JPS5857368B2 - Manufacturing method of boron trichloride - Google Patents

Manufacturing method of boron trichloride

Info

Publication number
JPS5857368B2
JPS5857368B2 JP1549380A JP1549380A JPS5857368B2 JP S5857368 B2 JPS5857368 B2 JP S5857368B2 JP 1549380 A JP1549380 A JP 1549380A JP 1549380 A JP1549380 A JP 1549380A JP S5857368 B2 JPS5857368 B2 JP S5857368B2
Authority
JP
Japan
Prior art keywords
reaction
boric acid
activated carbon
chlorine
boron trichloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1549380A
Other languages
Japanese (ja)
Other versions
JPS56114818A (en
Inventor
正 岩井
正男 三浦
久幸 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP1549380A priority Critical patent/JPS5857368B2/en
Priority to US06/231,462 priority patent/US4327062A/en
Priority to CA000370460A priority patent/CA1152283A/en
Priority to DE8181300583T priority patent/DE3163145D1/en
Priority to EP81300583A priority patent/EP0034897B1/en
Priority to AU67244/81A priority patent/AU532014B2/en
Publication of JPS56114818A publication Critical patent/JPS56114818A/en
Publication of JPS5857368B2 publication Critical patent/JPS5857368B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 この発明は、三塩化ホウ素を製造する方法の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to an improvement in a method for producing boron trichloride.

三塩化ホウ素は、例えば、窒化ホウ素、ホウ化ランタン
など種々のホウ素化合物や陽イオン重合用触媒などの製
造原料として有用である。
Boron trichloride is useful as a raw material for producing various boron compounds such as boron nitride and lanthanum boride, and catalysts for cationic polymerization.

それ故、三塩化ホウ素の製造方法もすでに多数知られて
いる。
Therefore, many methods for producing boron trichloride are already known.

例えば、米国特許第2,369,212号明細書には、
粉末の三酸化ニホウ素(B203)と炭素(C)との均
一な混合物を1,200〜1,300℃で加熱処理して
多孔質の焼結物にした後、破砕、整粒して、破砕物に塩
素ガスを流通させ、1.OOO〜1.200℃で塩素と
反応させて三塩化ホウ素を製造する方法が記載されてい
る。
For example, in U.S. Patent No. 2,369,212,
A homogeneous mixture of powdered diboron trioxide (B203) and carbon (C) is heat-treated at 1,200 to 1,300°C to form a porous sintered product, then crushed and sized, Flowing chlorine gas through the crushed material, 1. A method for producing boron trichloride by reaction with chlorine at temperatures between OOO and 1.200°C is described.

し力)しながら、粉末の三酸化ホウ素と炭素とは、その
性状、比重などが異なるため、両者を均一に混合しよう
としてもなかなか均一な混合物にすることかできず、ま
た、たとえ均一に混合することができたとしても前記従
来法では、混合物を1,200〜1,300’Cで加熱
処理すると、三酸化ニホウ素が溶融、液化して三酸化ニ
ホウ素と炭素とが二層に分離するため、多孔質の均一な
焼結物を得るのが困難であり、また、塩素と反応させよ
うとしても、円滑に反応を進行させることができないと
いう大きな欠点がある。
However, powdered boron trioxide and carbon have different properties, specific gravity, etc., so even if you try to mix them together, it is difficult to make a homogeneous mixture. However, in the conventional method, when the mixture is heat-treated at 1,200 to 1,300'C, diboron trioxide melts and liquefies, and diboron trioxide and carbon separate into two layers. Therefore, it is difficult to obtain a porous and uniform sintered product, and even if an attempt is made to react with chlorine, the reaction cannot proceed smoothly, which is a major drawback.

また、前記従来法では焼結物を破砕、整粒する必要かあ
るだけでなく、二層にわたって1.000℃以上もの高
温を必要とし、また、前記高温下では揮発性のホウ素化
合物が塩素と反応させる際の反応雰囲気に存在すると、
塩素の腐蝕性か一段と強くなって、金属は勿論のこと、
ガラスさえも腐蝕するため、反応装置の材質の面でも大
きな問題点がある。
In addition, the conventional method not only requires crushing and sizing the sintered material, but also requires a high temperature of 1,000°C or more over two layers. If present in the reaction atmosphere during reaction,
The corrosivity of chlorine has become even stronger, and it can be used not only on metals, but also on metals.
There is also a big problem with the material of the reactor, as even glass corrodes.

また米国特許第2,097,482号明細書には、炭素
粉末に対して重量で0.6〜15倍りホウ素化合物、例
えば三酸化ニホウ素を混合した混合物に、塩素ガスを流
通させ、400〜700’Cで塩素と反応させて三塩化
ホウ素を製造する方法が記載されている。
Further, US Pat. No. 2,097,482 discloses that chlorine gas is passed through a mixture of carbon powder and a boron compound, for example, diboron trioxide, in an amount of 0.6 to 15 times the weight of carbon powder. A method for producing boron trichloride by reaction with chlorine at ~700'C is described.

この米国特許に記載された方法では、反応温度は400
〜700℃と低いが、こめ方法も前記米国特許第2,3
69,212号明細書に記載された方法による場合と同
様に、三酸化ニホウ素と炭素粉末とを均一に混合するこ
とが非常に困難であり、たとえ均一に混合することがで
きたとしても、塩素ガスを流通させると炭素粉末が飛散
しやすく、また反応中に二酸化ニホウ素が溶融、液化し
て炭素粉末との比重差により三酸化ニホウ素の溶融物が
反応管θつ底部にたまり、塩素ガスの流通、拡散および
三酸化ニホウ素と炭素と塩素との均一な接触が困難にな
って反応を円滑に進行させることかできず、また反応時
間も長くなるという大きな欠点かある。
In the method described in this US patent, the reaction temperature was 400°C.
Although the temperature is as low as ~700℃, the method of rice cracking is also similar to the above-mentioned U.S. Patent Nos. 2 and 3.
As with the method described in No. 69,212, it is very difficult to uniformly mix diboron trioxide and carbon powder, and even if it were possible to mix them uniformly, When chlorine gas is passed through, carbon powder tends to scatter, and during the reaction, diboron dioxide melts and liquefies, and due to the difference in specific gravity with the carbon powder, molten diboron trioxide accumulates at the bottom of the reaction tube, causing chlorine This method has major disadvantages in that it is difficult to carry out gas flow, diffusion, and uniform contact between diboron trioxide, carbon, and chlorine, making it impossible for the reaction to proceed smoothly and requiring a long reaction time.

なお、炭素粉末の飛散を防I4−。するために、三酸化
ニホウ素と炭素粉末と0)混合物を成形しようとしても
、炭素粉末か活性炭粉末である場合は成形性か非常に悪
く、両者の混合物を成形することは困難である。
In addition, prevention of scattering of carbon powder I4-. Even if an attempt is made to mold a mixture of diboron trioxide and carbon powder, the moldability is very poor if the carbon powder or activated carbon powder is used, and it is difficult to mold a mixture of the two.

また、炭素粉末かグラファイト粉末である場合は成形可
能であるか、このような成形物を使用した場合は、反応
時間か非常に長< 1.、にり、また三酸化ニホウ素の
反応率も著しく低い。
Also, if carbon powder or graphite powder is used, is it possible to mold it?If such a molded product is used, the reaction time is extremely long. , nori, and diboron trioxide have extremely low reaction rates.

この発明者らは、(1)粉体の混合操作を必要とせずに
簡単な操作で、(2)低温でも反応を円滑に進行させる
ことができ、(3)短時間で高収率で三塩化ホウ素を安
価に製造することか7″き、(4)前記従来法の欠点が
改善された三塩化ホウ素の製造方法を開発することを目
的として鋭意研究を行った。
The inventors discovered that (1) the reaction can proceed smoothly even at low temperatures, (1) with a simple operation without the need for powder mixing, and (3) with a high yield in a short period of time. We conducted extensive research with the aim of producing boron trichloride at a low cost and (4) developing a method for producing boron trichloride that overcomes the drawbacks of the conventional methods.

その結果、ホウ酸水溶液と粒状の活性炭とを使用し、粒
状の活性炭にホウ酸水溶液を含浸させで得られるホウ酸
担持活性炭を、一度不活性ガス雰囲気下に300〜80
0°Cで加熱処理した粒状の活性炭と塩素とを300〜
800℃で反応させると、前記目的を容易に達成できる
ことを知り、この発明に到った。
As a result, using a boric acid aqueous solution and granular activated carbon, the boric acid-supported activated carbon obtained by impregnating the granular activated carbon with the boric acid aqueous solution was once heated to 30 to 80%
Granular activated carbon heat-treated at 0°C and chlorine are heated at 300~
It was discovered that the above object could be easily achieved by carrying out the reaction at 800°C, leading to the present invention.

この発明は、ホウ酸水溶液を粒状の活性炭に含浸させて
得られるホウ酸担持活性炭を、不活性ガス雰囲気下に3
00〜800℃で加熱処理した後、300〜800℃で
塩素と反応させることを特徴とする三塩化ホウ素の製造
方法に関するものである。
In this invention, boric acid-supported activated carbon obtained by impregnating granular activated carbon with a boric acid aqueous solution is heated for 30 minutes in an inert gas atmosphere.
The present invention relates to a method for producing boron trichloride, which is characterized in that it is heat treated at 00 to 800°C and then reacted with chlorine at 300 to 800°C.

こ0)発明においては、塩素と反応させる際、粒状の活
性炭にホウ酸水溶液を含浸させて得られるホウ酸担持活
性炭を加熱処理したものを使用するので、前記従来法の
ように粉体の混合操作は必要なく、三酸化ニホウ素と炭
素粉末との混合物を使用する方法に起因する欠点を容易
に改善することかできる。
0) In the present invention, when reacting with chlorine, heat-treated boric acid-supported activated carbon obtained by impregnating granular activated carbon with a boric acid aqueous solution is used, so mixing of powders is not required as in the conventional method. No manipulation is required and the drawbacks caused by the method using a mixture of diboron trioxide and carbon powder can be easily overcome.

なお、粉末の活性炭を使用したのでは、たとえこれをホ
ウ酸水溶液に浸漬して含浸させ、活性炭にホウ酸を担持
させ、不活性ガス雰囲気下に加熱処理して塩素と反応さ
せでも、ヌ応中に三酸化ニホウ素が溶融、液化して分離
してくるため、塩素ガスの流通、拡散が困難になり、反
応も円滑に進行せず、また、反応時間も長くなるだQブ
でなく、分離した活性炭の粉末が反応生成物に同伴され
るなどの欠点があり、この発明の前記目的を達成するこ
とができflb)。
In addition, if powdered activated carbon is used, even if it is immersed in a boric acid aqueous solution, the activated carbon is loaded with boric acid, and the activated carbon is heat-treated in an inert gas atmosphere to react with chlorine. Since diboron trioxide melts, liquefies and separates, it becomes difficult for the chlorine gas to circulate and diffuse, the reaction does not proceed smoothly, and the reaction time becomes longer. However, there are disadvantages such as the fact that the separated activated carbon powder is entrained in the reaction product, and the above object of the present invention cannot be achieved (flb).

この発明で使用する粒状の活性炭の形状は、球形状、柱
形状、破砕粒状など粒状であれはいずれでもよく、その
形状は特に制限されない。
The granular activated carbon used in this invention may have any shape, such as spherical, columnar, or crushed granular, and its shape is not particularly limited.

粒状の活性炭の粒径は、固定床、移動床など反応方式、
反応器の大きさ、その他反応条件などによってもかわる
が、一般には1〜50rnrn、、好ましくは、3〜1
5mmか適当である。
The particle size of granular activated carbon depends on the reaction method, such as fixed bed or moving bed.
Although it varies depending on the size of the reactor and other reaction conditions, it is generally 1 to 50 rnrn, preferably 3 to 1
5mm is appropriate.

あまり粒径が小さくなると、前記粉末の活性炭を使用し
た場合と同様の欠点か生じやすくなり、また、あまり粒
径が大きくても粒径を大きくしたことによる利点は特に
ないので、前記範囲の粒径0ものが適当である。
If the particle size becomes too small, the same drawbacks as those when using powdered activated carbon are likely to occur, and even if the particle size is too large, there is no particular advantage of increasing the particle size. A diameter of 0 is suitable.

なお、粒状の活性炭以外の炭素粒、例えば成形グラファ
イトではホウ酸水溶液を十分に含浸させることかできな
いたけでナク、反応も円滑に進行させることができず、
またグラファイト粉末tこホウ酸ヲ加えて成形したもの
では、ホウ酸の反応率が著しく低く、反応時間も非常に
長くなってしまうため、この発明の前記目的を達成でき
ない。
In addition, carbon particles other than granular activated carbon, such as shaped graphite, cannot be sufficiently impregnated with an aqueous boric acid solution, and the reaction cannot proceed smoothly.
Furthermore, when graphite powder is molded by adding boric acid, the reaction rate of boric acid is extremely low and the reaction time is extremely long, making it impossible to achieve the above-mentioned object of the present invention.

この発明で使用する前記活性炭の比表面積は特に制限さ
れないが、比表面積があまり小さすぎるとホウ酸の担持
量が少なく f、iす、また比表面積かあまり太きすき
ると活性炭の機械的強度か低下するめで、一般には比表
面積が400〜6,000m2/g好ましくは1,00
0〜4,000 m”/gbのか適当である。
The specific surface area of the activated carbon used in this invention is not particularly limited, but if the specific surface area is too small, the amount of boric acid supported will be small, and if the specific surface area is too large, the mechanical strength of the activated carbon will decrease. Generally, the specific surface area is 400 to 6,000 m2/g, preferably 1,000 m2/g.
0 to 4,000 m''/gb is appropriate.

また、この発明で使用するホウ酸水溶液の濃度も特に制
限されないが、一般には濃度が5〜28重量φ重量性し
くは10〜25重量%のもθつが適当である。
Further, the concentration of the aqueous boric acid solution used in the present invention is not particularly limited, but it is generally appropriate to have a concentration of 5 to 28% by weight, or 10 to 25% by weight.

この発明において、ホウ酸水溶液を粒状の活性炭に含浸
させるにあたっては、従来公知の含浸操作か採用され、
一般にはホウ酸水溶液に粒状の活性炭を浸漬する方法、
粒状の活性炭にホウ酸水溶液をスプレーする方法などで
含浸させるのが適当である。
In this invention, a conventionally known impregnation operation is employed to impregnate the granular activated carbon with a boric acid aqueous solution.
Generally, the method involves soaking granular activated carbon in an aqueous solution of boric acid.
It is appropriate to impregnate granular activated carbon with a method such as spraying an aqueous boric acid solution.

含浸させる際あらかじめ減圧脱気処理した粒状の活性炭
を使用すると、含浸時間の短縮をはかることができる。
If granular activated carbon that has been previously subjected to vacuum deaeration treatment is used during impregnation, the impregnation time can be shortened.

この発明にお(7)で、ホウ酸担持活性炭のホウ酸の担
持量は、使用するホウ酸水溶液の濃度、活性炭の比表面
積、含浸時間、含浸操作の回数などを変えることによっ
て調節できるが、一般には活性炭100重量部に対して
ホウ酸〔H3BO3〕が、10〜80重量部好ましくは
20〜60重量部になるように担持させるのがよい。
In (7) of this invention, the amount of boric acid supported on the boric acid-supported activated carbon can be adjusted by changing the concentration of the boric acid aqueous solution used, the specific surface area of the activated carbon, the impregnation time, the number of impregnation operations, etc. Generally, boric acid [H3BO3] is preferably supported in an amount of 10 to 80 parts by weight, preferably 20 to 60 parts by weight, per 100 parts by weight of activated carbon.

ホウ酸の担持量が少なすぎると生産性が悪くなり、また
担持量かあまり多すぎると反応に消費される活性炭の量
か多くなりすぎて活性炭の機械的強度の低下、破損、粉
化などによるトラブルか生じやすいので、ホウ酸の担持
量は前記範囲の量にするのがよい。
If the amount of boric acid supported is too small, productivity will deteriorate, and if the amount supported is too large, the amount of activated carbon consumed in the reaction will be too large, resulting in a decrease in the mechanical strength of activated carbon, breakage, powdering, etc. Since troubles are likely to occur, the amount of boric acid supported is preferably within the above range.

この発明にお0)で、ホウ酸水溶液を粒状の活性炭に含
浸させて得られるホウ酸担持活性炭は、これを不活性ガ
ス雰囲気下に300〜800℃、好ましくは400〜6
00℃で加熱処理する必要がある。
In this invention, the boric acid-supported activated carbon obtained by impregnating granular activated carbon with an aqueous boric acid solution is heated at 300-800°C, preferably at 400-600°C under an inert gas atmosphere.
It is necessary to perform heat treatment at 00°C.

加熱処理によってホウ酸は分解、脱水して三酸化ニホウ
素になる。
Through heat treatment, boric acid decomposes and dehydrates to form diboron trioxide.

2H3BO3→B2O3→3H20加熱処理温度が低す
きるとホウ酸か十分に分解脱水されず、塩素と反応させ
る際に水が生成して三塩化ホウ素σ)収率が低下し、ま
た、カロ熱処理温度を必要以上に高くしても特に分解、
脱水の効果に犬きtヨ差はないので、加熱処理は前記範
囲の温度で行なうのか適当である。
2H3BO3 → B2O3 → 3H20 If the heat treatment temperature is too low, boric acid will not be sufficiently decomposed and dehydrated, and water will be produced during the reaction with chlorine, resulting in a decrease in boron trichloride σ) yield. Even if the temperature is higher than necessary, especially when disassembling the
Since there is no difference in the dehydration effect between dogs, it is appropriate to carry out the heat treatment at a temperature within the above range.

加熱処理時間は、ホウ酸を十分に分解、脱水させること
ができれば、特に制限されないが、一般には1〜20時
間である。
The heat treatment time is not particularly limited as long as boric acid can be sufficiently decomposed and dehydrated, but is generally 1 to 20 hours.

加熱処理する際に使用する不活性ガスは、活性炭、ホウ
酸、三酸化ニホウ素などに対して不活性なガスであれは
いずれでもよく、その代表的なものとしては、例えば窒
素、ヘリウム、アルゴンなどのガスを挙げることができ
る。
The inert gas used during the heat treatment may be any gas that is inert to activated carbon, boric acid, diboron trioxide, etc. Typical examples include nitrogen, helium, and argon. Gases such as

なお、酸素含有ガス雰囲気下、例えは空気雰囲気下で加
熱処理したのでは活性炭の燃焼か生じるので適当でない
Note that heat treatment in an oxygen-containing gas atmosphere, for example, in an air atmosphere, is not appropriate because the activated carbon may be burned.

この発明において、不活性カス雰囲気下での加熱処理は
、一般に不活性ガスを流通させながら行なう。
In this invention, the heat treatment in an inert gas atmosphere is generally performed while an inert gas is flowing.

また、加熱処理は、塩素と反応させる前に行なっておき
さえすれは、いつ行なってもよむ)。
Also, heat treatment can be done at any time as long as it is done before reacting with chlorine).

前記不活性ガス雰囲気下での加熱処理によって得られる
粒状の活性炭は、300〜800℃、好ましくは400
〜600°Cで塩素と反応させる。
The granular activated carbon obtained by the heat treatment in the inert gas atmosphere has a temperature of 300 to 800°C, preferably 400°C.
React with chlorine at ~600°C.

B2O3+3C+3C12→3CO+28CI3塩素と
の反応は、塩素と前記加熱処理活性炭とを十分に接触さ
せることができれば、いかなる方法で行なってもよ0)
が、一般には活性炭層に塩素ガスを流通させながら行な
う。
B2O3+3C+3C12→3CO+28CI3The reaction with chlorine may be carried out by any method as long as the chlorine and the heat-treated activated carbon can be brought into sufficient contact0)
However, this is generally carried out while circulating chlorine gas through the activated carbon layer.

塩素と反応させる際の反応温度は、これかあまり低すぎ
ると反応時間が非常に長くなり、また、あまり高すぎて
も、反応温度を高くしたことによる利点は特になく、熱
経済的にも得策でないので、一般には300〜800℃
、好ましくは400〜600℃が適当である。
When reacting with chlorine, if the reaction temperature is too low, the reaction time will be very long; if it is too high, there is no particular advantage to raising the reaction temperature, and it is not a good idea from a thermoeconomic perspective. Generally, the temperature is 300 to 800℃.
, preferably 400 to 600°C.

前記温度で塩素との反応を行なうと、反応は円滑に進行
し、ガス状の三塩化ホウ素か生成する。
When the reaction with chlorine is carried out at the above temperature, the reaction proceeds smoothly and gaseous boron trichloride is produced.

反応時間は、反応温度、担持させたホウ酸の量、塩素ガ
スの供給量などによっても異なるが、一般には1〜5時
間である。
The reaction time varies depending on the reaction temperature, the amount of supported boric acid, the amount of chlorine gas supplied, etc., but is generally 1 to 5 hours.

三塩化ホウ素の回収は、それ自体公知の方法、例えは凝
縮、蒸留などによって容易に行なうことができる。
Boron trichloride can be easily recovered by methods known per se, such as condensation and distillation.

この発明は、固定床、移動床、流動床ffどいずれの反
応方式でも実施できるが、固定床または移動床で実施す
るのか適当である。
This invention can be carried out using any reaction method such as a fixed bed, a moving bed, or a fluidized bed, but it is appropriate to carry out the reaction using a fixed bed or a moving bed.

この発明によると、塩素との反応に前記加熱処理によっ
て得られるホウ酸か三酸化ニホウ素として担持されてい
る粒状の活性炭を使用するので、塩素ガスの流通、拡散
が容易で、また粉末の三酸化ニホウ素と炭素粉末との混
合物を使用した場合のように炭素粉末か飛散したり、反
応中に二酸化ニホウ素が溶融、液化して炭素粉末と分離
し、溶融物か反応管の底部にたまったりすることかない
0て、反応を短時間で円滑に進行、完結させることがで
き、高収率で三塩化ホウ素を製造することができる。
According to this invention, since granular activated carbon supported as boric acid or diboron trioxide obtained by the heat treatment is used for the reaction with chlorine, the circulation and diffusion of chlorine gas is easy, and the powder When a mixture of diboron oxide and carbon powder is used, the carbon powder may scatter, or the diboron dioxide may melt and liquefy during the reaction and separate from the carbon powder, leaving the melt at the bottom of the reaction tube. The reaction can proceed smoothly and be completed in a short time without slowing down, and boron trichloride can be produced in high yield.

次に実施例および比較例を示す。Next, examples and comparative examples will be shown.

実施例 1 80℃に加温した水1,100mj!!に、ホウ酸(H
3BO3)222.9を溶解させ、これに粒状0活性炭
(岐径3 mJ比表面積1,150 m”y”g )
] (Jを5分間浸漬した後、雷別して空気雰囲気下に
160℃で20時間乾燥させてホウ酸担持活性炭〔H3
BO3担持量79.5g〕とし、これを内径50mmの
石英製の反応管に充填し、窒素ガスを、3.000ml
/mvtの流量で流しながら加熱し、500℃で3時間
加熱処理して担持されて0)るホウ酸の分解、脱水を行
なった。
Example 1 1,100mj of water heated to 80℃! ! Then, boric acid (H
3BO3) 222.9 is dissolved, and granular activated carbon (branch diameter 3 mJ specific surface area 1,150 m"y"g) is dissolved in this.
] (After soaking J for 5 minutes, it was separated by lightning and dried at 160°C for 20 hours in an air atmosphere to form boric acid-supported activated carbon [H3
The amount of supported BO3 was 79.5 g], and this was filled into a quartz reaction tube with an inner diameter of 50 mm, and 3.000 ml of nitrogen gas was added.
The sample was heated while flowing at a flow rate of /mvt and heated at 500° C. for 3 hours to decompose and dehydrate the supported boric acid.

次いで窒素ガスに代えて塩素ガスを900m1/m1y
tの流量で1.5時間前記反応管に流して塩素と反応す
せ、生成ガスをドライアイスで冷去[j、液化して補集
した結果、補果物の組成は、三塩化ホウ素が148gで
、塩素が13gであった。
Next, replace nitrogen gas with chlorine gas at 900 m1/m1y.
It was passed through the reaction tube for 1.5 hours at a flow rate of t to react with chlorine, and the generated gas was cooled with dry ice [j. As a result of liquefaction and collection, the composition of the complement was 148 g of boron trichloride. The amount of chlorine was 13g.

担持させたホウ酸の反応率(以下、反応率という)は、
100%で、三塩化ホウ素の収率は98%であった○ 実施例 2〜6 実施例1と同様の粒状の活性炭90m1を、80℃に加
温した水100m1にホウ酸〔H3BO3〕20ji(
323mmol )を溶解させたホウ酸水溶液に5分間
浸漬した後、戸別して空気雰囲気下に160℃で20時
間乾燥させてホウ酸担持活性炭〔H3BO3担持量80
g)を得た。
The reaction rate of supported boric acid (hereinafter referred to as reaction rate) is:
100%, the yield of boron trichloride was 98% ○ Examples 2 to 6 90 ml of granular activated carbon similar to Example 1 was added to 100 ml of water heated to 80°C with 20 ml of boric acid [H3BO3] (
323 mmol) was dissolved in a boric acid aqueous solution for 5 minutes, and dried in an air atmosphere at 160°C for 20 hours to form boric acid-supported activated carbon [H3BO3 supported amount: 80
g) was obtained.

次いでホウ酸徊持活性炭90m1を内径24mmの石英
製の反応管に充填し、アルゴンガスを270m1! /
mviの流量で流しながら加熱し、第1表に記載の温度
で1時間加熱処理した後、アルコンガスに代えて塩素ガ
スを90m1/m1yrの流量で流し、前記加熱処理温
度と同じ温度で塩素と反応させ、生成ガスを水に吸収さ
せてD−ソルビット50gを加え、IN−水酸化ナトI
Jウム水溶液で滴定して、生成した三塩化ホウ素を定量
した。
Next, a quartz reaction tube with an inner diameter of 24 mm was filled with 90 ml of boric acid-sustaining activated carbon, and 270 ml of argon gas was added! /
After heating while flowing at a flow rate of mvi and heat treatment at the temperature listed in Table 1 for 1 hour, chlorine gas was flowed in place of Alcon gas at a flow rate of 90 ml/ml yr, and chlorine and chlorine were heated at the same temperature as the heat treatment temperature. React, absorb the produced gas in water, add 50g of D-sorbit, and add IN-sodium hydroxide I.
The produced boron trichloride was determined by titration with a J aqueous solution.

反応率が100%になるまでに要した反応時間は第1表
のとおりであった。
The reaction time required until the reaction rate reached 100% is shown in Table 1.

なお、三塩化ホウ素の生成量はいずれの場合も130m
mol (約15g)であった。
In addition, the amount of boron trichloride produced is 130 m in both cases.
mol (approximately 15 g).

実施例 7 含浸時間を5分から30分にかえたまかは、実施例5と
同様に加熱処理した後、アルゴンガスに代えて塩素ガス
を200ml/mvtの流量で流し、500℃で塩素と
反応させた。
Example 7 After changing the impregnation time from 5 minutes to 30 minutes, the tamaka was heat-treated in the same manner as in Example 5, and then chlorine gas was flowed at a flow rate of 200 ml/mvt instead of argon gas to react with chlorine at 500°C. Ta.

反応率が100%になるまでに要した反応時間は45分
であり、生成した三塩化ホウ素は22.j? (190
mmol )であった。
The reaction time required for the reaction rate to reach 100% was 45 minutes, and the amount of boron trichloride produced was 22.5 minutes. j? (190
mmol).

なお、ホウ酸の担持量は11.7gであった。Note that the amount of boric acid supported was 11.7 g.

実施例 8 ホウ酸〔H3BO3〕70gを水200r111に加え
、97℃に加温してホウ酸を溶解させ、これに実施例1
と同様の粒状の活性炭90m、l!を10分間浸漬した
後、実施例5と同様に加熱処理および塩素との反応を行
なった。
Example 8 70g of boric acid [H3BO3] was added to 200r111 of water, heated to 97°C to dissolve the boric acid, and Example 1 was added to this.
Granular activated carbon similar to 90m, l! After soaking for 10 minutes, heat treatment and reaction with chlorine were performed in the same manner as in Example 5.

反応率が100%になるまでに安した反応時間は75分
であり、生成した三塩化ホウ素は3’5g(300mm
ol )であった。
The reaction time required for the reaction rate to reach 100% was 75 minutes, and the amount of boron trichloride produced was 3'5g (300mm
ol).

比較例 1 三酸化ニホウ素粉末85gと100メツシユの節を通過
したグラファイト粉末28.9とを混合した後、直径5
m11tおよび高さ6朋の円柱状ペレットに加圧成形し
、これを内径24mmの石英製の反応管に充填して塩素
ガスを100111/mvtの流量で流し、800℃で
塩素と反応させた。
Comparative Example 1 After mixing 85 g of diboron trioxide powder and 28.9 g of graphite powder that passed through 100 mesh nodes,
The pellets were press-molded into cylindrical pellets of m11t and 6 mm in height, filled into a quartz reaction tube with an inner diameter of 24 mm, and reacted with chlorine at 800° C. by flowing chlorine gas at a flow rate of 100111/mvt.

三酸化ニホウ素の反応率か50%になるまでに安した反
応時間は320分であった。
The reaction time required to reach a reaction rate of diboron trioxide of 50% was 320 minutes.

比較例 2 塩素との反応温度を600℃にかえたほかは、比較例1
と同様にして三塩化ホウ素粉末とグラファイト粉末との
成形物を塩素と反応させたが、240分を経ても三酸化
ニホウ素の反応率はかすか2%であった。
Comparative Example 2 Comparative Example 1 except that the reaction temperature with chlorine was changed to 600°C.
In the same manner as above, a molded product of boron trichloride powder and graphite powder was reacted with chlorine, but even after 240 minutes, the reaction rate of diboron trioxide was only 2%.

比較例 3 加熱処理温度および反応温度を200°Cにかえたほか
は、実施例1と同様にして塩素との反応を行なったが、
240分経過しても反応率は10多であった。
Comparative Example 3 A reaction with chlorine was carried out in the same manner as in Example 1, except that the heat treatment temperature and reaction temperature were changed to 200°C.
Even after 240 minutes had passed, the reaction rate was still 10%.

比較例 4 二酸化ニホウ素粉末8.5gと60メツシユの節を通過
した活性炭粉末6.0gとを混合し、これを内径40m
mの石英製の平底反応器に入れ、アルゴンカスを200
ml!/mvtの流量で流しながら、400℃で3時間
加熱処理した後、アルゴンガスに代えて塩素ガスを10
0 ml: 77m1rの流量で流し、800°Cで塩
素との反応を行なったが、35時間経過しても三酸化ニ
ホウ素の反応率は45%であった。
Comparative Example 4 8.5 g of diboron dioxide powder and 6.0 g of activated carbon powder that passed through 60 mesh nodes were mixed, and this was mixed into a tube with an inner diameter of 40 m.
Place it in a quartz flat bottom reactor with 200 m of argon gas.
ml! After heating at 400°C for 3 hours while flowing at a flow rate of /mvt, chlorine gas was added at 10
0 ml: The reaction with chlorine was carried out at 800° C. by flowing at a flow rate of 77 ml, but the reaction rate of diboron trioxide was 45% even after 35 hours.

Claims (1)

【特許請求の範囲】[Claims] 1 ホウ酸水溶液を粒状の活性炭に含浸させて得られる
ホウ酸担持活性炭を、不活性ガス雰囲気下に300〜8
00℃で加熱処理した後、300〜800℃で塩素と反
応させることを特徴とする三塩化ホウ素の製造方法。
1. Boric acid-supported activated carbon obtained by impregnating granular activated carbon with a boric acid aqueous solution is heated to 300 to 8
A method for producing boron trichloride, which comprises heating at 00°C and then reacting with chlorine at 300 to 800°C.
JP1549380A 1980-02-13 1980-02-13 Manufacturing method of boron trichloride Expired JPS5857368B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1549380A JPS5857368B2 (en) 1980-02-13 1980-02-13 Manufacturing method of boron trichloride
US06/231,462 US4327062A (en) 1980-02-13 1981-02-04 Process for producing chloride of elements of Group III, IV or V of Periodic Table
CA000370460A CA1152283A (en) 1980-02-13 1981-02-10 Process for producing chloride of elements of group iii, iv or v of periodic table
DE8181300583T DE3163145D1 (en) 1980-02-13 1981-02-12 Process for producing chlorides of elements of group iii, iv or v of periodic table
EP81300583A EP0034897B1 (en) 1980-02-13 1981-02-12 Process for producing chlorides of elements of group iii, iv or v of periodic table
AU67244/81A AU532014B2 (en) 1980-02-13 1981-02-12 Producing chlorides of group iii, iv or v of periodic table

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1549380A JPS5857368B2 (en) 1980-02-13 1980-02-13 Manufacturing method of boron trichloride

Publications (2)

Publication Number Publication Date
JPS56114818A JPS56114818A (en) 1981-09-09
JPS5857368B2 true JPS5857368B2 (en) 1983-12-20

Family

ID=11890322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1549380A Expired JPS5857368B2 (en) 1980-02-13 1980-02-13 Manufacturing method of boron trichloride

Country Status (1)

Country Link
JP (1) JPS5857368B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273794A (en) * 2007-05-01 2008-11-13 Ube Ind Ltd Boric acid-supporting activated carbon for producing boron trichloride, and its production method
JP2008280185A (en) * 2007-05-08 2008-11-20 Ube Ind Ltd Diboron trioxide-supporting activated carbon for producing boron trichloride and its production method
JP2009525258A (en) * 2006-01-30 2009-07-09 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Nanoporous carbon material and system and method using the same
JP2012121808A (en) * 2012-03-27 2012-06-28 Ube Industries Ltd Diboron trioxide-supporting activated carbon for producing boron trichloride and method of producing the same
JP2012121807A (en) * 2012-03-27 2012-06-28 Ube Industries Ltd Boric acid-supporting activated carbon for producing boron trichloride, and method of producing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096523A (en) * 1983-10-26 1985-05-30 Showa Denko Kk Purification of boron trichloride
EA017908B1 (en) * 2007-12-05 2013-04-30 Институт Насьональ Де Ля Решерш Сьентифик GeClAND/OR SiClRECOVERY PROCESS FROM OPTICAL FIBERS OR GLASSY RESIDUES AND PROCESS FOR PRODUCING SiClFROM SiORICH MATERIALS
JP2010111550A (en) * 2008-11-07 2010-05-20 Ube Ind Ltd High-purity boron trichloride and production method thereof
WO2017221642A1 (en) * 2016-06-23 2017-12-28 昭和電工株式会社 Method for producing boron trichloride
JP2019119614A (en) * 2017-12-28 2019-07-22 宇部興産株式会社 Method for producing high-purity boron trichloride

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525258A (en) * 2006-01-30 2009-07-09 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Nanoporous carbon material and system and method using the same
JP2008273794A (en) * 2007-05-01 2008-11-13 Ube Ind Ltd Boric acid-supporting activated carbon for producing boron trichloride, and its production method
JP2008280185A (en) * 2007-05-08 2008-11-20 Ube Ind Ltd Diboron trioxide-supporting activated carbon for producing boron trichloride and its production method
JP2012121808A (en) * 2012-03-27 2012-06-28 Ube Industries Ltd Diboron trioxide-supporting activated carbon for producing boron trichloride and method of producing the same
JP2012121807A (en) * 2012-03-27 2012-06-28 Ube Industries Ltd Boric acid-supporting activated carbon for producing boron trichloride, and method of producing the same

Also Published As

Publication number Publication date
JPS56114818A (en) 1981-09-09

Similar Documents

Publication Publication Date Title
US3950507A (en) Method for producing granulated porous corundum
US4039480A (en) Hollow ceramic balls as automotive catalysts supports
US3837843A (en) Process for thermal production of magnesium
EP0283933B1 (en) Process for producing unsintered cristobalite silica
JPS5857368B2 (en) Manufacturing method of boron trichloride
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
US3644216A (en) Catalysts
US2967153A (en) Solid desiccant
AU759993B2 (en) Ceramic product based on lithium aluminium silicate
US2535659A (en) Amorphous silica and process for making same
JPH0136981B2 (en)
US4327062A (en) Process for producing chloride of elements of Group III, IV or V of Periodic Table
JPH06183725A (en) Binderless x-type zeolite formed body and production thereof
JPS6013968B2 (en) Production method of boron trichloride
US3226338A (en) Vanadium pentoxide potassium pyrosulfate catalyst and method of preparation thereof
JPS6227002B2 (en)
JPH05334B2 (en)
US4178163A (en) Method for the manufacture of foamed glass
JPH03275527A (en) Porous silica glass powder
JPH0138042B2 (en)
US4083728A (en) Method for making glass
JPH10203806A (en) Production of boron nitride powder
US3323860A (en) Anhydrous sodium cyanide and process for preparation of same
JPS58194731A (en) Preparation of ultrafine silicon carbide powder
US3732082A (en) Method of producing substantially dust free calcium chloride particulate