JPS62111420A - Method for forming cosi2 film - Google Patents

Method for forming cosi2 film

Info

Publication number
JPS62111420A
JPS62111420A JP24996185A JP24996185A JPS62111420A JP S62111420 A JPS62111420 A JP S62111420A JP 24996185 A JP24996185 A JP 24996185A JP 24996185 A JP24996185 A JP 24996185A JP S62111420 A JPS62111420 A JP S62111420A
Authority
JP
Japan
Prior art keywords
film
substrate
cosi2
forming
composition ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24996185A
Other languages
Japanese (ja)
Other versions
JPH0511412B2 (en
Inventor
Akitoshi Ishizaka
彰利 石坂
Yasuhiro Shiraki
靖寛 白木
Taku Ooshima
卓 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP24996185A priority Critical patent/JPS62111420A/en
Publication of JPS62111420A publication Critical patent/JPS62111420A/en
Priority to US07/110,580 priority patent/US5047111A/en
Publication of JPH0511412B2 publication Critical patent/JPH0511412B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a solid phase epitaxial method having less effect on the Si substrate by alternately stacking Co and Si films on a Si monocrystalline substrate with a specific composition ratio and at a substrate temperature of 450 deg. or less. CONSTITUTION:On a Si substrate 2, multilayer films 1, 3 of Si and Co are formed so that the composition ratio becomes that of CoSi2, at a substrate temperature of 450 deg.C or less which is hard to cause the reaction with the ground, preferably, 25-300 deg.C. For the composition ratio of Co and Si, Si/Co>2, the excess Si precipitates on the CoSi2 film at the time of epitaxial growth, so it is not desirable. For Si/Co<1.8, Si atoms diffuse from the ground to supply insufficient Si atoms in forming the CoSi2 film, which adversely affects the surface morphology of the CoSi2 film.

Description

【発明の詳細な説明】 発明の、洋紹]な説明 〔発明の利用分野〕 本発明はCoSi2膜の形成方法に関する。特に良質の
結晶性を有するC OS j 2単結晶膜を容易に形成
でき、同時に、Si基板中へCoSi2からの不純物の
拡散の影響が少ないという、半導体素子に好適なCoS
i2膜の同相エピタキシャル成長法に関する。
[Detailed Description of the Invention] Western Description of the Invention [Field of Application of the Invention] The present invention relates to a method for forming a CoSi2 film. CoS is suitable for semiconductor devices because it can easily form a COS j 2 single crystal film with particularly good crystallinity, and at the same time there is little influence of impurity diffusion from CoSi2 into the Si substrate.
This invention relates to an in-phase epitaxial growth method for i2 films.

〔発明の背景〕[Background of the invention]

従来、Si単結晶の上にCoSi2単結晶膜をエピタキ
シャル成長する方法として、Co膜とSi基板とを反応
させる固相エピタキシャル法、たとえばアール・ティー
・1−ラング等によるアプライド・フィジックス・レタ
ーズ、第40巻、第684ページ、1982年刊(R,
T、 Tunget al、、 Appl、 Phys
、 Lett、、 40(1982)。
Conventionally, as a method for epitaxially growing a CoSi2 single crystal film on a Si single crystal, a solid-phase epitaxial method in which a Co film and a Si substrate are reacted has been described, for example, by R.T. 1-Lang et al. in Applied Physics Letters, No. 40. Volume, page 684, published 1982 (R,
T., Tunget al., Appl., Phys.
, Lett, 40 (1982).

p、684)の論文記載の方法が知られていた。p. 684) was known.

固相エピタキシャル法は形成法が容易であるが、反応が
拡散を伴ったものであり、Si中にCoが拡散したり、
膜の表面のモルホロジー (morphology )が悪いという欠点を有した
The solid-phase epitaxial method is easy to form, but the reaction involves diffusion, which may cause Co to diffuse into Si,
The disadvantage was that the surface morphology of the membrane was poor.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、CoSi2膜の形成方法において、従
来の固相エピタキシャル法益みの容易さで、Si基板へ
の影響を少くするような、同相エピタキシャル法を提供
することにある。
An object of the present invention is to provide a method for forming a CoSi2 film using an in-phase epitaxial method that is as easy as the conventional solid-phase epitaxial method and has less influence on the Si substrate.

〔発明の概要〕[Summary of the invention]

従来の固相エピタキシャル法の欠点は、下地のSi基板
との反応により核形成による膜の成長が生じたり、また
SiどCOの拡散反応が必須であるため、Si基板中に
Co原子が不純物として固溶されてしまうということで
あった。したがって、Si基板と同相反応を生じさせな
いようにし、エピタキシャル成長は下地のSi基板に従
うようにしてやれば、上記の同相エピタキシャル法の欠
点は解消される。そのためにSi基板上に下地との反応
が生じにくい450℃以下の基板温度、望ましくは25
〜300℃にて、CoSi2の組成比になるようにSi
とCoの多層膜を形成する。組成比がCo S i 2
からずれている場合は、450℃以上、特に550℃以
上の基板温度では、下地のSi基板と上に形成した膜と
の反応が顕著になるので望ましくない。多層膜の全体と
して組成はSiとの格子のミスマツチが少く、容易にエ
ピタキシャル成長が生じ、しかも、Siとの共存相とし
て安定なCoSi2になるようにした。この時CoとS
iとの組成比がS i / Co ) 2では、エピタ
キシャル成長させた時にCo S i 2膜に余分のS
iが析出した状態になり望ましくない。またS i /
 G o < 1 、8ではCoSi2膜を形成する際
不足のSi原子をおぎなうため下地からSi原子が拡散
してくるが、それに伴い、CoSi2膜の表面モルホロ
ジーが悪くなり、望ましくない。
The disadvantages of the conventional solid-phase epitaxial method are that film growth occurs due to nucleation due to reaction with the underlying Si substrate, and because a diffusion reaction of Si and CO is essential, Co atoms may become impurities in the Si substrate. It turned out that it was dissolved in solid solution. Therefore, if the in-phase reaction with the Si substrate is prevented and the epitaxial growth is made to follow the underlying Si substrate, the above-mentioned drawbacks of the in-phase epitaxial method can be overcome. For this reason, the substrate temperature is preferably 450°C or lower, where reaction with the underlying layer is less likely to occur on the Si substrate, preferably 25°C.
At ~300°C, Si was added to the composition ratio of CoSi2.
A multilayer film of Co and Co is formed. Composition ratio is CoSi2
If it deviates from this, it is not desirable because the reaction between the underlying Si substrate and the film formed thereon becomes significant at a substrate temperature of 450° C. or higher, especially 550° C. or higher. The composition of the multilayer film as a whole is such that there is little lattice mismatch with Si, epitaxial growth occurs easily, and CoSi2 is stable as a coexisting phase with Si. At this time Co and S
When the composition ratio with i is Si/Co)2, excess S is added to the CoSi2 film during epitaxial growth.
i becomes precipitated, which is undesirable. Also S i /
When G o <1, 8, Si atoms diffuse from the base to cover the insufficient Si atoms when forming the CoSi2 film, but this is undesirable because the surface morphology of the CoSi2 film deteriorates.

200℃以下で形成したSiとCoの多層膜は。A multilayer film of Si and Co formed at a temperature below 200°C.

各層が30〜300人と非常に薄く、また基板の単結晶
基板に比べ多量の格子欠陥を含むので拡散しやt<、4
50℃30分という低温でのアニールでも下地のSiと
反応することなく容易に均一なCoSi2相となる。こ
のCoSi2を形成するアニール温度は上述の如<Si
基板との反応を防ぐという観点から、450〜550℃
である。なお、この多層膜からCoSi2膜を形成する
工程は、省略してもよい。
Each layer is very thin with 30 to 300 layers, and contains a large number of lattice defects compared to the single crystal substrate, so it is difficult to diffuse t<,4
Even by annealing at a low temperature of 50° C. for 30 minutes, a uniform CoSi2 phase is easily formed without reacting with the underlying Si. The annealing temperature for forming CoSi2 is as described above.
450-550℃ from the viewpoint of preventing reaction with the substrate
It is. Note that the step of forming a CoSi2 film from this multilayer film may be omitted.

次にCoSi2膜あるいはCo −S i多層膜を。Next, add CoSi2 film or Co-Si multilayer film.

下地Si単結晶基板に対して、同相エピタキシャル成長
させるため、450℃〜1000℃に基板を加熱した。
The base Si single crystal substrate was heated to 450° C. to 1000° C. in order to perform in-phase epitaxial growth.

単結晶成長は、Si基板表面が清浄であれば、450℃
でも生じるが、結晶性はあまり良くない。600〜75
0℃にて、結晶性も良好で、また1表面の凹凸も原子層
オーダーの非常に平滑な単結晶膜を得ることができる。
Single crystal growth is possible at 450°C if the Si substrate surface is clean.
However, the crystallinity is not very good. 600-75
At 0° C., it is possible to obtain a single crystal film with good crystallinity and a very smooth surface with irregularities on the order of atomic layers.

800℃以上、特に900℃に加熱すると、結晶性は良
いが、表面の凹凸が大きくなり、極端な場合は。
When heated to 800°C or higher, especially 900°C, the crystallinity is good, but the surface becomes rough, and in extreme cases.

CoSi2膜に穴がおいて、下地のSi基板が露出する
ようになってしまうことがある。したがって、600〜
800℃の基板加熱温度が固相エピタキシャル成長させ
る最適の温度領域である。
A hole may be formed in the CoSi2 film and the underlying Si substrate may be exposed. Therefore, 600~
A substrate heating temperature of 800° C. is the optimal temperature range for solid phase epitaxial growth.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細を実施例により説明する。 The details of the present invention will be explained below with reference to Examples.

実施例1゜ S i (111)単結晶基板を分子線成長装置に挿入
し、10−10torr台の超高真空中にて低温サーマ
ルエツチング法により表面の清浄化を行った。次に基板
温度を室温に下げ、Si層とCo層を各々172人、5
0人の周期で4層ずつ交互に形成した。その後、30分
間600°Cに基板を上げた。反射電子線回折により結
晶性を判定したところ単結晶パターンが得られ、下地の
Si基板(111)面に対して、同様に(111)面の
エピタキシャル成長が生じていることが判った。次にオ
ージェ電子分光により分析したところ、Co S i 
2に特有のラインシェープの5itvvピークが得られ
、CoSi2が生成していることが判った。断面を観察
したところ、通常の固相エピタキシャル法の場合とは異
なり、第1図(b)に示すように、下地のSi基板を食
ってCoSi2が成長しているということはなかった。
Example 1 A Si (111) single crystal substrate was inserted into a molecular beam growth apparatus, and the surface was cleaned by low-temperature thermal etching in an ultra-high vacuum of 10-10 torr. Next, the substrate temperature was lowered to room temperature, and the Si layer and Co layer were
Four layers were alternately formed at intervals of 0 people. The substrate was then raised to 600°C for 30 minutes. When the crystallinity was determined by reflection electron beam diffraction, a single crystal pattern was obtained, and it was found that epitaxial growth of the (111) plane had similarly occurred on the (111) plane of the underlying Si substrate. Next, analysis by Auger electron spectroscopy showed that CoSi
A 5itvv peak with a line shape characteristic of CoSi2 was obtained, indicating that CoSi2 was generated. When the cross section was observed, it was found that CoSi2 did not grow eating away at the underlying Si substrate, as shown in FIG. 1(b), unlike in the case of normal solid phase epitaxial method.

なお、第1図(a)はSi基板2上に00層を形成した
状態を示す断面図、第1図(b)はその固相エピタキシ
ャル成長後の断面図である。一方、第2図(a)は本発
明の方法を用いたもので、Co層(1)とSi層(3)
を交互にSi基板(2)上に積層した状態を示す。第2
図(b)はこの状態で固相エピタキシャル成長を施こし
た状態である。また。
Note that FIG. 1(a) is a cross-sectional view showing a state in which a 00 layer is formed on a Si substrate 2, and FIG. 1(b) is a cross-sectional view after solid phase epitaxial growth. On the other hand, FIG. 2(a) shows the result using the method of the present invention, with a Co layer (1) and a Si layer (3).
This shows a state in which these are alternately stacked on a Si substrate (2). Second
Figure (b) shows a state in which solid phase epitaxial growth was performed in this state. Also.

表面のモルホロジー(molphology )も、ノ
マルスキー型光学顕微鏡でみても何の構造もみられない
程、鏡面状態であった。深さ方向にIMA分析を行った
ところ、第3図に示すように、通常の同相エピタキシャ
ル法の場合、主のように界面のダレは2000人であり
、一方、本発明の固相エピタキシャル洗立の場合は、界
面のダレは400人程度であった。このダレは、分析の
イオンスパッタに伴うイオン衝撃によるダレの程度であ
り、本発明による方法では、Si基板中へCo原子が拡
散するのは非常に少いことが明らかである。
The morphology of the surface was so mirror-like that no structure could be seen even when viewed with a Nomarski optical microscope. When IMA analysis was performed in the depth direction, as shown in Figure 3, in the case of the ordinary in-phase epitaxial method, the sag at the interface was 2000, as was the case with the solid-phase epitaxial method of the present invention. In the case of , the amount of sagging at the interface was about 400. This sagging is the extent of sagging due to ion bombardment accompanying ion sputtering in analysis, and it is clear that in the method according to the present invention, the diffusion of Co atoms into the Si substrate is extremely small.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、 (1)Si基板からSi原子を食うことなしに5しかも
従来の同相エピタキシャル法と同程度の容易さで、同時
蒸着法で得られる膜質と同等のものが形成できる。
As described above, according to the present invention, (1) a film quality equivalent to that obtained by simultaneous vapor deposition can be formed without eating Si atoms from the Si substrate, and with the same ease as the conventional in-phase epitaxial method. .

(2)しかも半導体層へCo原子の拡散が少いという特
徴を有している。
(2) Moreover, it has the characteristic that the diffusion of Co atoms into the semiconductor layer is small.

半導体に対しCoSi2を使用できるという極めて大き
い効用がある。
CoSi2 can be used for semiconductors, which has an extremely large effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は従来の同相エピタキシャル法に
よる成長層の断面図で、(a)は基板に(、o膜形成後
の断面図、(b)はこれを固相エピタキシャル成長した
後の断面図である。 第2図(a)、(b)は本発明による固相エピタキシャ
ル法による成長層の断面図で、(a)はCoSi□膜の
多層膜形成後の断面図、(b)はこれを固相エピタキシ
ャル成長した後の断面図である。 第3図は二次イオン質量分析によるCOの深さ方向分析
結果を示す図である。 1・・・CO膜、2・・Si基板、3・・Si膜、4・
・・CoSi2膜。
Figures 1 (a) and (b) are cross-sectional views of layers grown by the conventional in-phase epitaxial method. FIGS. 2(a) and 2(b) are cross-sectional views of layers grown by the solid-phase epitaxial method according to the present invention, and (a) is a cross-sectional view after forming a multilayer film of CoSi□ film; b) is a cross-sectional view of this after solid-phase epitaxial growth. Fig. 3 is a diagram showing the results of CO depth direction analysis by secondary ion mass spectrometry. 1...CO film, 2...Si Substrate, 3...Si film, 4...
...CoSi2 film.

Claims (1)

【特許請求の範囲】 1、Si単結晶基板上に、基板温度が450℃以下の温
度で、30〜300Åの厚さで所望の周期にCoおよび
Si膜を交互に当該積層膜全体の組成比が▲数式、化学
式、表等があります▼になるよう に積層膜を形成した後、450〜1000℃に加熱して
CoSi_2膜を形成することにより、CoSi_2単
結晶膜をエピタキシャル成長させることを特徴とするC
oSi_2膜の形成方法。 2、前記Si膜とCo膜の積層膜をアニールによってC
oSi_2膜とせしめ、次いでCoSi_2単結晶膜を
エピタキシャル成長させるこを特徴とする特許請求の範
囲第1項記載のCoSi_2膜の形成方法。
[Claims] 1. On a Si single crystal substrate, at a substrate temperature of 450°C or less, Co and Si films are alternately formed at a desired periodicity with a thickness of 30 to 300 Å, and the composition ratio of the entire laminated film is It is characterized by epitaxially growing a CoSi_2 single crystal film by forming a laminated film so that ▲ is ▼, and then heating it to 450 to 1000°C to form a CoSi_2 film. C
Method for forming oSi_2 film. 2. The laminated film of the Si film and Co film is annealed to
A method for forming a CoSi_2 film according to claim 1, characterized in that an oSi_2 film is formed and then a CoSi_2 single crystal film is epitaxially grown.
JP24996185A 1985-03-16 1985-11-09 Method for forming cosi2 film Granted JPS62111420A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24996185A JPS62111420A (en) 1985-11-09 1985-11-09 Method for forming cosi2 film
US07/110,580 US5047111A (en) 1985-03-16 1987-10-16 Method of forming a metal silicide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24996185A JPS62111420A (en) 1985-11-09 1985-11-09 Method for forming cosi2 film

Publications (2)

Publication Number Publication Date
JPS62111420A true JPS62111420A (en) 1987-05-22
JPH0511412B2 JPH0511412B2 (en) 1993-02-15

Family

ID=17200763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24996185A Granted JPS62111420A (en) 1985-03-16 1985-11-09 Method for forming cosi2 film

Country Status (1)

Country Link
JP (1) JPS62111420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070804A1 (en) * 2003-02-07 2004-08-19 Nec Corporation Method for forming nickel silicide film, method for manufacturing semiconductor device, and method for etching nickel silicide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070804A1 (en) * 2003-02-07 2004-08-19 Nec Corporation Method for forming nickel silicide film, method for manufacturing semiconductor device, and method for etching nickel silicide

Also Published As

Publication number Publication date
JPH0511412B2 (en) 1993-02-15

Similar Documents

Publication Publication Date Title
US5010037A (en) Pinhole-free growth of epitaxial CoSi2 film on Si(111)
US6291319B1 (en) Method for fabricating a semiconductor structure having a stable crystalline interface with silicon
US20010023660A1 (en) Method for fabricating a semiconductor structure having a crystalline alkaline earth metal oxide interface with silicon
JPH076950A (en) Manufacture of structural parts for electron, lightning and optical constituent
JPS58130517A (en) Manufacture of single crystal thin film
JP2001068469A (en) Manufacture of semiconductor structure with reduced leak current density
JP2001223215A (en) Semiconductor structure having crystalline alkaline earth metal silicon nitride/oxide interface on silicon substrate
US5205871A (en) Monocrystalline germanium film on sapphire
Fukuda et al. High quality heteroepitaxial Ge growth on (100) Si by MBE
US5229332A (en) Method for the growth of epitaxial metal-insulator-metal-semiconductor structures
US5047111A (en) Method of forming a metal silicide film
US5753040A (en) Method for the growth of epitaxial metal-insulator-metal-semiconductor structures
KR900001667B1 (en) Epitaxial insulation film manufacturing method for semiconductor device
JPS62111420A (en) Method for forming cosi2 film
JPS61212017A (en) Solid-phase epitaxial growth method for nisi2 film
JPS62132312A (en) Manufacture of semiconductor thin film
JPH0476217B2 (en)
JPS61205694A (en) Preparation of zinc sulfide film
JPH08165188A (en) Composite substrate and production of single crystal substrate with the same
JP2721869B2 (en) Method for manufacturing diluted magnetic semiconductor thin film
JPS6126501B2 (en)
JPS6263419A (en) Formation of polycrystalline silicon thin film
JPS6012775B2 (en) Method for forming a single crystal semiconductor layer on a foreign substrate
JPS63137412A (en) Manufacture of semiconductor substrate
JPH02316A (en) Surface flattening method and soi substrate forming method using said surface flattening method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term