JPS62111129A - Waste water treatment device for recovering power by gas turbine - Google Patents

Waste water treatment device for recovering power by gas turbine

Info

Publication number
JPS62111129A
JPS62111129A JP60249160A JP24916085A JPS62111129A JP S62111129 A JPS62111129 A JP S62111129A JP 60249160 A JP60249160 A JP 60249160A JP 24916085 A JP24916085 A JP 24916085A JP S62111129 A JPS62111129 A JP S62111129A
Authority
JP
Japan
Prior art keywords
gas
gas turbine
pressure
waste water
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60249160A
Other languages
Japanese (ja)
Inventor
Kiichi Taga
田賀 喜一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60249160A priority Critical patent/JPS62111129A/en
Publication of JPS62111129A publication Critical patent/JPS62111129A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To improve the efficiency of power recovery by increasing temperature of exhaust gas generated in a waste water treatment device to a high value by a heater and introducing the hot waste water into a gas turbine. CONSTITUTION:Gas which is generated in a waste water treating high pressure oxidizer 1 is fed to a heater 3 via a separator 2. After increasing temperature of the gas by the burner 4 of the heater 3, the gas is carried into a high pressure gas turbine 5. The gas is further carried into a low pressure gas turbine 6 via a reheater 7 to drive a generator 8. Hence the efficiency of power recovery from the exhaust gas can be increased.

Description

【発明の詳細な説明】 廃水処理には踵々な方法があるが、反応によって発生す
る汚泥の処理が未解決の間還として残されている。これ
を焼却する多段炉床方式や、肥料、建築資材化する方法
などが模索されている。これに対して、有機物を完全に
水中で燃焼せしめる湿式燃焼法は、このような汚泥が発
生せず好ましいシステムである。しかし、この方法は廃
水及び空気を700気圧以上の高圧とするため設備が高
価となり、経済的に成立しない場合も多い。本発明は、
これを解消するため、発生する高圧ガス、主として未反
応空気と炭酸ガスの混合物であるが、を加熱器に通して
高圧高温ガスを作り、これをガスタービンに導き動力を
回収するものである。このようにすれば廃水処理装置が
高効率発電装置と兼用となり、経済性が大きく改善され
る。本プラント用の高圧コンプレッサーとしては、等温
圧縮で効率の高いものを使用するので、その発電効率は
充分高いものとなる。
DETAILED DESCRIPTION OF THE INVENTION Although there are various methods for treating wastewater, the treatment of sludge generated by the reaction remains an unresolved problem. A multi-stage hearth method for incinerating this waste, and ways to turn it into fertilizer and construction materials are being explored. On the other hand, the wet combustion method, in which organic matter is completely combusted in water, does not generate such sludge and is a preferable system. However, this method requires expensive equipment because the wastewater and air are brought to a high pressure of 700 atmospheres or more, and is often not economically viable. The present invention
To solve this problem, the generated high-pressure gas, which is mainly a mixture of unreacted air and carbon dioxide gas, is passed through a heater to create high-pressure, high-temperature gas, which is then guided to a gas turbine to recover power. In this way, the wastewater treatment device can also be used as a high-efficiency power generation device, greatly improving economic efficiency. As the high-pressure compressor for this plant uses isothermal compression and high efficiency, its power generation efficiency will be sufficiently high.

つぎに廃水処理のより簡便な方法として活性汚泥法があ
り、これはすでに述べたように、汚泥を発生する欠点が
あるが、やはり一つの有効な方法として波々の改良が試
みられている。その一つとしてディープシャフトプロセ
スと称する深井戸状の孔で反応させるものがある。これ
は相当な深さのものもあるので、その水圧は高い価とな
り、ここに吹き入む空気・も高圧・どなる。したがって
空気の分圧も高くなり、廃水中えの溶解度も大きい。ま
た高圧のため空気のアワも小さく、一様に水中に分散さ
れて、活性汚泥反応に適していて、空気の利用率が大気
圧方式に比較して10倍近くに上昇する。この方法はス
ペースを要せず、また圧力容器の必要がなく、またポン
プも高圧のものを要せぬ特色があるが、深井戸が地質に
適せぬ場合や、aaの問題もある。
Next, there is the activated sludge method as a simpler method of wastewater treatment.As mentioned above, this method has the drawback of generating sludge, but it is still an effective method and many attempts have been made to improve it. One of these is a process called the deep shaft process, in which the reaction is carried out in a deep well-like hole. Some of these are quite deep, so the water pressure is high, and the air that blows in here is also high pressure and roaring. Therefore, the partial pressure of air is also high, and the solubility in wastewater is also high. In addition, because of the high pressure, air bubbles are small and uniformly dispersed in water, making it suitable for activated sludge reactions, and the air utilization rate increases nearly 10 times compared to atmospheric pressure systems. This method does not require space, does not require a pressure vessel, and does not require a high-pressure pump, but there are cases where a deep well is not suitable for the geology and there are problems with AA.

これに対して本発明では、地上に圧力容器を設けるもの
で、その圧力はIO気圧前後とする。これは約100米
の深井戸に相当する。この場合も発生する未反応空気と
炭酸ガスの混合物を、加熱器で昇温して、ガスタービン
に導き動力を回収するのである。この加熱器の燃料とし
ては、発生汚泥を乾員して燃焼した熱を利用すれば、汚
泥処理も同時にできて極めて経済的である。また助燃の
ための燃料を使用しても、有効に活用されて経済性を害
しない。本プラントのコンプレッサーとしても、等温圧
縮で効率の高いものを使用するので、その動力回収の効
率は充分品い。
In contrast, in the present invention, a pressure vessel is provided on the ground, and the pressure thereof is approximately IO atmospheric pressure. This is equivalent to a deep well of about 100 meters. In this case as well, the mixture of unreacted air and carbon dioxide that is generated is heated by a heater and guided to a gas turbine to recover power. As the fuel for this heater, if the heat produced by drying and burning the generated sludge is used, sludge treatment can be done at the same time, which is extremely economical. Furthermore, even if fuel is used for auxiliary combustion, it is effectively utilized and does not harm economic efficiency. The compressor for this plant uses isothermal compression with high efficiency, so its power recovery efficiency is sufficient.

つぎに図面によって詳細を説明すると、第1図において
、これは本発明の湿式燃焼方式の場合の全体構′?i図
であって、1は廃水処理用の高圧酸化器である。圧力は
100気圧以との耐圧容器であるため、細径の背の高い
塔状となる。この内部で、摂氏300度前後の温度で、
有機物は高圧空気によって酸化され、炭酸ガスと水にな
り、発生ガスは水面より分離して頂部に導かれる。2は
水滴分屋のためのセパレータであって、これによってド
ライガスとして出て行く。3は、このガスを加熱して昇
温する加熱器であって、ガスタービンに必要な摂氏50
0−100度の温度に上昇せしめる。4は、この加熱器
3用のバーナであって、燃料は石油、ガスなどである。
Next, to explain the details with reference to the drawings, FIG. 1 shows the overall structure of the wet combustion method of the present invention. In Figure i, 1 is a high-pressure oxidizer for wastewater treatment. Since it is a pressure-resistant container with a pressure of 100 atmospheres or more, it is shaped like a tall tower with a small diameter. Inside this, at a temperature of around 300 degrees Celsius,
Organic matter is oxidized by high-pressure air and becomes carbon dioxide and water, and the generated gas is separated from the water surface and led to the top. 2 is a separator for the water droplets, which allows the water to exit as dry gas. 3 is a heater that heats this gas to raise its temperature, which is 50 degrees Celsius required for the gas turbine.
Raise the temperature to 0-100 degrees. 4 is a burner for this heater 3, and the fuel is oil, gas, etc.

またバーナの代りに、固体燃料用のストーカとすること
もできる。5は高圧ガスタービンであって、ガス圧゛が
高いため、高゛圧、低圧の多段で膨張せしめる。6は低
圧ガスタービンである。7は再熱器であって、高圧ガス
タービン5で膨張して低温になったガスを、再度加熱し
てサイクル効率を上昇する。この再熱器7には、加熱器
3の燃焼ガスを途中からバイパスして導いて加熱する。
Also, instead of a burner, a stoker for solid fuel can be used. 5 is a high-pressure gas turbine, and since the gas pressure is high, it is expanded in multiple stages of high pressure and low pressure. 6 is a low pressure gas turbine. Reference numeral 7 denotes a reheater, which heats the gas that has become low temperature after being expanded by the high-pressure gas turbine 5 again to increase cycle efficiency. The combustion gas from the heater 3 is bypassed from the middle and guided to the reheater 7 for heating.

8は発電機であつン て高圧ガスターピ5、低圧ガスタービン6にへ よってmuされる。9は空気のコンプレッサーであって
、等温圧縮に近いもので、効率の高いものを使用する。
Reference numeral 8 denotes a generator, which is powered by a high-pressure gas turbine 5 and a low-pressure gas turbine 6. 9 is an air compressor, which is close to isothermal compression and has high efficiency.

10は空気予熱器であって、加熱器3や低圧ガスタービ
ン6の排気熱を利用して、高圧空気を予熱し効率を高め
るものである。11は廃水用の高圧ポンプであって、高
効率のダイヤフラムポンプを使用する。12は反応を終
了した廃水の圧力エネルギーを、高圧ポンプ11の駆動
に回収する水力タービンである。13は廃水の熱エネル
ギーを回収する廃水予熱器であって、新しい廃水を予熱
するものである。
Reference numeral 10 denotes an air preheater, which uses exhaust heat from the heater 3 and the low pressure gas turbine 6 to preheat high pressure air and improve efficiency. Reference numeral 11 is a high-pressure pump for wastewater, and a highly efficient diaphragm pump is used. Reference numeral 12 denotes a hydraulic turbine that recovers the pressure energy of the waste water that has completed the reaction to drive the high-pressure pump 11. 13 is a wastewater preheater that recovers thermal energy from wastewater and preheats new wastewater.

つぎに第2図において、これは活性汚泥方式の場合の全
体構造図であって、1は廃水処理用の反応器である。こ
の反応器の圧力は、ふつう10気圧前後とする。これは
、やはり細径の塔状圧力容器となる。この内で活性汚泥
が繁殖して居て、空気の存在の下に廃水中の有機物が分
解され、空気と炭酸ガスの混合ガスが発生し、水面より
分層して反応器lの頂部に導かれる。2は水滴分屋のた
めのセパレータであって、これによりドライガスとして
出て行く。3は、このガスを加熱して昇温する加熱器で
あって、ガスタービンに必要な摂氏soo−goo度の
温度に上昇せしめる。この場合は圧力が10気圧前徨の
低圧のため、再熱はしない、14は、この加熱器3用の
燃焼ストーカであって、この活性汚泥システムで発生す
る汚泥を、石炭など、ふつうの燃料の助燃のもとに焼却
する。これによって助燃のエネルギーも有効に生かされ
、汚泥が完全に処理される。5はガスタービンであって
、この場合は単段でよい。6は発電磯である。7は空気
のコンプレッサーであって、等温圧縮に近いもので、効
率の高いものを使用する。8は廃水用のポンプであって
、高効率のダイヤフラムポンプを使用する。9は反応を
終了した廃水の圧力エネルギーを、ポンプ8の駆動に回
収する水力タービンである。
Next, in FIG. 2, this is an overall structural diagram in the case of an activated sludge system, and 1 is a reactor for wastewater treatment. The pressure in this reactor is usually around 10 atmospheres. This also results in a narrow diameter tower pressure vessel. Activated sludge is growing in this chamber, and the organic matter in the wastewater is decomposed in the presence of air, generating a mixture of air and carbon dioxide, which is separated from the water surface and introduced to the top of the reactor. It will be destroyed. 2 is a separator for the water droplets, which allows the water to exit as dry gas. Reference numeral 3 denotes a heater that heats this gas to raise its temperature to a temperature of soo-goo degrees Celsius required for the gas turbine. In this case, the pressure is as low as 10 atmospheres, so there is no reheating. 14 is a combustion stoker for this heater 3, and 14 is a combustion stoker for this activated sludge system, which converts the sludge generated in this activated sludge system into ordinary fuel such as coal. Incinerate with auxiliary combustion. This allows the energy of auxiliary combustion to be used effectively, and the sludge is completely treated. 5 is a gas turbine, which in this case may have a single stage. 6 is the power generation rock. 7 is an air compressor, which is close to isothermal compression and has high efficiency. 8 is a pump for waste water, and a high efficiency diaphragm pump is used. Reference numeral 9 denotes a hydraulic turbine that recovers the pressure energy of the waste water that has completed the reaction to drive the pump 8 .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は湿式燃焼方式の場合の全体構造図である。第2
図は活性汚泥方式の場合の全体構造図である。
FIG. 1 is an overall structural diagram of the wet combustion method. Second
The figure shows the overall structure of the activated sludge system.

Claims (1)

【特許請求の範囲】[Claims] 高圧容器内の高温廃水中に、高圧高温の空気を吹き入ん
で、廃水中の有機物を化学的に酸化せしめるシステムや
、高圧容器内で活性汚泥により生物学的に分解するシス
テムで、発生した排ガスを加熱器により高温にし、これ
をガスタービンに導き動力を発生し、ガスタービンで動
力回収する廃水処理装置。
Exhaust gas generated by systems that chemically oxidize organic matter in wastewater by blowing high-pressure, high-temperature air into high-temperature wastewater in a high-pressure container, or biologically decompose organic matter using activated sludge in a high-pressure container. Wastewater treatment equipment uses a heater to raise the temperature of water to a high temperature, guides it to a gas turbine to generate power, and recovers the power with the gas turbine.
JP60249160A 1985-11-06 1985-11-06 Waste water treatment device for recovering power by gas turbine Pending JPS62111129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60249160A JPS62111129A (en) 1985-11-06 1985-11-06 Waste water treatment device for recovering power by gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60249160A JPS62111129A (en) 1985-11-06 1985-11-06 Waste water treatment device for recovering power by gas turbine

Publications (1)

Publication Number Publication Date
JPS62111129A true JPS62111129A (en) 1987-05-22

Family

ID=17188797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60249160A Pending JPS62111129A (en) 1985-11-06 1985-11-06 Waste water treatment device for recovering power by gas turbine

Country Status (1)

Country Link
JP (1) JPS62111129A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529715A (en) * 2000-03-31 2003-10-07 イノジー パブリック リミテッド カンパニー engine
JP2008510931A (en) * 2004-08-25 2008-04-10 コミツサリア タ レネルジー アトミーク Apparatus and equipment and associated methods for injecting particulate matter into a container

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529715A (en) * 2000-03-31 2003-10-07 イノジー パブリック リミテッド カンパニー engine
JP2008510931A (en) * 2004-08-25 2008-04-10 コミツサリア タ レネルジー アトミーク Apparatus and equipment and associated methods for injecting particulate matter into a container

Similar Documents

Publication Publication Date Title
US20060048920A1 (en) Energy reclaiming process
CN101506499A (en) Power generation
NO20005114L (en) Procedure for Generating Power Using an Advanced Thermochemical Recovery Cycle
CA2141682A1 (en) Gasification of low calorific value solid fuels to produce electric energy
EP2808307A3 (en) Method and apparatus for treating organic matter
RU2010139511A (en) METHOD FOR ENERGY PRODUCTION BY IMPLEMENTING THERMODYNAMIC CYCLES WITH HIGH PRESSURE WATER VAPOR AND MODERATE TEMPERATURE
NO923011L (en) PROCEDURE AND PLANT FOR PROVIDING MECHANICAL ENERGY
EP0278609A3 (en) Gas turbine power plant fired by a water-bearing fuel
SE7810558L (en) PROCEDURE FOR DRYING AND BURNING OF WATER-FAST FUEL
KR20150005855A (en) Active carbon production system
JP2006002746A (en) Biomass dry distillation gas combustion/heat exchanging generation apparatus
JPS62111129A (en) Waste water treatment device for recovering power by gas turbine
US4545208A (en) Method of operating an industrial furnace
CA2512227A1 (en) Energy reclaiming process
WO2019030689A1 (en) Fast pyrolytic process with low environmental impact based on controlled reforming of produced syngas
KR20090119780A (en) System concept with low energy requirement and improved energy yield
AU3862089A (en) Combined gas-turbine and steam-turbine power plant and method for utilization of the thermal energy of the fuel to improve the overall efficiency of the power-plant process
JP3370859B2 (en) Waste plastic processing and power generation system
CN111943475A (en) Sludge treatment method and system
JP2002263634A (en) Supercritical water manufacturing apparatus and supercritical water organic matter treatment facility
JPS62160200A (en) Pressure type activated sludge system
CN114198136B (en) Zero-carbon emission method for low-concentration gas in coal mine
JPS57117715A (en) Pyrolysis process and device therefor
JPS62142811A (en) Slag tap firing system for power recovery through gas turbine and steam turbine
JPS5457355A (en) Method of treating muddy sewage