JPS62111416A - Method for forming monocrystalline thin film - Google Patents

Method for forming monocrystalline thin film

Info

Publication number
JPS62111416A
JPS62111416A JP25146485A JP25146485A JPS62111416A JP S62111416 A JPS62111416 A JP S62111416A JP 25146485 A JP25146485 A JP 25146485A JP 25146485 A JP25146485 A JP 25146485A JP S62111416 A JPS62111416 A JP S62111416A
Authority
JP
Japan
Prior art keywords
thin film
film
forming
single crystal
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25146485A
Other languages
Japanese (ja)
Inventor
Masahiro Susa
匡裕 須佐
Koji Senda
耕司 千田
Eiji Fujii
英治 藤井
Yoshimitsu Hiroshima
広島 義光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP25146485A priority Critical patent/JPS62111416A/en
Publication of JPS62111416A publication Critical patent/JPS62111416A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form a monocrystalline thin film without introducing a grain boundary or crystal defect by forming films in the shape of a convex lens transparent to a laser beam on a polycrystalline thin film, and applying a laser thereto. CONSTITUTION:On a polycrystalline thin film, a plurality of striped convex lenses composed of a film transparent to a laser light such as silicate glass or borophoscate glass, and scanning by a laser beam 4 is applied between a plurality of striped films 5. In the 10mum-wide region in the gap between the convex lenses, a recrystallized monocrystalline thin film can be formed which contains no grain boundary or crystal defect.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は単結晶薄膜の形成方法に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a method for forming a single crystal thin film.

従来の技術 近年、半導体回路素子は非常に高密度・高集積化されそ
の性能も非常に高いものが得られるようになった。しか
し、近い将来において、その2次元的な集積化は限界に
達すると予測されており、それとともに3次元的な集積
止金可能とした3次元回路素子が提案された。そしてこ
の3次元回路素子の実現のために、絶1陳膜上への単結
晶薄膜の形成方法は、非常に重要な技術となってきた。
BACKGROUND OF THE INVENTION In recent years, semiconductor circuit elements have become extremely dense and highly integrated, and their performance has become extremely high. However, it is predicted that two-dimensional integration will reach its limit in the near future, and three-dimensional circuit elements have been proposed that enable three-dimensional integration. In order to realize this three-dimensional circuit element, the method of forming a single-crystal thin film on a single-layer film has become a very important technology.

以下、図面を参照しながら、上述したような従来の単結
晶薄膜の形成方法について説明する。
Hereinafter, a conventional method for forming a single crystal thin film as described above will be described with reference to the drawings.

第2図は従来の単結晶薄膜の形成方法の工程を説明する
だめの断面図を示すものである。第2図において、1は
St基板、2は5102膜、3はポリSt膜、4はレー
ザ光である。この方法では、レーザ光4によって、ボ1
Jsj 膜3が照射されると、ボ1Jsi膜3は融解し
、再度凝固するときに単結晶薄膜が得られる。
FIG. 2 shows a cross-sectional view for explaining the steps of a conventional method for forming a single crystal thin film. In FIG. 2, 1 is an St substrate, 2 is a 5102 film, 3 is a polySt film, and 4 is a laser beam. In this method, the laser beam 4 is used to
When the Jsj film 3 is irradiated, the Bo1Jsi film 3 melts and when solidified again a single crystal thin film is obtained.

発明が解決しようとする問題点 しかしながら、上記のような構成では、レーザ光4の強
度分布がガウス分布となっているため、照射部の温度分
布も中央で高く、端部で低くなるので、結晶成長照射部
の端部から中央部へ進行するため性成した再結晶膜は照
射部両端の影響を大きく受け、粒界や微視的な結晶欠陥
を多く含んでいるという欠点を有していた。
Problems to be Solved by the Invention However, in the above configuration, the intensity distribution of the laser beam 4 is a Gaussian distribution, and the temperature distribution of the irradiated area is also high at the center and low at the edges, so that the crystal Since the growth progresses from the edges of the irradiated area to the center, the formed recrystallized film is greatly influenced by both ends of the irradiated area, and has the disadvantage of containing many grain boundaries and microscopic crystal defects. .

本発明は上記欠点に鑑み、粒界や結晶欠陥を含まない単
結晶薄膜の形成方法を提供するものである。
In view of the above drawbacks, the present invention provides a method for forming a single crystal thin film that does not contain grain boundaries or crystal defects.

問題点を解決するための手段 上記問題点を解決するために、本発明の単結晶薄膜の形
成方法は、再結晶化しようとする多結晶膜上に、レーザ
光に対して透明な膜を凸レンズ状に複数個形成し、すく
なくと位前記凸レンズ状の膜の間にレーザ光を照射する
ことから構成されている。
Means for Solving the Problems In order to solve the above problems, the method for forming a single crystal thin film of the present invention provides a method for forming a single crystal thin film by applying a film transparent to laser light to a convex lens on a polycrystalline film to be recrystallized. A plurality of lenses are formed in the shape of a convex lens, and a laser beam is irradiated between the convex lens-shaped films.

作  用 この構成では、多結晶膜上に形成されたレーザ光に対し
て透明な膜は、レーザ光の保射防止膜として作用すると
ともに、レンズ効果を有しているので、前記膜中にレー
ザ光を集めるので、端部の温度を高めるはたらきをする
。またこの膜は、冷却過程において端部を保温するはた
らきをする。
Function: In this configuration, the film formed on the polycrystalline film that is transparent to the laser beam acts as a laser beam prevention film and also has a lens effect, so that the film does not contain the laser beam. Since it collects light, it works to increase the temperature at the end. This film also functions to keep the ends warm during the cooling process.

これら2つのはたらきによって、結晶成長は中央部から
端部に向かって進行し、したがって、前記ま 凸レンズ状の膜にはさ°れた領域の再結晶化膜中には粒
界や結晶欠陥は導入されないこととなる。
Due to these two functions, crystal growth progresses from the center to the edges, and therefore, grain boundaries and crystal defects are introduced into the recrystallized film in the region between the convex lens-shaped films. It will not be done.

実施例 以下、本発明の一実施例について、図面を参照しながら
説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、本発明の実施例における単結晶薄膜の形成方
法の工程断面図を示すものである。第1図において、1
はSi基板、2はS i O2膜、3はポリSi[,4
はレーザ光、5はホウリン酸ガラス(BPSG)膜であ
る。以下、製造工程を簡単に説明するー。P形の比抵抗
6Ω・cm 、(100)オリエンテーションのSi基
板1を1000℃、ウェットQ2中、約5時間の熱酸化
によって、厚さ約1μmのS iO2膜2を成長させる
。続いて、減圧CVD装置で、600℃でSiH4ガス
を熱分解させて、厚さ約0.5μmのポリSi膜3を堆
積する。その後、B#度4wt%、P濃度4wt% の
BPSG膜s 全常圧CV D f 430℃で、厚す
0.5μm堆積する。BPSG膜5を光リソグラフイ技
術とドライエッチでライン(6μm)スペース(10μ
m)で幅5μmのストライプ状のパターンに形成し、8
50℃のウェットo2中で3膜分の熱処理を行ない、B
PSG膜5をフローさせ、ストライプ状レンズに仕上げ
る。この後、ストライプ状レンズの間の領域にC’Wア
ルゴン−レーザ走査を行なった。レーザ・パワーはaW
、走査速度は10 crn/ Sであった。
FIG. 1 shows a process sectional view of a method for forming a single crystal thin film in an embodiment of the present invention. In Figure 1, 1
is a Si substrate, 2 is a SiO2 film, 3 is a poly-Si[,4
5 is a laser beam, and 5 is a borophosphate glass (BPSG) film. The manufacturing process will be briefly explained below. A P-type Si substrate 1 having a specific resistance of 6 Ω·cm and a (100) orientation is thermally oxidized at 1000° C. in wet Q2 for about 5 hours to grow an SiO2 film 2 with a thickness of about 1 μm. Subsequently, SiH4 gas is thermally decomposed at 600° C. using a low-pressure CVD apparatus to deposit a poly-Si film 3 with a thickness of about 0.5 μm. Thereafter, a BPSG film having a B# degree of 4 wt% and a P concentration of 4 wt% is deposited to a thickness of 0.5 μm at a total atmospheric pressure CV D f of 430°C. The BPSG film 5 is formed into lines (6 μm) and spaces (10 μm) using photolithography technology and dry etching.
m) to form a striped pattern with a width of 5 μm, and
Heat treatment was performed for three films in wet O2 at 50°C, and B
The PSG film 5 is flowed to form a striped lens. After this, the area between the striped lenses was scanned with a C'W argon laser. Laser power is aW
, the scanning speed was 10 crn/S.

以上のように本実施例によれば、多結晶膜上にレーザ光
に対して透明な膜を凸レンズ状に形成し、レーザ照射を
行なうことにより、凸レンズ間の間隙の幅10μmの領
域に、粒界や結晶欠陥を含まない再結晶化単結晶薄膜を
形成することができる。
As described above, according to this example, by forming a film transparent to laser light in the shape of a convex lens on a polycrystalline film and performing laser irradiation, particles can be formed in a region with a width of 10 μm in the gap between the convex lenses. A recrystallized single crystal thin film containing no fields or crystal defects can be formed.

なお、本実施例では多結晶膜下のレンズをBPSGで形
成したが、これはBPSGに限定されるものではなく、
レーザ光に対して透明なものであれば何でもよい。
Note that in this example, the lens under the polycrystalline film was formed of BPSG, but this is not limited to BPSG.
Any material may be used as long as it is transparent to laser light.

発明の効果 以上のように本発明は、多結晶薄膜の上にレーザ光に対
して透明な膜を凸レンズ状に形成し、レーザ照射を行う
ことにより、粒界や結晶欠陥を導入することなく、単結
晶薄膜を形成することができ、その実用的効果は犬なる
ものがある。
Effects of the Invention As described above, the present invention forms a film transparent to laser light in the shape of a convex lens on a polycrystalline thin film, and then irradiates the film with laser light, without introducing grain boundaries or crystal defects. A single crystal thin film can be formed, and its practical effects are impressive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における単結晶薄膜の形成方
法の工程断面図、第2図は従来の単結晶薄膜の形成方法
の工程断面図である。 1・・・・・Si基板、2・・・・・・SiO2膜、3
・・・・・ポリSi膜、4・・・・・・レーザ光、6・
・・・・・BPSG膜。
FIG. 1 is a process cross-sectional view of a method for forming a single crystal thin film according to an embodiment of the present invention, and FIG. 2 is a process cross-sectional view of a conventional method for forming a single crystal thin film. 1...Si substrate, 2...SiO2 film, 3
...Poly-Si film, 4...Laser light, 6.
...BPSG film.

Claims (3)

【特許請求の範囲】[Claims] (1)多結晶薄膜上に、レーザ光に対して透明な膜から
なる複数個のストライプ状の凸レンズを形成する工程と
少なくとも前記複数個のストライプ状膜の間をレーザ光
で走査する工程とを含むことを特徴とする単結晶薄膜の
形成方法。
(1) A step of forming a plurality of striped convex lenses made of a film transparent to laser light on a polycrystalline thin film, and a step of scanning at least between the plurality of striped films with a laser light. A method for forming a single crystal thin film, comprising:
(2)レーザ光に対して透明な膜として、シリケート・
ガラスを用いることを特徴とする特許請求の範囲第1項
記載の単結晶薄膜の形成方法。
(2) As a film transparent to laser light, silicate
A method for forming a single crystal thin film according to claim 1, characterized in that glass is used.
(3)レーザ光に対して透明な膜として、ホウリン酸ガ
ラスを用いることを特徴とする特許請求の範囲第1項記
載の単結晶薄膜の形成方法。
(3) The method for forming a single crystal thin film according to claim 1, characterized in that borophosphate glass is used as the film transparent to laser light.
JP25146485A 1985-11-08 1985-11-08 Method for forming monocrystalline thin film Pending JPS62111416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25146485A JPS62111416A (en) 1985-11-08 1985-11-08 Method for forming monocrystalline thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25146485A JPS62111416A (en) 1985-11-08 1985-11-08 Method for forming monocrystalline thin film

Publications (1)

Publication Number Publication Date
JPS62111416A true JPS62111416A (en) 1987-05-22

Family

ID=17223208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25146485A Pending JPS62111416A (en) 1985-11-08 1985-11-08 Method for forming monocrystalline thin film

Country Status (1)

Country Link
JP (1) JPS62111416A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204204A (en) * 1995-01-03 1996-08-09 Lg Semicon Co Ltd Manufacture of thin film transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204204A (en) * 1995-01-03 1996-08-09 Lg Semicon Co Ltd Manufacture of thin film transistor

Similar Documents

Publication Publication Date Title
EP0444942B1 (en) A bonded wafer and a method of manufacturing it
JPS62111416A (en) Method for forming monocrystalline thin film
JPH01184927A (en) Manufacture of large area semiconductor substrate
JPS5886717A (en) Forming of single crystal silicon film
JPS59182529A (en) Pattern formation of semiconductor layer
JPS59148322A (en) Manufacture of semiconductor device
Scharff et al. Growth of monocrystalline silicon islands on insulating substrates
JPS63127531A (en) Manufacture of semiconductor device
JPH01200615A (en) Method of forming insulator with thin single crystal semiconductor material layer
RU2096865C1 (en) Method of manufacture of silicon-on-insulator structure
JPH0237713A (en) Method of forming thin defect-free single crystal fine stripe of semiconductor material on insulator
JPS6254910A (en) Manufacturing semiconductor device
JPS6091622A (en) Manufacture of semiconductor substrate
JPS62167289A (en) Processing method for silicon base plate
JPS59182518A (en) Melting of microscopic region
KR910013486A (en) Defect-free single crystal thin film manufacturing method
JPS6017911A (en) Manufacture of semiconductor device
JPS63142810A (en) Manufacture of semiconductor device
JPH0437631A (en) Production of surface insulating material
JPS60225433A (en) Depositing method for interlayer insulation film
JPH0693427B2 (en) Laser annealing method
JPS60161615A (en) Manufacture of soi film
JPH0330317A (en) Device for manufacturing soi substrate
JPH01107514A (en) Semiconductor device
JPH01297814A (en) Manufacture of single crystal