JPS6210938B2 - - Google Patents

Info

Publication number
JPS6210938B2
JPS6210938B2 JP57144084A JP14408482A JPS6210938B2 JP S6210938 B2 JPS6210938 B2 JP S6210938B2 JP 57144084 A JP57144084 A JP 57144084A JP 14408482 A JP14408482 A JP 14408482A JP S6210938 B2 JPS6210938 B2 JP S6210938B2
Authority
JP
Japan
Prior art keywords
mold
carbon
quartz
graphite
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57144084A
Other languages
Japanese (ja)
Other versions
JPS5935037A (en
Inventor
Haruo Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP14408482A priority Critical patent/JPS5935037A/en
Publication of JPS5935037A publication Critical patent/JPS5935037A/en
Publication of JPS6210938B2 publication Critical patent/JPS6210938B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • C03B40/02Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it by lubrication; Use of materials as release or lubricating compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/24Carbon, e.g. diamond, graphite, amorphous carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【発明の詳細な説明】 本発明は石英ガラスの成形方方法、特には石英
塊を鋳型中で熱間成形する方法の改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for forming quartz glass, particularly in a method for hot forming a quartz ingot in a mold.

天然石英およびけい素化合物の熱分解、加水分
解反応により製造される合成石英はそれが塊状体
として取得されるため、この製品化についてはこ
れを適宜の鋳型中で再溶融し、成形することが必
要とされるが、この鋳型については耐熱性、熱安
定性、耐衝撃性がよく、しかも石英ガラスとの反
応性に乏しく、さらには加工性がよくて製作が容
易であるということから、炭素または黒鉛製のも
のを使用することが提案されている。しかし、こ
の炭素または黒鉛製の鋳型を用いて熱間成形する
場合にも、この鋳型面に石英が融着し、冷却時に
おける熱収縮率の差によつて、石英と鋳型の接触
面が割れたり、石英成形品にクラツチの入ること
があり、場合によつては鋳型が破壊されるという
事故が発生する。そのため、この炭素または黒鉛
製の鋳型を使用する場合に、この内部表面に例え
ばアセチレンの不完全燃焼により発生する煤を付
着させる方法が例示される。この煤はきわめて小
さい炭素粒子の集合体で、しかも多孔質のもので
あるため、石英塊を1700℃以上に加熱して成形す
ると、石英がこの煤層とのつぎの反応 SiO2+C→SiO+CO SiO+2C→SiC+CO によつて炭化けい素およびCOガスとして消耗す
るが、この粒状の炭化けい素が石英面と鋳型面の
界面に分散されるため、石英と鋳型面との直接々
触が妨げられて石英成形品の剥離が容易となるの
であるが、前述したようにこの煤がきわめて細粒
であり粒子間の空間が多いものであるために、実
質的な層の厚さは見掛けの厚さに比べて極めて小
さいものになる。したがつて、石英面と鋳型面と
の界面に生成する炭化けい素粒子が有効に剥離作
用をするためには、この煤層を相当厚くしなけれ
がならず、本発明者の研究では、これは500〜
1000μの見掛け厚さとする必要がある。しかし、
このように厚い煤層を塗布すると、しばしば成形
中に煤層の剥離が起つて成形後の石英面に融着に
よつてクラツクが入つたり、欠落が見られること
も少なくなかつた。また、この場合には、炭化け
い素を形成する際に、煤層が凝集して粒状となる
ために界面を介在する粒子の間隔が大きく、鋳型
面にSiO蒸気が浸透して鋳型の基材である炭素ま
たは黒鉛と反応して炭化けい素となるため、これ
をそのまゝで再度使用すると、煤層がきわめて剥
離しやすくなつて融着が起り、成形品が不良品と
なるので、この場合には必ず事前に鋳型面の炭化
けい素化した層を削り落しておくことが必要とさ
れる。
Synthetic quartz, which is produced by thermal decomposition and hydrolysis reactions of natural quartz and silicon compounds, is obtained in the form of lumps, so in order to commercialize it, it is necessary to remelt it in an appropriate mold and mold it. However, this mold has good heat resistance, thermal stability, and impact resistance, has low reactivity with quartz glass, and is easy to manufacture due to its good workability. Alternatively, it has been proposed to use one made of graphite. However, even when hot forming is performed using a mold made of carbon or graphite, the quartz adheres to the surface of the mold, and the contact surface between the quartz and the mold cracks due to the difference in thermal contraction rate during cooling. Otherwise, the clutch may get stuck in the quartz molded product, and in some cases, the mold may be destroyed. Therefore, when using a mold made of carbon or graphite, a method is exemplified in which soot, which is generated due to incomplete combustion of acetylene, is deposited on the internal surface of the mold. This soot is an aggregate of extremely small carbon particles and is porous, so when a quartz block is heated to over 1700℃ and molded, the quartz reacts with this soot layer as follows: SiO 2 +C→SiO+CO SiO+2C→ Although SiC + CO is consumed as silicon carbide and CO gas, this granular silicon carbide is dispersed at the interface between the quartz surface and the mold surface, preventing direct contact between the quartz and mold surface and forming quartz. This makes it easier to peel off the product, but as mentioned above, this soot is extremely fine and there are many spaces between particles, so the actual layer thickness is smaller than the apparent thickness. It becomes extremely small. Therefore, in order for the silicon carbide particles generated at the interface between the quartz surface and the mold surface to have an effective exfoliation effect, this soot layer must be made considerably thick, and the inventor's research has shown that this 500~
It needs to have an apparent thickness of 1000μ. but,
When such a thick soot layer is applied, the soot layer often peels off during molding, and the quartz surface after molding often has cracks or defects due to fusion. In addition, in this case, when forming silicon carbide, the soot layer aggregates and becomes granular, so the intervals between the particles at the interface are large, and the SiO vapor penetrates into the mold surface and becomes granular. It reacts with certain carbon or graphite to form silicon carbide, so if it is used again as it is, the soot layer will peel off extremely easily and fusion will occur, making the molded product defective. It is always necessary to scrape off the silicon carbide layer on the mold surface in advance.

本発明はこのような不利を解決した石英ガラス
の成形方法に関するものであり、これは石英塊を
粒度が0.01〜10μmの炭素または黒鉛粒子を0.02
〜0.05g/cm2の厚さに塗布した炭素または黒鉛製
の鋳型中で1700℃以上の温度で成形することを特
徴とするものである。
The present invention relates to a method for forming quartz glass that solves these disadvantages, and is a method in which a quartz lump is mixed with carbon or graphite particles having a particle size of 0.01 to 10 μm to 0.02 μm.
It is characterized by being molded at a temperature of 1700° C. or higher in a mold made of carbon or graphite coated to a thickness of ~0.05 g/cm 2 .

これを説明すると、本発明者は石英ガラスの成
形方法について種々検討の結果、炭素または黒鉛
製の鋳型を使用する方法において、この鋳型の表
面に0.01〜10μmの粒度をもつ炭素または黒鉛粒
子を塗布しておくと、この場合にはその粒度がア
セチレン煤にくらべて大きいことから、それが凝
集することがなく、これがSiO蒸気との反応によ
つて炭化けい素となつてもその粒子間隙が大きく
なるということもないので、このSiO蒸気が鋳型
表面の炭素または黒鉛と反応することがなくな
り、結果において石英成形体の離形が容易に行な
われ、この鋳型のくりかえしの使用時にも支障の
生じることがないということを見出すと共に、こ
の炭素または黒鉛粒子の塗布に当つては、これら
を揮発性の炭化水素系溶媒に懸濁させて鋳型表面
に塗布したのち、この溶媒を揮散させれば、この
粒子を鋳型表面に均一に塗布することができ、石
英成形品の離型を容易に行なうことができること
を確認して本発明を完成させた。
To explain this, as a result of various studies on methods for molding quartz glass, the present inventor found a method using a mold made of carbon or graphite, in which carbon or graphite particles with a particle size of 0.01 to 10 μm were coated on the surface of the mold. In this case, since the particle size is larger than that of acetylene soot, it will not aggregate, and even if it becomes silicon carbide by reaction with SiO vapor, the gaps between the particles will be large. This prevents the SiO vapor from reacting with the carbon or graphite on the surface of the mold, and as a result, the quartz molded body is easily released, which prevents problems when the mold is used repeatedly. In addition, when applying the carbon or graphite particles, if they are suspended in a volatile hydrocarbon solvent and applied to the mold surface, then the solvent is evaporated. The present invention was completed by confirming that particles can be uniformly applied to the surface of a mold and that a quartz molded product can be easily released from the mold.

本発明の方法に使用される鋳型は例えば特開昭
56−129621号公報に開示されている炭素または黒
鉛製のものとされるが、これは本発明方法によつ
てその表面に粒度が0.01〜10μmの炭素または黒
鉛粒子を塗布したものとする必要がある。この炭
素または黒鉛粒子は高純度で灰分を殆んど含まな
いものであることが好ましく、これはコークス、
木炭などの固形炭素または黒鉛を粉砕してこの粒
度分布を調整すればよいが、これはそれが細かす
ぎるとその凝集によつて前記したような不利が生
じ、大きすぎると鋳型基材との親和性が乏しくな
りその塗膜が鋳型表面から剥落するようになるの
で、これはその粒度を0.01〜10μmの範囲内とな
るようにする必要がある。またこの炭素または黒
鉛粒子の鋳型面に対する塗布量はそれが少なすぎ
ると、鋳型表面への塗布が不均一なものとなり易
く、結果においてその塗布面にムラが生じ石英塊
の成形時にSiO蒸気が鋳型面に浸透するおそれが
あり、これが多すぎるとこれが鋳型面から剥落
し、同じような不利が与えられるので、塗布量の
範囲は0.02〜0.05g/cm2とすべきであり、前記特
定の粒度範囲との組合せによつて臨界的効果が得
られる。
The mold used in the method of the present invention is, for example,
It is said to be made of carbon or graphite as disclosed in Japanese Patent No. 56-129621, but it is necessary to coat carbon or graphite particles with a particle size of 0.01 to 10 μm on the surface by the method of the present invention. be. The carbon or graphite particles are preferably of high purity and contain almost no ash.
This particle size distribution can be adjusted by crushing solid carbon such as charcoal or graphite; however, if it is too fine, it will cause the disadvantages mentioned above due to agglomeration, and if it is too large, it will not be compatible with the mold base material. The particle size must be within the range of 0.01 to 10 .mu.m since the coating film will peel off from the mold surface due to poor properties. In addition, if the amount of carbon or graphite particles applied to the mold surface is too small, the application to the mold surface tends to be uneven, resulting in uneven coating and SiO vapor is transferred to the mold during molding of the quartz ingot. The application amount should be in the range of 0.02-0.05 g/ cm2 , as there is a risk of penetrating into the mold surface, and too much of this will cause it to flake off from the mold surface, giving the same disadvantages. A critical effect is obtained in combination with the range.

この炭素または黒鉛粒子の鋳型面への塗布は、
これらを揮発性の炭化水素系溶媒に懸濁させて、
これを吹きつけ、刷毛塗りなどで鋳型表面に塗布
したのち、この炭化水素系溶媒を揮散するという
方法で行なうことが好ましい。この懸濁液中にお
ける炭素または黒鉛粒子の濃度は重量比で20〜40
%とすればよいが、溶剤としての炭化水素につい
ては沸点が常温以上でなるべく易揮発性のもので
あることが好ましいということから、これには沸
点が80〜150℃程度のもの、例えば芳香族炭化水
素であるベンゼン(沸点80.1℃)、トルエン(同
110.6℃)、キシレン(同138〜144℃)があげられ
るが、これはまた炭素数7以上の直鎖状または枝
分れ状の脂肪族炭化水素:例えば正ブタン(沸点
98.4℃)、正オクタン(同125.6℃)、正ノナン
(同150.7℃)も使用することができる。
This application of carbon or graphite particles to the mold surface is
These are suspended in a volatile hydrocarbon solvent,
It is preferable to apply this to the surface of the mold by spraying or brushing, and then volatilize the hydrocarbon solvent. The concentration of carbon or graphite particles in this suspension is between 20 and 40 by weight.
%, but since it is preferable that the hydrocarbon used as a solvent be one that has a boiling point above room temperature and is as easily volatile as possible, this includes those with a boiling point of about 80 to 150 degrees Celsius, such as aromatic compounds. Hydrocarbons benzene (boiling point 80.1℃) and toluene (boiling point 80.1℃)
110.6°C), xylene (138-144°C), but this also includes linear or branched aliphatic hydrocarbons with 7 or more carbon atoms, such as orthobutane (boiling point
(98.4℃), normal octane (125.6℃), and normal nonane (150.7℃) can also be used.

本発明の方法はこのように表面処理をした炭素
または黒鉛製の鋳型内で石英塊を溶融し、成形す
るのであるが、この成形温度としては石英が1700
℃以上で急速に粘性が低下するということから、
少なくとも1700℃以上の温度で行なうことが必要
とされるが、1900℃を越えるとSiO2の蒸気圧が
高くなつて加工ロスが増加するほか、このSiO2
蒸気と鋳型との反応が急速に増加するので、これ
は1730〜1800℃の範囲とすることがよい。なお、
この加熱成形は通常10分〜180分で行なわれる
が、この間におけるSiO2の蒸発による原料ロス
を軽減し、かつこの鋳型、これを加熱するための
ヒーター、断熱材などの消耗を軽減するためには
これを例えばヘリウム、アルゴンなどの不活性ガ
スの存在下で行なうか、あるいは例えば10トル以
下の真空下で行なうことが好ましい。
In the method of the present invention, a quartz block is melted and molded in a mold made of carbon or graphite that has been surface-treated in this way.
Since the viscosity decreases rapidly above ℃,
It is necessary to perform the process at a temperature of at least 1700°C or higher, but if the temperature exceeds 1900°C, the vapor pressure of SiO 2 will increase and processing loss will increase, and this SiO 2
This may be in the range of 1730-1800°C as the reaction between the steam and the mold increases rapidly. In addition,
This heat forming process is usually carried out for 10 to 180 minutes, but in order to reduce the loss of raw materials due to evaporation of SiO 2 during this time, and also to reduce the wear and tear of the mold, the heater used to heat it, the heat insulating material, etc. Preferably, this is carried out in the presence of an inert gas such as helium, argon, etc., or under vacuum, for example below 10 Torr.

また、本発明の方法はこの炭素または黒鉛の塗
布を上述した方法で行なうのであるが、これは複
雑な形状の鋳型にも容易に行なうことができると
いう有利性をもつており、この方法で処理をした
鋳型をくり返し使用する場合にはその使用に先立
つてその鋳型面に再度、炭素または黒鉛の塗布を
することが好ましい。これは、その鋳型面に塗布
された炭素または黒鉛粒子は石英の成形中に炭化
けい素となるが、その大部分は石英成形品の表面
に付着して取り出されてしまうからであり、した
がつてこの場合には鋳型面がSiO蒸気との反応で
炭化けい素となることがないので、この鋳型面か
ら炭化けい素を削り取るという作業を行なう必要
はないけれども、これには炭素または黒鉛粒子の
再塗布に先立つてその表面をサンドペーパーなど
で軽く摩擦することもよい。
Furthermore, the method of the present invention, in which carbon or graphite is applied by the method described above, has the advantage that it can be easily applied to molds with complex shapes; When the mold is to be used repeatedly, it is preferable to coat the surface of the mold with carbon or graphite again before use. This is because the carbon or graphite particles applied to the mold surface turn into silicon carbide during quartz molding, but most of them adhere to the surface of the quartz molded product and are taken out. In this case, the mold surface will not react with the SiO vapor to form silicon carbide, so there is no need to scrape off the silicon carbide from the mold surface. It is also a good idea to lightly rub the surface with sandpaper before reapplying.

つぎに本発明の実施例をあげる。 Next, examples of the present invention will be given.

実施例 1 1辺が125mmの正方形状の高純度炭素製の鋳型
の内面に、平均粒径が0.6μmの高純度炭素粒子
をキシレン溶媒中に重量比が20%となるるように
懸濁させたものを塗布し、30℃で乾燥したとこ
ろ、この炭素粒子が0.02g/cm2(塗膜高200μ
m)の厚さで塗布された鋳型が得られた。
Example 1 High-purity carbon particles with an average particle size of 0.6 μm were suspended in a xylene solvent at a weight ratio of 20% on the inner surface of a square-shaped high-purity carbon mold with a side of 125 mm. When dried at 30℃, the carbon particles were 0.02g/cm 2 (film height 200μ
A coated mold with a thickness of m) was obtained.

つぎにこの鋳型の中に直径100mm、長さ150mmの
合成石英棒状体を装入し、アルゴンガス雰囲気下
で1800℃まで昇温して成形したところ、鋳型と石
英成形品とは極めて良好に離形され、この石英成
形品には全くクラツクの発生が認められなかつ
た。
Next, a synthetic quartz rod with a diameter of 100 mm and a length of 150 mm was placed in this mold, and when the temperature was raised to 1800°C in an argon gas atmosphere and the mold was molded, the mold and the quartz molded product separated very well. No cracks were observed in this quartz molded product.

また、この鋳型表面をサンドペーパーで摩擦し
てその表面を平滑にしたのち、この面に再度上記
した方法で炭素粒子を同様に塗布し、これについ
て石英棒の成形を行なつたところ、この場合も同
様の結果が得られ、これは、10回のくり返し後も
同様であつた。
In addition, after smoothing the surface of this mold by rubbing it with sandpaper, carbon particles were again applied to this surface in the same manner as described above, and a quartz rod was formed from it. Similar results were obtained, which remained the same after 10 repetitions.

実施例 2 前例における炭素粒子を平均粒径が0.9μmの
黒鉛粒子としたほかは実施例1と同様に処理した
ところ、0.02g/cm2(塗膜高250μm)の厚さの
黒鉛粒子塗膜をもつ鋳型が得られ、これを使用し
て実施例と同じ石英棒の成形を行なつたところ、
同様の結果が得られた。
Example 2 The same process as in Example 1 was carried out except that the carbon particles in the previous example were replaced with graphite particles with an average particle size of 0.9 μm. As a result, a graphite particle coating film with a thickness of 0.02 g/cm 2 (coating film height 250 μm) was obtained. A mold was obtained, which was used to mold the same quartz rod as in the example.
Similar results were obtained.

なお、この場合において、キシレンの代りにベ
ンゼン、トルエンを使用したところ、同様の結果
が得られたが、塗工のし易さについてはキシレン
>トルエン>ベンゼンの順であつた。
In this case, when benzene and toluene were used instead of xylene, similar results were obtained, but the order of ease of coating was xylene > toluene > benzene.

比較例 1 実施例1における高純度炭素粒子のキシレン懸
濁液の重量比を20%として鋳型面への炭素粒子の
塗布を行ない、その塗膜を0.01g/cm2(塗膜高
120μm)として、これを使用して石英棒の成形
を行なつたところ、この場合には10回中6回の融
着がみられ、得られた石英製品にはクラツクの入
る現象が見られた。
Comparative Example 1 Carbon particles were applied to the mold surface using the xylene suspension of high-purity carbon particles in Example 1 at a weight ratio of 20%, and the coating film was 0.01 g/cm 2 (coating film height).
120 μm), and when this was used to form quartz rods, fusion was observed 6 out of 10 times, and cracks were observed in the resulting quartz products. .

また、この場合においてキシレン懸濁液の重量
比を20%としてこの塗膜を0.06g/cm2(塗膜高
650μm)とした鋳型を用いて同様に石英棒の成
形を行なつたところ、この成形品にはその表面に
無数の微細な気泡が発生しており、この場合には
10回の操作中に8回も炭素層の脱落があり、石英
成形品が鋳型に融着した。
In this case, the weight ratio of the xylene suspension was 20%, and the coating film was 0.06 g/cm 2 (coating film height).
When a quartz rod was molded in the same manner using a mold with a diameter of 650 μm, countless fine bubbles were generated on the surface of the molded product.
During the 10 operations, the carbon layer fell off eight times, and the quartz molded product fused to the mold.

比較例 2 実施例1で使用した高純度炭素製の鋳型の内面
に、アセチレンバーナの不完全燃焼で得たアセチ
レン煤を厚さ600μmに塗布し、この鋳型を用い
て実施例1と同じ条件で石英棒の成形を行なつた
ところ、石英成形品は良好に離形されたが、くり
返し使用のためにこの表面に同様の方法でアセチ
レン煤を付着させた鋳型で第2回目の成形を行な
つたところ、この炭素層の剥落のために石英成形
品は融着した。
Comparative Example 2 Acetylene soot obtained by incomplete combustion in an acetylene burner was applied to the inner surface of the high-purity carbon mold used in Example 1 to a thickness of 600 μm, and the mold was used under the same conditions as Example 1. When a quartz rod was molded, the quartz molded product was released well, but for repeated use, a second molding was performed using a mold with acetylene soot adhered to the surface in the same way. However, due to the peeling off of this carbon layer, the quartz molded product was fused.

そのため、この鋳型面に形成された炭化けい素
層をダイヤモンドツールで削り落すこととした
が、これにはそのくり返しの使用の都度、この炭
化けい素層を500〜1000μmの厚さで除去する必
要があり、そのためにこの鋳型の寸法誤差が大き
く、さらにはその表面が凹凸の大きいものとな
り、石英成形品が不良のものとなつた。
Therefore, we decided to use a diamond tool to scrape off the silicon carbide layer formed on the mold surface, but this requires removing the silicon carbide layer to a thickness of 500 to 1000 μm each time the mold is used. As a result, the dimensional error of this mold was large, and its surface was also highly uneven, resulting in a defective quartz molded product.

Claims (1)

【特許請求の範囲】 1 石英塊を、内面に粒度が0.01〜10μmである
炭素または黒鉛粉末を0.02〜0.05g/cm2の厚さに
塗布した炭素または黒鉛製の鋳型中で1700℃以上
の温度で成形することを特徴とする石英ガラスの
成形方法。 2 0.01〜10μmの粒度の炭素または黒鉛粉末を
揮発性炭化水素液中に懸濁し、これを炭素または
黒鉛製の鋳型内面に塗布し、乾燥させることを特
徴とする特許請求の範囲第1項に記載した石英ガ
ラスの成形方法。
[Claims] 1. A quartz block is heated at 1700°C or higher in a carbon or graphite mold coated with carbon or graphite powder with a particle size of 0.01 to 10 μm to a thickness of 0.02 to 0.05 g/cm 2 on the inner surface. A method of forming quartz glass characterized by forming at high temperature. 2. Claim 1, characterized in that carbon or graphite powder with a particle size of 0.01 to 10 μm is suspended in a volatile hydrocarbon liquid, applied to the inner surface of a mold made of carbon or graphite, and dried. The described method for forming quartz glass.
JP14408482A 1982-08-20 1982-08-20 Method for molding quartz glass Granted JPS5935037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14408482A JPS5935037A (en) 1982-08-20 1982-08-20 Method for molding quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14408482A JPS5935037A (en) 1982-08-20 1982-08-20 Method for molding quartz glass

Publications (2)

Publication Number Publication Date
JPS5935037A JPS5935037A (en) 1984-02-25
JPS6210938B2 true JPS6210938B2 (en) 1987-03-09

Family

ID=15353869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14408482A Granted JPS5935037A (en) 1982-08-20 1982-08-20 Method for molding quartz glass

Country Status (1)

Country Link
JP (1) JPS5935037A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183638A (en) * 1984-09-27 1986-04-28 Asahi Glass Co Ltd Quartz glass forming
JPH0788233B2 (en) * 1986-07-21 1995-09-27 東洋炭素株式会社 Graphite jig for glass molding
JPS649824A (en) * 1987-07-02 1989-01-13 Tosoh Corp Method for thermally treating quartz glass
JP5053206B2 (en) * 2008-08-22 2012-10-17 東ソー・クォーツ株式会社 Method of forming quartz glass material using mold material
CN103524020B (en) * 2013-08-15 2015-09-30 东莞华清光学科技有限公司 A kind of making method of mould of hot-work 3D used in glass products

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792528A (en) * 1980-11-27 1982-06-09 Mitsubishi Metal Corp Molding device for transparent quartz glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792528A (en) * 1980-11-27 1982-06-09 Mitsubishi Metal Corp Molding device for transparent quartz glass

Also Published As

Publication number Publication date
JPS5935037A (en) 1984-02-25

Similar Documents

Publication Publication Date Title
US3275722A (en) Production of dense bodies of silicon carbide
US4585704A (en) Electrically conductive Si3 N4 --C series amorphous material and a method of processing the same
US5326547A (en) Process for preparing polysilicon with diminished hydrogen content by using a two-step heating process
US4816338A (en) Glassy carbon-coated article
CA1253667A (en) Process for producing silicon carbide whisker
JPS5917046B2 (en) Method for producing intermediate products for producing silicon and/or silicon carbide
JPS5945918A (en) Powdered pure silicon of high density and its manufacture
JPS6210938B2 (en)
DE1571425B2 (en) Article containing carbon with a protective layer of silicon carbide and method for making the same
JPS61232269A (en) Manufacture of boron-containing silicon carbide powder
US4686116A (en) Process for coating small refractory particles
US3211527A (en) Process for producing ultrafine silicon nitride
JP2002523331A (en) Method for producing an improved boron coating on graphite and articles obtained therefrom
US2476933A (en) Manufacture of facing compositions for metal casting molds
JPS6348806B2 (en)
US3202519A (en) Carbon-mineral refractory
JPH0653638B2 (en) How to bond diamonds to diamonds
JPS62148331A (en) Pretreatment of quartz glass molding vessel
JPH09256140A (en) Production of fine particle of gold, silver or copper
US3655354A (en) Graphite crucibles for use in producing high quality quartz
US3804664A (en) Process for chemical vapor deposition of zirconium carbide
Broggi et al. Evolution of SiOx shell layers on SiC-SiOx core-shell nanowires
JP2527666B2 (en) Glassy carbon coated article
JPH03187998A (en) Production of aluminum nitride whisker
DE1571425C (en) An article containing carbon with a protective layer of silicon carbide and a method for making the same