

Family

ID=17676013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28424385A Pending JPS62144044A (en) 1985-12-19 1985-12-19 Tensile testing of ceramics

Country Status (1)

Country Link
JP (1) JPS62144044A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104553U (en) * 1989-02-03 1990-08-20
CN104655483A (en) * 2013-11-20 2015-05-27 沈阳工业大学 Hanging-type fixture used in tension and durability of sheet-shaped test sample
CN110954406A (en) * 2019-12-19 2020-04-03 天台婉枫电子有限公司 High alumina porcelain insulating material mechanical strength check out test set

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02104553U (en) * 1989-02-03 1990-08-20
CN104655483A (en) * 2013-11-20 2015-05-27 沈阳工业大学 Hanging-type fixture used in tension and durability of sheet-shaped test sample
CN104655483B (en) * 2013-11-20 2017-06-06 沈阳工业大学 A kind of hanging sheet specimens are stretched, persistently use fixture
CN110954406A (en) * 2019-12-19 2020-04-03 天台婉枫电子有限公司 High alumina porcelain insulating material mechanical strength check out test set

Similar Documents

Publication Publication Date Title
Cook et al. A modified indentation toughness technique
Luong Tensile and shear strengths of concrete and rock
US8578784B2 (en) Specimen creep test and methods of using such tests
US5083465A (en) Probe for an extensometer
JPS62144044A (en) Tensile testing of ceramics
Antolovich et al. Fatigue failures
CN211505062U (en) High-temperature in-situ fretting fatigue experiment system
Nelson et al. A novel four-point bend test for strength measurement of optical fibers and thin beams. I. Bending analysis
Hosford Overview of tensile testing
US8225675B2 (en) Controlled shear/tension fixture
JPS62113042A (en) Material tester
Mall et al. Creep rupture and fatigue behavior of a notched oxide/oxide ceramic matrix composite at an elevated temperature
JPS62134538A (en) Method and apparatus for high temperature tensile test of ceramics
RU2696934C1 (en) Method of determining tensile strength of ceramics in axial tension
JP2010175373A (en) Thermocouple fixing device
RU2149376C1 (en) Material tension strength test piece
Raghuraman et al. Crack propagation in SiCf/SiC ceramic matrix composite under static and cyclic loading conditions
Morrell Mechanical properties of engineering ceramics: Test bars versus components
Yerman et al. Accuracy evaluation of residual stress measurements
Starrett A Test Method for Tensile Testing Coated Carbon‐Carbon and Ceramic Matrix Composites at Elevated Temperature in Air
Zamrik et al. A simple test method and apparatus for biaxial fatigue and crack growth studies
Morrison Biaxial testing using cruciform specimens
JPH09229833A (en) Sample piece used under biaxial tensile stress and test method using the same
Essam et al. Novel test methods for mechanical strength characterisation of engineering ceramics
JPS62144045A (en) High temperature tensile test of ceramics