JPS5935037A - Method for molding quartz glass - Google Patents
Method for molding quartz glassInfo
- Publication number
- JPS5935037A JPS5935037A JP14408482A JP14408482A JPS5935037A JP S5935037 A JPS5935037 A JP S5935037A JP 14408482 A JP14408482 A JP 14408482A JP 14408482 A JP14408482 A JP 14408482A JP S5935037 A JPS5935037 A JP S5935037A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- mold
- graphite
- quartz
- molded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B40/00—Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
- C03B40/02—Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it by lubrication; Use of materials as release or lubricating compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
- C03B11/084—Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
- C03B11/086—Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/08—Coated press-mould dies
- C03B2215/10—Die base materials
- C03B2215/12—Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/08—Coated press-mould dies
- C03B2215/14—Die top coat materials, e.g. materials for the glass-contacting layers
- C03B2215/24—Carbon, e.g. diamond, graphite, amorphous carbon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Glass Melting And Manufacturing (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Abstract
Description
【発明の詳細な説明】
本発明に石英ガラスの成形方法−特には石英塊を鋳型中
で熱開成形する方法の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming quartz glass, particularly to an improvement in a method for hot-opening a quartz ingot in a mold.
天然石英およびけい素化合物の熱分解、加水分解反応に
よシ製造される合成石英はそれが塊状体として取得され
るため、この製品化についてはこれを適宜の鋳型中で再
溶融し、成形することが必要とされるが、この鋳型につ
いては耐熱性、熱安定性、耐衝撃性がよく、シかも石英
ガラスとの反応件に乏しく、さらには加工性がよくて製
作が容易であるということから、炭素または黒鉛製のも
のを使用することが提案されている。しかし、この炭素
または黒鉛製の鋳型を用いて熱開成形する場合にも、こ
の鋳型面に石英が融着し、冷却時における熱収縮率の差
によって1石英と鋳型の接触面が割れたり1石英成形品
にブラッグの入ることがあり、場合によっては鋳型が破
壊されるという事故が発生する。そのため、この炭素ま
たは黒鉛製の鋳型を使用する場合に、この内部表面に例
えばアセチレンの不完全撚部により発生する煤を付着さ
せる方法が例示される。この煤はきわめて小さい炭素粒
子の集合体で、しかも多孔質のものであるため、石英塊
を1700℃す、上にJJ3熱して成形すると1石英が
この煤層とのつぎの反応S1.02 十〇 −+81
0 + 00t+io+20→5i(j+c。Synthetic quartz, which is produced by thermal decomposition and hydrolysis reactions of natural quartz and silicon compounds, is obtained as a lump, so in order to commercialize it, it is remelted in an appropriate mold and molded. However, this mold has good heat resistance, thermal stability, and impact resistance, has poor reaction conditions with silica glass, and has good workability and is easy to manufacture. It has been proposed to use one made of carbon or graphite. However, even when thermal open molding is performed using a mold made of carbon or graphite, the quartz is fused to the surface of the mold, and the contact surface between the quartz and the mold may crack due to the difference in thermal contraction rate during cooling. Bragg may enter the quartz molded product, and in some cases, the mold may be destroyed. Therefore, when using a mold made of carbon or graphite, a method is exemplified in which soot, which is generated due to incomplete twisting of acetylene, is deposited on the inner surface of the mold. This soot is an aggregate of extremely small carbon particles and is porous, so when a quartz block is heated to 1700°C and JJ3 heated on top to form it, 1 quartz reacts with this soot layer S1.02 100 -+81
0 + 00t + io + 20 → 5i (j + c.
しζよってL+7化けい駆およびCOガスとして消耗す
るが−この粒状の炭化けい素が石英面と鋳型面の界面V
こケを散されるため1石英と鋳型面との直接々訓が妨げ
ら」tで石英成形品の剥離が容易となるのであるが一〇
I)述したようにこの煤がきわめて細粒であり粒子間の
空間が多いものであるために、実′n的な層の1すさは
見掛けの厚さに比べて極めて小さいものになる。したが
って1石英面と@型面との界面に生成する炭化けい素粒
子が有効に剥離作用をするためには、この煤層を相当厚
くしなけれがならず、本発明者の研究では、これは50
0〜1oooμの見掛は厚さとする必要がある。しかし
、このように厚い煤層を塗布すると、しばしば成形中に
煤層の剥離が起って成形後の石英面に融着によってブラ
ッグが入ったり、欠落が見られることも少なくなかった
。オた、この場合には、炭化けい素を形Mする際に、煤
層が凝集して粒状となるたI〕に界面に介在する粒子の
間隔が大きく、鋳型面[S10蒸気が浸透して鋳型の基
材である炭素または黒鉛と反応して炭化けい素となるた
め、こハ、をそのオ\で再度使用すると、煤層がきわめ
て剥離しやすくなって融着が起り、成形品が不良品とな
るので、この場合にに必ず事前に鋳型面の炭化けい素化
した層を削り落L7ておくことが必要とされる。Therefore, the granular silicon carbide is consumed as L+7 silica and CO gas, but this granular silicon carbide forms the interface V between the quartz surface and the mold surface.
This scattering of moss prevents direct contact between the quartz and the mold surface, making it easy for the quartz molded product to peel off.As mentioned above, this soot is extremely fine and Since there are many spaces between particles, the actual thickness of the layer is extremely small compared to the apparent thickness. Therefore, in order for the silicon carbide particles generated at the interface between the 1-quartz surface and the @-type surface to have an effective exfoliation effect, this soot layer must be made considerably thick.
The apparent thickness must be 0 to 1 oooμ. However, when such a thick soot layer is applied, the soot layer often peels off during molding, and Bragg or chips are often observed on the quartz surface after molding due to fusion. Additionally, in this case, when silicon carbide is formed into a shape M, the soot layer aggregates and becomes granular. It reacts with the base material carbon or graphite to form silicon carbide, so if it is used again in its original state, the soot layer will peel off extremely easily and fusion will occur, causing the molded product to be considered defective. Therefore, in this case, it is necessary to scrape off the silicon carbide layer L7 on the mold surface in advance.
本発明はこのような不利を解決した石英ガラスの成形方
法に関するものであり、これは石英塊を粒度が0.01
〜1077mの炭素または黒鉛粒子を0.01〜0.0
5g/c/lの厚さに塗布しfc炭素または黒鉛製の鋳
型中で1700℃以上の温度で成形することを特徴とす
るものである。The present invention relates to a method for forming quartz glass that solves these disadvantages, and is a method for forming quartz glass with a particle size of 0.01.
~1077m carbon or graphite particles from 0.01 to 0.0
It is characterized by being coated to a thickness of 5 g/c/l and molded in a mold made of FC carbon or graphite at a temperature of 1700° C. or higher.
これを説明すると1本発明者に石英ガラスの成形方法に
ついて柿々検討の結果−炭素または黒鉛製の鋳型を使用
する方法におい′C1この鋳型の表面に0.1−10μ
mの粒度をもつ炭素ま念は黒鉛粒子を塗布しておくと、
この場合にはその粒度がアセチレン煤にくらべて大きい
ことから、それが凝集することがなく、これが810蒸
気との反応によって炭化けい素となってもその粒子間隙
が大きくなるということもないので、このSiO蒸気が
鋳型表面の炭素または黒鉛と反応することがなくなり、
結果において石英成老体の離形が容易に行なわれ、この
門型のくりかえしの使用時にも支障の生じることがない
ということft見出すと共に。To explain this, 1. As a result of extensive research into the method of molding quartz glass by the present inventor - a method using a mold made of carbon or graphite.
If a carbon mask with a particle size of m is coated with graphite particles,
In this case, since the particle size is larger than that of acetylene soot, it will not aggregate, and even if it becomes silicon carbide by reaction with 810 vapor, the gaps between the particles will not become large. This SiO vapor no longer reacts with carbon or graphite on the mold surface,
As a result, it has been found that the quartz adult body can be easily released from the mold, and there is no problem when using this portal type repeatedly.
この炭素または黒鉛粒子の塗布に当っては、これらを連
発性の炭化水素糸浴媒に懸濁さ・Mて鋳型表面に塗布し
たのら、この溶媒を揮散させれば、この粒子を門型表面
に均一に塗布することができ、石英成形品の離型を容易
に行なうことができることを確認して本発明を完i現さ
せた。When applying these carbon or graphite particles, they are suspended in a continuous hydrocarbon thread bath medium and applied to the surface of the mold, and then the particles are applied to the gate-shaped surface by volatilizing the solvent. The present invention has been completed by confirming that it can be applied uniformly to a quartz molded product and that it can be easily released from a molded quartz product.
本発明の方法に使用される鋳型は例えは特開昭56−1
29621号公報に開示されている炭素または黒鉛脚の
本のとされるが、これは本発明方法によってその表面に
粒度が0.01〜10pmの炭素または黒鉛粒子を塗布
したものとする必要がある。この炭素または黒鉛粒子に
高純用で灰うtを殆んど含虜ないものであることが好ま
しく、これはコークス−木炭などの固形炭素または黒鉛
を粉砕してこの粒度分布を調整すればよいが、これはそ
れが細かすぎるとその凝集によって前記したような不利
が生じ、大きすぎると鋳型基材との親和性が乏しくなり
その塗膜が鋳型表面から剥落するようになるので、これ
はその粒度を0.01〜10片の範囲内となるようにす
る必要がある。またこの炭素4たけ黒鉛粒子の鋳型面に
対する塗布量はそれが少なすぎると、鋳型表面への塗布
が不均一なものとなυ易く、結果においてその塗布面に
ムラが生じ石英塊の成形時に8io 蒸気が鋳型面vc
浸透するおそれがあり、これが多すぎるとこれが鋳型面
から剥落し、同じような不利が勾えられるので、これU
O,01−0,05g/cr117)範囲とすること
がよい。The mold used in the method of the present invention is, for example, JP-A-56-1
It is said to be a book with carbon or graphite legs disclosed in Japanese Patent No. 29621, but it is necessary that carbon or graphite particles with a particle size of 0.01 to 10 pm are coated on the surface by the method of the present invention. . It is preferable that the carbon or graphite particles are of high purity and contain almost no ash, and the particle size distribution can be adjusted by crushing solid carbon or graphite such as coke-charcoal. However, if it is too fine, its agglomeration will cause the disadvantages mentioned above, and if it is too large, it will have poor affinity with the mold base material and the coating will peel off from the mold surface. The particle size must be within the range of 0.01 to 10 pieces. In addition, if the amount of carbon 4 graphite particles applied to the mold surface is too small, the application to the mold surface tends to be uneven, resulting in uneven coating and 8 io when molding the quartz ingot. The steam is on the mold surface vc
There is a risk of penetration, and if there is too much of this, it will peel off from the mold surface and suffer the same disadvantages, so this is not recommended.
O.01-0.05g/cr117) range.
この炭素またに黒鉛粒子の鋳型面への塗布は、これらを
揮発性の炭化水素系溶媒VC懸濁させて、これを吹きつ
け、刷毛塗υなどで鋳型表面に塗布したのら、この炭化
水累糸溶媒を揮散するというPi IJEで行なうこと
が好ましい。この懸濁液中における炭I!?、オたは黒
鉛粒子の濃度は重量比で20〜40%とすればよいが一
溶剤としての炭化水素に一〕い゛テti沸点が常温以上
でなるべく易揮発性のものであることが好ましいという
ことから−これには沸点が80〜150℃程度のもの、
例えば芳香族炭化水素であるベンゼン(沸点80.lU
)、)ルエン(同1’10.6℃)−キシレン(同13
8〜144℃)があげられるが、これはまた炭素数7以
上の的鎖状ま几は枝分れ状の脂肪族炭化水素:例えば正
ブタン(沸点98.4℃ン、正オクタン(同125.6
℃)、正ノナン(同150.7℃]も使用することがで
きる。To apply these carbon or graphite particles to the mold surface, suspend them in a volatile hydrocarbon solvent VC, spray this, apply it to the mold surface with a brush, etc., and then apply the carbon or graphite particles to the mold surface. Preferably, this is done by Pi IJE, which evaporates the yarn solvent. Charcoal I in this suspension! ? The concentration of graphite particles may be 20 to 40% by weight, but it is preferable that the solvent has a boiling point of at least room temperature and is easily volatile. Therefore, this includes substances with a boiling point of about 80 to 150℃,
For example, benzene, an aromatic hydrocarbon (boiling point 80.1U)
),) Luene (1'10.6℃)-xylene (13
8 to 144°C), but it is also a chain chain or branched aliphatic hydrocarbon with a carbon number of 7 or more, such as normal butane (boiling point 98.4°C), normal octane (boiling point 125°C), .6
C) and normal nonane (150.7 C) can also be used.
本発明の方法はこのように表面処理をした炭素または黒
鉛製の鋳型内で石英塊を溶融し、成形するのであるが、
この成形温度としては石英が1700℃以上で急速に粘
性が低下するということから、少なくとも1700℃以
上の温度で行なうことが必要とさハるが−1900℃を
越えるとSin、の蒸気汗が高くなって加工ロスが増加
するほか、このsio*i気と鋳型との反応が急速に増
IJ旧1−2)ので、これは1730〜1800℃の範
囲とすることがよい。なお、この加熱成形は通常10
’7.t〜180分で行ア2Cわ」1.るが、この曲に
おけるSin、の蒸発による原料ロスを軽減し、かっこ
の鋳型、これを加熱するためのヒーター、断PI材7j
どの消耗を軽減するためKはこれを例えばヘリウム、ア
ルゴンなどの不活性ガスの存在下で行なうか、あるいは
例えばI(lル以下の真莫下で行なうことが好ましい。In the method of the present invention, a quartz block is melted and molded in a mold made of carbon or graphite that has been surface-treated in this way.
The viscosity of quartz rapidly decreases at temperatures above 1,700°C, so it is necessary to perform this molding at a temperature of at least 1,700°C. However, if the temperature exceeds -1,900°C, the steam and sweat of Sin will increase. In addition to increasing processing loss, the reaction between this sio*i gas and the mold increases rapidly. Therefore, it is preferable to set the temperature in the range of 1730 to 1800°C. Note that this heat forming is usually performed at 10
'7. 1. Go to A2C in 180 minutes. However, in order to reduce raw material loss due to the evaporation of Sin in this song, a mold for the bracket, a heater to heat it, and a cut-off PI material 7j were used.
To reduce the consumption of K, it is preferred to carry out this in the presence of an inert gas such as helium or argon, or under a vacuum of, for example, less than 1 liter.
また、本発明の方法にこの炭素または黒鉛の塗布を上述
した方法で行なうのであるが、これは複雑な形状の鋳型
にも容易に行なうことができるという有利性をもってお
り、この方法で処理をした鋳型をくり返し使用する場合
にはその使用に先立ってその鋳型面に再度、炭素または
黒鉛の塗布をすることが好ましい。これは、その鋳型面
に塗布された炭素または黒鉛粒子は石英の成、形中に炭
化けい素となるが、その大部分は石英成形品の表面に付
着して取り出されてしまうからであり、したがってこの
場合には鋳型面がslo 蒸気との反応で炭化けい素と
なることがないので、この鋳型面力・ら炭化けい素を削
り・取るという作業を行なう必要にないけれども、これ
VCは炭素捷たに黒鉛粒子の再塗布に先Vってその表+
ri+をサンドペーパーなどでQ<M擦することもよい
。Furthermore, in the method of the present invention, the coating of carbon or graphite is carried out by the method described above, which has the advantage that it can be easily applied to molds with complex shapes. If the mold is to be used repeatedly, it is preferable to recoat the mold surface with carbon or graphite prior to use. This is because the carbon or graphite particles applied to the mold surface become silicon carbide during the formation and shaping of quartz, but most of them adhere to the surface of the quartz molded product and are removed. Therefore, in this case, the mold surface does not react with the slo steam to form silicon carbide, so there is no need to scrape or remove the silicon carbide from the mold surface force. Before reapplying the graphite particles, check the surface +
It is also good to rub ri+ with sandpaper or the like so that Q<M.
つぎに本発明の実施例をあげる。Next, examples of the present invention will be given.
実施例1゜
1辺が125mの正方形私の高純度炭素製のPi型の内
面に、平均粒径が0.6μmの高純度炭素粒子をキシレ
ン溶媒中に重晰比が2(lとなるように懸濁させたもの
を塗布し、30℃で乾燥したところ、この炭素粒子が0
.02 plry& (塗膜高200μm)の厚さで塗
布された鋳型が得られた。Example 1 High-purity carbon particles with an average particle size of 0.6 μm were placed in a xylene solvent so that the lucidity ratio was 2 (l) on the inner surface of a square Pi-type made of high-purity carbon with a side of 125 m. When a suspension of carbon particles was applied and dried at 30°C, the carbon particles were
.. A mold coated with a thickness of 0.02 plry& (coating film height 200 μm) was obtained.
つぎにこの鋳型の中に@怪100m、長さf 50 喘
’7) 合成石英棒状体を装入し、アルゴyfjス雰囲
気下で1soo′Cまで昇温して成形したところ、@型
と石英成形品とは極めて良好に離形され、この石英成形
品には全くクラックの発生が誌めらり、な刀)っだ。Next, a synthetic quartz rod-shaped body 100 m long and f 50 mm'7) was charged into this mold, and the temperature was raised to 1 soo'C in an Argox atmosphere and molded. The quartz molded product was released from the molded product extremely well, and no cracks were observed in this quartz molded product.
また、この鋳型表面をサンドペーパーで摩擦してその表
面を平滑にしたのち、この面に再度上記した方法で炭素
粒子を同様に塗布し、これについて石英棒の成形を行な
ったところ、この場合も同様の結果が得られ、これは、
10回の〈シ返し後も同様であった。In addition, after smoothing the surface of this mold by rubbing it with sandpaper, carbon particles were again applied to this surface in the same manner as described above, and a quartz rod was formed from it. Similar results were obtained, which
The same thing happened after 10 repetitions.
実施例2゜
ii1例における炭素粒子を平均粒径が()、9μmの
黒鉛粒子としたほかは実施例1と同様に処理したところ
、 0.029/et/l (塗膜高250μm)の厚
さの黒鉛粒子塗膜をもつ鋳型が得られ、これを使用1し
て実施例と同じ石英棒の成形を行なったところ、同様の
結果が得られた。Example 2゜ii The carbon particles in Example 1 were treated in the same manner as in Example 1, except that graphite particles with an average particle size of 9 μm were used. A mold having a graphite particle coating of 100 mL was obtained, and when this mold was used to mold the same quartz rod as in Example 1, similar results were obtained.
なお、この場合において、キシレンの代シにベンゼン、
トルエンを使用したところ、同様の結果が得られたが、
塗工のし易さについてはキシレン〉トルエン〉ベンゼン
の順であった。In this case, benzene,
Similar results were obtained using toluene, but
In terms of ease of coating, the order of ease of application was xylene, toluene, and benzene.
比較例1゜
実施例1における高純度炭素粒子のキシレン懸濁液の車
欺比を20%として鋳型面への炭素粒子の塗布を行ない
、その塗膜を0.01 、lil / el (塗膜高
120μm)として、これを使用して石英棒の成形を行
なったところ、この場合には10回中日回の融着がみら
れ、得られた石英製品にはブラッグの入る現象が見られ
た。Comparative Example 1゜Carbon particles were applied to the mold surface using a xylene suspension of high-purity carbon particles as in Example 1 at a coating ratio of 20%. When this was used to form a quartz rod with a height of 120 μm, 10-times welding was observed, and the resulting quartz product exhibited a phenomenon of Bragg formation. .
また、この場合においてキシレン懸濁液の重量比を20
チとしてこの塗膜′ttO,06g/i(塗膜高650
μm)とした鋳型を用いて同様に石英棒の成形を行なっ
たところ、この成形品にはその表面に無数の微細な気泡
が発生しておシ、この場合vcfllO回の操作中に8
回も炭素層の脱落があり、石英成形品が鋳型に融着した
。In this case, the weight ratio of the xylene suspension is 20
This coating film 'ttO, 06g/i (coating film height 650
When a quartz rod was molded in the same manner using a mold with a diameter of 10 μm, countless fine bubbles were generated on the surface of the molded product.
The carbon layer also fell off, and the quartz molded product fused to the mold.
比較例2゜
実施例1で使用した高純度炭素製の鋳型の内面に、アセ
チレンバーナの不完全燃焼で得たアセチレン煤を厚さ6
00μmに怜布し、この鋳型を用いて実施例1と同じ条
件で石英棒の成形を行なったところ1石英成形品に良好
に離形されたが、くり返し使用のためにこの表面に同様
の方法でアセチレン煤を付着させた鋳型で第2回目の成
形を行なったところ、この炭素層の剥落のために石英成
116品1−J、融摺した。Comparative Example 2 Acetylene soot obtained from incomplete combustion in an acetylene burner was applied to the inner surface of the high-purity carbon mold used in Example 1 to a thickness of 6.
When a quartz rod was molded using this mold under the same conditions as in Example 1, it was successfully released into a quartz molded product. When a second molding was carried out using a mold to which acetylene soot was adhered, quartz molded 116 product 1-J was melt-printed to remove the carbon layer.
そのため、この鋳型面に形成された炭化けい素層をダイ
ヤモンドツールで削り落すこととしたが。Therefore, we decided to use a diamond tool to scrape off the silicon carbide layer formed on the mold surface.
これvcはそのくり返しの使用の都度、この炭化けい素
層を500〜1000μmの厚さで除去する必要があり
、そのためにこの鋳型の寸法誤差が大きく、さらに、ハ
その表面が凹凸の大きいものとなり、石英成形品が不良
のものとなった。Each time this VC is used, it is necessary to remove the silicon carbide layer to a thickness of 500 to 1000 μm, which results in large dimensional errors in the mold, and furthermore, the surface becomes highly uneven. , the quartz molded product became defective.
262262
Claims (1)
炭素または黒鉛粉末を0.01−0.05117cdの
厚さに塗布した炭素または黒鉛製の鋳型中で1700℃
以上の温度で成形することを特徴とする石英ガラスの成
形方法。 2.0.01〜lOμmの粒度の炭素または黒鉛粉末を
揮発性炭化水素液中に懸濁し、これを炭素または黒鉛製
の鋳型内面に塗布し、乾燥させることを特徴とする特許
請求の範囲第11JIIC記載した石英ガラスの成形方
法。[Claims] 1. A quartz block is heated at 1700°C in a carbon or graphite mold with carbon or graphite powder having a particle size of 0.01 to 10 fim coated on the inner surface to a thickness of 0.01 to 0.05117 cd.
A method for forming quartz glass characterized by forming at a temperature above or above. 2. Carbon or graphite powder with a particle size of 0.01 to 10 μm is suspended in a volatile hydrocarbon liquid, applied to the inner surface of a mold made of carbon or graphite, and dried. 11 A method for forming quartz glass described in JIIC.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14408482A JPS5935037A (en) | 1982-08-20 | 1982-08-20 | Method for molding quartz glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14408482A JPS5935037A (en) | 1982-08-20 | 1982-08-20 | Method for molding quartz glass |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5935037A true JPS5935037A (en) | 1984-02-25 |
JPS6210938B2 JPS6210938B2 (en) | 1987-03-09 |
Family
ID=15353869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14408482A Granted JPS5935037A (en) | 1982-08-20 | 1982-08-20 | Method for molding quartz glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5935037A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6183638A (en) * | 1984-09-27 | 1986-04-28 | Asahi Glass Co Ltd | Quartz glass forming |
JPS6330342A (en) * | 1986-07-21 | 1988-02-09 | Toyo Tanso Kk | Graphite jig for molding glass |
JPS649824A (en) * | 1987-07-02 | 1989-01-13 | Tosoh Corp | Method for thermally treating quartz glass |
JP2010047449A (en) * | 2008-08-22 | 2010-03-04 | Tosoh Quartz Corp | Method for molding quartz glass material using mold material |
CN103524020A (en) * | 2013-08-15 | 2014-01-22 | 东莞华清光学科技有限公司 | Manufacturing method of die for hot-processing 3D (three-dimensional) glass product |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5792528A (en) * | 1980-11-27 | 1982-06-09 | Mitsubishi Metal Corp | Molding device for transparent quartz glass |
-
1982
- 1982-08-20 JP JP14408482A patent/JPS5935037A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5792528A (en) * | 1980-11-27 | 1982-06-09 | Mitsubishi Metal Corp | Molding device for transparent quartz glass |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6183638A (en) * | 1984-09-27 | 1986-04-28 | Asahi Glass Co Ltd | Quartz glass forming |
JPH0454626B2 (en) * | 1984-09-27 | 1992-08-31 | Asahi Glass Co Ltd | |
JPS6330342A (en) * | 1986-07-21 | 1988-02-09 | Toyo Tanso Kk | Graphite jig for molding glass |
JPS649824A (en) * | 1987-07-02 | 1989-01-13 | Tosoh Corp | Method for thermally treating quartz glass |
JP2010047449A (en) * | 2008-08-22 | 2010-03-04 | Tosoh Quartz Corp | Method for molding quartz glass material using mold material |
CN103524020A (en) * | 2013-08-15 | 2014-01-22 | 东莞华清光学科技有限公司 | Manufacturing method of die for hot-processing 3D (three-dimensional) glass product |
Also Published As
Publication number | Publication date |
---|---|
JPS6210938B2 (en) | 1987-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5049450A (en) | Aluminum and boron nitride thermal spray powder | |
US2694647A (en) | Process for applying fused metal coating onto metal base and adhesive used therein | |
KR850000279A (en) | Silicon carbide abrasive grains of granules coated with a refractory material and methods for preparing the same and products made therefrom | |
US3801294A (en) | Method of producing glass | |
JPS63139059A (en) | Material resistant to metal and salt melt, manufacture and use | |
TW420654B (en) | Improved vitreous silica product and method of manufacture | |
US3416905A (en) | Process for manufacture of porous abrasive articles | |
JPS5935037A (en) | Method for molding quartz glass | |
JPS5945918A (en) | Powdered pure silicon of high density and its manufacture | |
JP2003026410A (en) | Method for mass-producing carbon nanocoil | |
JPS60260499A (en) | Preparation of sic whisker | |
JP5025976B2 (en) | High-purity carbon electrode for arc melting and its application | |
US2219004A (en) | Formation of chromium-containing layers on ferrous surfaces | |
JPH10504794A (en) | Manufacturing method of siliceous refractory materials | |
KR890008354A (en) | High purity doping alloy | |
JPS5857368B2 (en) | Manufacturing method of boron trichloride | |
US2476933A (en) | Manufacture of facing compositions for metal casting molds | |
JPH09256140A (en) | Production of fine particle of gold, silver or copper | |
JPS62148331A (en) | Pretreatment of quartz glass molding vessel | |
JPS62158200A (en) | Manufacture of silicon carbide whisker and catalyst therefor | |
JPS62246813A (en) | Production of spherical graphite body | |
US3732082A (en) | Method of producing substantially dust free calcium chloride particulate | |
JPS6164809A (en) | Treatment of cast iron melt by silicon carbide | |
JPH01172266A (en) | Process for modifying surface layer of sintered b4c | |
JPH0239450B2 (en) |