JPS6227002B2 - - Google Patents

Info

Publication number
JPS6227002B2
JPS6227002B2 JP14186583A JP14186583A JPS6227002B2 JP S6227002 B2 JPS6227002 B2 JP S6227002B2 JP 14186583 A JP14186583 A JP 14186583A JP 14186583 A JP14186583 A JP 14186583A JP S6227002 B2 JPS6227002 B2 JP S6227002B2
Authority
JP
Japan
Prior art keywords
powder
crude
bulk density
oxygen
fluorides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14186583A
Other languages
Japanese (ja)
Other versions
JPS6033204A (en
Inventor
Yasuo Yoshida
Kyoshi Katayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP14186583A priority Critical patent/JPS6033204A/en
Publication of JPS6033204A publication Critical patent/JPS6033204A/en
Publication of JPS6227002B2 publication Critical patent/JPS6227002B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

【発明の詳細な説明】 本発明は六方晶BN(以下BNという)粉末の製
造法に関し、特に高充てん性、高結晶性のBN粉
末を得ることを目的とする。 BNは潤滑材の外、熱伝導性、電気絶縁性に優
れ、また中性子吸収作用を有するため、樹脂、ゴ
ム、セラミツク材等を結合材とする放熱材、中性
子遮蔽材のフイラーとしても使用されている。 これらのフイラーとして重要なことは高充てん
性であること、さらには結晶性が大なことであ
る。 BNは一般にほう酸、無水酸化ほう素、もしく
はほう砂をアンモニアガス中で加熱するか、或い
はこれらほう酸等に尿素、ジアミン等の加熱分解
によりアンモニアガスを発生する含窒素有機化合
物を混合し、加熱して粗製BNを得、次いでさら
に高温に加熱して再結晶化し、製品とされてい
る。 粗製BNは通常700〜1400℃の温度で反応して得
られたもので、結晶が未発達であり、1次結晶の
大きさは0.1μより小さく、X線回析法で測定さ
れるC軸方向の結晶化度を示す指数Lc値も50〜
300Åと小さい(学振炭素材料 117委員会法)。
また、粗製BNは無水酸化ほう素からBNに転化す
る前駆体としてB−O−N系中間化合物状態で1
〜12%の酸素をBN結晶内に含んでおり、この酸
素は未窒化の遊離の酸化ほう素状態の酸素とは異
なり、水洗等の常温処理では除去されないと考え
られている。 この粗製BNを不活性雰囲気中で粗製BNの反応
生成温度より高温で再加熱すると、BN結晶中の
酸素は遊離の無水酸化ほう素としてBN結晶中よ
り分離し、揮散除去される。再加熱温度が高くな
るとともに酸化ほう素として遊離する酸素が多く
なり、2000℃を越えるとほぼ全量が遊離する。こ
れに並行してBNの結晶も発達し、1次結晶の大
きさは1〜10μになり、Lc値は10000Åを越え
る。通常市販されているBNは約1900℃以上に加
熱されたもので、1次結晶の大きさは1μ以上、
Lc値は1000Å以上である。 このように、結晶の発達したBN粉末を得るた
めには粗製BNを不活性気中等で再加熱すればよ
いが、粗製BN自体では焼結性に乏しく、再加熱
後の粉体の嵩密度は低く、市販粉末の場合振動嵩
密度で0.1〜0.3g/c.c.しかなく、樹指とBN粉体
の複合体を得ようとする場合充てん性が悪く、
BNの特性を発揮するような複合物が得難い。 従来、充てん性の良いBN粉体を得る方法とし
ては、市販のBN粉体に酸化ほう素、或いは酸化
ほう素−酸化カルシウムをバインダーとして加え
てホツトプレスした焼結体を粉砕するか、同BN
粉末にB2O3−CaO等のほう酸カルシウム塩、或
いはほうけい酸ガラスを加えて焼結した焼結体を
粉砕する方法があるが、前者の場合はホツトプレ
ス焼結体自体生産性が低く、従つて得られる粉末
が高価になる。また、後者の方法では所定組成の
カルシウムほう酸塩、ほうけい酸塩が市販品で得
難く、また溶融により自製するには容器との濡れ
による融体の這い上りがあり難しい。 本発明者は容易に結晶の発達した充てん性のよ
いBN粉末の製造法を検討した結果、粗製BN中に
存在する酸素が再加熱でB2O3になることを利用
し、そこにアルカリ土類金属の酸化物、或いは弗
化物を存在させることにより、これらが焼結バイ
ンダーとして緻密化に効果があり、更に結晶発達
にも効果のあることを見出し、本発明に至つたも
のである。 即ち、本発明はBN結晶中に1〜12%、好まし
くは2〜10%の酸素を含む粗製BN粉末に対し、
1〜10%、好ましくは2〜7%のアルカリ土類金
属の酸化物、或いは弗化物のいずれかの1種、ま
たは2種以上の粉末を添加して圧粉体に成形し、
これを不活性ガス等の気流中、少なくとも1700℃
以上の温度で焼結させ、粉砕、分級して結晶の発
達した充てん性のよいBN粉末を得る方法であ
る。 粗製BN中の酸素含有量が1%未満ではBN結晶
が発達しすぎて圧粉体の成形が困難となり、また
12%を越えると加熱時の揮発量が多くなり、焼結
体密度が低く、その結果これを粉砕して得られる
粉末の嵩密度も低下する。 アルカリ土類金属の酸化物、弗化物としては
B2O3と複塩をつくり、又、BN結晶発達に効果の
あるCaO,MgO,BaO,CaF2,MgF2,BaF2
好ましい。 またこれらの酸化物、弗化物の代りに加熱して
酸化物、弗化物となる炭酸塩、水酸化物、塩基性
炭酸塩、塩基性弗化物等を用いてもよい。その量
は酸化物、弗化物換算で前記の量となるようにす
ればよい。 アルカリ土類金属の酸化物もしくは弗化物の添
加量は1%未満か又は10%(内割り%)を越える
と焼結性、結晶性が低く、さらに弗化物の場合は
10%を越えると焼結の際用いるアルミナ質の保護
管、ガス吹込み管の損傷が甚しい。従つてこれら
の添加量は1〜10%が適し、好ましくは2〜7%
である。 BN粉末にこれらの添加物を混合した圧粉体の
成形は金型プレス、ラバープレス等の成形装置を
用いて行ない、その生の嵩密度が1.3g/c.c.以上
とすることが好ましい。この嵩密度が低いと焼結
後、粉砕して得られる粉末の振動充てん嵩密度が
上らない。圧粉体の密度が1.3g/c.c.以上であれ
ば、振動充てん嵩密度として望ましい0.6g/c.c.
以上の製品粉末が得られる。 圧粉体の加熱はAr、N2ガス等の不活性ガス、
NH3ガス、これらの混合ガス雰囲気下で行なう。
加熱温度は1700℃以上、好ましくは2000〜2200℃
である。1700℃未満では結晶の発達が十分でな
く、また2200℃を越えると加熱容器として用いる
黒鉛とBNの反応が始まり、B4Cの生成があり、
好ましくない。 加熱後、圧粉体は冷却し、ロールミル、ボール
ミル等の粉砕機により粉砕し、分級する。通常、
合成樹脂等のフイラーとして使用する場合は40メ
ツシユ篩で分級し、篩下の平均粒径45〜80μmと
なるように粉砕条件を選ぶことが好ましい。 40メツシユより粗い粒があると樹脂等との複合
時表面が粗くなり、また平均粒径が80μmを越え
ると嵩密度が低くなり、45μmより小さいと微粉
部分の吸湿性が影響して流動性も低下してくる。 本発明のBN粉末は充てん性、結晶性が良いの
で、樹脂、シリコーンゴムとの複合体において、
多量にBNを含有せしめることができ、例えば放
熱シートであれば、熱放散性が良好となる。 実施例 1〜4 ほう酸を燐酸カルシウム(フイラー)と混合、
粉砕し、造粒及び乾燥後アンモニアガス中で850
℃に加熱、窒化し、常法によりフイラー及び未反
応物を除去し粗製BNを得た。この粗製BN中の酸
素量は10%であつた。この粗製BNに対し、それ
ぞれ炭酸カルシウム、炭酸マグネシウム、炭酸バ
リウム、弗化カルシウムを添加混合した。添加量
は酸化物、及び弗化物の状態で粗製BNに対し5
%とした。これを1500Kg/cm2の加圧力で60mmφの
円柱状に成形し嵩密度1.37〜1.47g/c.c.の圧粉体
を得た。この圧粉体を黒鉛ルツボに入れ、高周波
加熱炉に挿入し、ルツボ内に窒素ガスを1,
min.流しながら2Hrで2000〜2100℃に昇温、この
温度に2Hr保持した。窒素ガスを流しながら冷却
し、黒鉛ルツボよりBN圧粉体を取り出し小型の
アルミナ製ポツトミルで粉砕し、40メツシユ篩で
篩つた。得られたBN粉末はいずれの添加物の場
合にも、高嵩密度の粉末であつた。 比較例 1 上記実施例と同様にして得た粗製BNを実施例
と同じ条件で60mmφの圧粉体とし、窒素ガスを流
しながら加熱、冷却、粉砕、分級した。得られた
BN粉末の振動嵩密度は表1に示す如く、0.55
g/c.c.であつた。 実施例 5〜8 乾燥脱水ほう砂と尿素を混合し、アンモニアガ
ス中で1000℃まで加熱窒化し、常法により未反応
物を除去して粗製BN粉末を得た。この粗製BN粉
末中の酸素量は3%であつた。 この粗製BN粉末にそれぞれCaO,MgO,
MgF2,BaF2を添加混合し、実施例1〜4と同様
に圧粉体形状で加熱後、粉砕、分級して表1に示
す如き嵩密度のBN粉末を得た。 比較例 2 上記実施例5〜8と同様にして得た粗製BNに
添加物を添加せずに上記と同じ条件で処理し、
BN粉末を得た。 実施例5〜8で得たBN粉末は比較例2で得た
ものに比べ、焼結効果があり、振動嵩密度も高く
なつている。 比較例 3 実施例5〜8と同様にして得た粗製BN粉末を
1400℃に再加熱し、水洗、乾燥により、酸素含有
量0.5%の粗製BN粉末を得た。この低酸素粗製
BN粉末について2%CaO相当の炭酸カルシウム
を加えて前記各実施例と同様に焼成、粉砕、分級
を行なつたが、この場合には成形が困難で、圧粉
体の嵩密度が低いため焼結後の粉末の嵩密度も実
施例に比べて低下していた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing hexagonal BN (hereinafter referred to as BN) powder, and particularly aims to obtain a BN powder with high filling properties and high crystallinity. In addition to being a lubricant, BN has excellent thermal conductivity and electrical insulation, and also has neutron absorption properties, so it is also used as a filler for heat dissipation materials and neutron shielding materials that use resin, rubber, ceramic materials, etc. as binding materials. There is. What is important for these fillers is that they have high filling properties and, furthermore, they have great crystallinity. BN is generally produced by heating boric acid, anhydrous boron oxide, or borax in ammonia gas, or by mixing and heating a nitrogen-containing organic compound that generates ammonia gas by thermal decomposition of urea, diamine, etc. Crude BN is obtained by heating it to a higher temperature to recrystallize it, and then it is made into a product. Crude BN is usually obtained by reaction at a temperature of 700 to 1400℃, and the crystals are underdeveloped, the size of the primary crystal is smaller than 0.1μ, and the C axis measured by X-ray diffraction method. The index Lc value indicating the degree of crystallinity in the direction is also 50 ~
It is as small as 300Å (JSPS Carbon Materials 117 Committee Act).
In addition, crude BN is used as a precursor for converting anhydrous boron oxide to BN in the form of a B-O-N intermediate compound.
The BN crystal contains ~12% oxygen, and unlike oxygen in the unnitrided free boron oxide state, it is thought that this oxygen cannot be removed by room-temperature treatments such as water washing. When this crude BN is reheated in an inert atmosphere at a temperature higher than the reaction formation temperature of the crude BN, the oxygen in the BN crystal is separated from the BN crystal as free anhydrous boron oxide, and is volatilized and removed. As the reheating temperature increases, more oxygen is liberated as boron oxide, and when the temperature exceeds 2000°C, almost the entire amount is liberated. In parallel with this, BN crystals also develop, and the size of the primary crystals becomes 1 to 10 μ, and the Lc value exceeds 10,000 Å. Usually commercially available BN is heated to about 1900℃ or above, and the primary crystal size is 1μ or more.
The Lc value is 1000 Å or more. In this way, in order to obtain BN powder with developed crystals, crude BN can be reheated in an inert atmosphere, but crude BN itself has poor sinterability, and the bulk density of the powder after reheating is The vibration bulk density of commercially available powder is only 0.1 to 0.3 g/cc, and the filling properties are poor when trying to obtain a composite of resin and BN powder.
It is difficult to obtain composites that exhibit the characteristics of BN. Conventionally, methods for obtaining BN powder with good filling properties include adding boron oxide or boron oxide-calcium oxide as a binder to commercially available BN powder and pulverizing a hot-pressed sintered body;
There is a method of adding calcium borate salt such as B 2 O 3 -CaO or borosilicate glass to the powder and pulverizing the sintered body, but in the former case, the productivity of the hot pressed sintered body itself is low; The powder obtained is therefore expensive. In addition, in the latter method, it is difficult to obtain commercially available calcium borate or borosilicate having a predetermined composition, and it is difficult to produce the calcium borate or borosilicate in-house by melting because the melt creeps up due to wetting with the container. The present inventor investigated a method for producing BN powder with easily developed crystals and good filling properties, and found that by utilizing the fact that oxygen present in crude BN becomes B 2 O 3 when reheated, an alkaline earth was added thereto. It was discovered that the presence of similar metal oxides or fluorides is effective in densification as a sintering binder, and is also effective in crystal growth, leading to the present invention. That is, the present invention uses crude BN powder containing 1 to 12%, preferably 2 to 10%, of oxygen in the BN crystal.
1 to 10%, preferably 2 to 7%, of one or more powders of alkaline earth metal oxides or fluorides is added and formed into a green compact;
This is carried out at a temperature of at least 1700℃ in a stream of inert gas, etc.
This method involves sintering at a temperature above, pulverizing, and classifying to obtain BN powder with developed crystals and good filling properties. If the oxygen content in the crude BN is less than 1%, the BN crystals will develop too much, making it difficult to form a green compact.
If it exceeds 12%, the amount of volatilization during heating will increase, the density of the sintered body will be low, and as a result, the bulk density of the powder obtained by crushing this will also decrease. As alkaline earth metal oxides and fluorides
Preferred are CaO, MgO, BaO, CaF 2 , MgF 2 and BaF 2 which form a double salt with B 2 O 3 and are effective for the growth of BN crystals. Further, instead of these oxides and fluorides, carbonates, hydroxides, basic carbonates, basic fluorides, etc. which become oxides and fluorides upon heating may be used. The amount may be adjusted to the above amount in terms of oxide or fluoride. If the amount of alkaline earth metal oxide or fluoride added is less than 1% or exceeds 10% (%), sinterability and crystallinity will be low, and in the case of fluoride,
If it exceeds 10%, the alumina protection tube and gas blowing tube used during sintering will be seriously damaged. Therefore, the amount of these added is suitably 1 to 10%, preferably 2 to 7%.
It is. A green compact obtained by mixing these additives with BN powder is formed using a forming device such as a mold press or a rubber press, and the green bulk density of the green compact is preferably 1.3 g/cc or more. If this bulk density is low, the vibration-packed bulk density of the powder obtained by pulverization after sintering will not increase. If the density of the green compact is 1.3g/cc or more, the vibration filling bulk density is preferably 0.6g/cc.
The above product powder is obtained. To heat the compact, use an inert gas such as Ar or N2 gas,
The test is carried out in an atmosphere of NH 3 gas or a mixture of these gases.
Heating temperature is 1700℃ or higher, preferably 2000-2200℃
It is. At temperatures below 1,700℃, crystal development is insufficient, and at temperatures above 2,200℃, a reaction between graphite used as a heating container and BN begins, resulting in the formation of B 4 C.
Undesirable. After heating, the green compact is cooled, pulverized by a pulverizer such as a roll mill or a ball mill, and classified. usually,
When used as a filler for synthetic resins, etc., it is preferable to classify with a 40-mesh sieve and select crushing conditions so that the average particle diameter under the sieve is 45 to 80 μm. If there are particles coarser than 40 mesh, the surface will be rough when combined with resin etc. If the average particle size exceeds 80 μm, the bulk density will be low, and if it is smaller than 45 μm, the hygroscopicity of the fine powder will affect the fluidity. It's going to decline. Since the BN powder of the present invention has good filling properties and crystallinity, it can be used in composites with resins and silicone rubber.
If a large amount of BN can be contained, for example in a heat dissipation sheet, the heat dissipation properties will be good. Examples 1-4 Mixing boric acid with calcium phosphate (filler),
After crushing, granulating and drying in ammonia gas 850
The mixture was heated to 0.degree. C. and nitrided, and the filler and unreacted substances were removed by a conventional method to obtain crude BN. The amount of oxygen in this crude BN was 10%. Calcium carbonate, magnesium carbonate, barium carbonate, and calcium fluoride were added and mixed to this crude BN, respectively. The amount added is 5% to crude BN in the form of oxides and fluorides.
%. This was molded into a 60 mm cylindrical shape under a pressure of 1500 Kg/cm 2 to obtain a compact having a bulk density of 1.37 to 1.47 g/cc. This green compact is placed in a graphite crucible, inserted into a high-frequency heating furnace, and nitrogen gas is introduced into the crucible at 1.
The temperature was raised to 2,000 to 2,100°C for 2 hours while flowing water for 2 hours, and this temperature was maintained for 2 hours. After cooling while flowing nitrogen gas, the BN compact was taken out from the graphite crucible, pulverized with a small alumina pot mill, and sieved with a 40-mesh sieve. The obtained BN powder had a high bulk density regardless of the additives used. Comparative Example 1 Crude BN obtained in the same manner as in the above example was made into a 60 mmφ green compact under the same conditions as in the example, and heated, cooled, crushed, and classified while flowing nitrogen gas. obtained
The vibrational bulk density of BN powder is 0.55 as shown in Table 1.
g/cc. Examples 5 to 8 Dry dehydrated borax and urea were mixed, heated to 1000°C in ammonia gas and nitrided, and unreacted substances were removed by a conventional method to obtain crude BN powder. The amount of oxygen in this crude BN powder was 3%. This crude BN powder contains CaO, MgO,
MgF 2 and BaF 2 were added and mixed, heated in the form of a green compact in the same manner as in Examples 1 to 4, and then crushed and classified to obtain BN powder having a bulk density as shown in Table 1. Comparative Example 2 Crude BN obtained in the same manner as in Examples 5 to 8 above was treated under the same conditions as above without adding any additives,
BN powder was obtained. The BN powders obtained in Examples 5 to 8 have a sintering effect and a higher vibration bulk density than those obtained in Comparative Example 2. Comparative Example 3 Crude BN powder obtained in the same manner as Examples 5 to 8 was
By reheating to 1400°C, washing with water, and drying, a crude BN powder with an oxygen content of 0.5% was obtained. This low oxygen crude
Calcium carbonate equivalent to 2% CaO was added to the BN powder, and sintering, pulverization, and classification were carried out in the same manner as in the above examples. The bulk density of the powder after setting was also lower than that of the example. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 酸素1〜12重量%含む結晶未発達のBN粉末
にアルカリ土類金属の酸化物、弗化物、もしくは
加熱により酸化物、弗化物となる化合物から選ば
れた少なくとも1種の粉末を酸化物、弗化物換算
で1〜10重量%混合、成形し、不活性ガスもしく
はNH3気流中、1700℃以上で焼結し、この焼結体
を粉砕、分級することを特徴とするBN粉末の製
造法。
1 Add at least one powder selected from alkaline earth metal oxides, fluorides, or compounds that become oxides or fluorides upon heating to undeveloped BN powder containing 1 to 12% by weight of oxygen. A method for producing BN powder, which comprises mixing 1 to 10% by weight in terms of fluoride, molding, sintering at 1700°C or higher in an inert gas or NH 3 stream, and crushing and classifying the sintered body. .
JP14186583A 1983-08-04 1983-08-04 Manufacture of powdered bn Granted JPS6033204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14186583A JPS6033204A (en) 1983-08-04 1983-08-04 Manufacture of powdered bn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14186583A JPS6033204A (en) 1983-08-04 1983-08-04 Manufacture of powdered bn

Publications (2)

Publication Number Publication Date
JPS6033204A JPS6033204A (en) 1985-02-20
JPS6227002B2 true JPS6227002B2 (en) 1987-06-11

Family

ID=15301959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14186583A Granted JPS6033204A (en) 1983-08-04 1983-08-04 Manufacture of powdered bn

Country Status (1)

Country Link
JP (1) JPS6033204A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19750107C1 (en) * 1997-11-12 1999-04-15 Bosch Gmbh Robert Boron nitride seal for sealing planar oxygen sensor, especially lambda probe
WO2011043082A1 (en) * 2009-10-09 2011-04-14 水島合金鉄株式会社 Hexagonal boron nitride powder and method for producing same
TWI598291B (en) * 2014-12-08 2017-09-11 Showa Denko Kk Hexagonal boron nitride powder, a method for producing the same, a resin composition and a resin sheet
WO2016092952A1 (en) * 2014-12-08 2016-06-16 昭和電工株式会社 Hexagonal boron nitride powder, method for producing same, resin composition, and resin sheet
JP7431577B2 (en) * 2019-12-25 2024-02-15 デンカ株式会社 Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
JP7372142B2 (en) * 2019-12-25 2023-10-31 デンカ株式会社 Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
JP7372141B2 (en) * 2019-12-25 2023-10-31 デンカ株式会社 Hexagonal boron nitride powder and its manufacturing method, and cosmetics and its manufacturing method
JP7372139B2 (en) * 2019-12-25 2023-10-31 デンカ株式会社 Hexagonal boron nitride powder and its manufacturing method, and cosmetics
WO2022264324A1 (en) * 2021-06-16 2022-12-22 デンカ株式会社 Hexagonal boron nitride powder and method for producing same, cosmetic preparation and method for producing same, and quality evaluation method
CN117460691A (en) * 2021-06-16 2024-01-26 电化株式会社 Hexagonal boron nitride powder and method for producing same, and cosmetic and method for producing same
WO2022264325A1 (en) * 2021-06-16 2022-12-22 デンカ株式会社 Hexagonal boron nitride powder and method for producing same, and cosmetic preparation and method for producing same

Also Published As

Publication number Publication date
JPS6033204A (en) 1985-02-20

Similar Documents

Publication Publication Date Title
US11274045B2 (en) Spherical crystalline silica particles and method for producing same
JP2006188411A (en) Method for manufacturing boron nitride
JPS6227002B2 (en)
CN111362698A (en) Novel isotropic nuclear-grade graphite material and preparation method thereof
TW202225089A (en) Boron nitride powder, and method for producing boron nitride powder
CN113943159A (en) Preparation method of boron carbide composite ceramic
US3762936A (en) Manufacture of borosilicate glass powder essentially free of alkali and alkaline earth metals
US3241918A (en) Method for preparing boron nitride
JP3644713B2 (en) Method for producing hexagonal boron nitride powder
US5064589A (en) Method for producing high density hexagonal boron nitride sintered article
JPS606908B2 (en) Method for producing active silicon carbide powder containing boron component
JPS5857368B2 (en) Manufacturing method of boron trichloride
JPH06172581A (en) Gibbsitic aluminum hydroxide as filler for resin
JP3647079B2 (en) Method for producing hexagonal boron nitride powder
WO2021100617A1 (en) Hexagonal boron nitride powder
JPH0735304B2 (en) Method for manufacturing boron nitride sintered body
JPH041018B2 (en)
JPS6325274A (en) Silicon carbide powder mixture and sintered ceramic product
JPH09183660A (en) High fillability hexagonal boron nitride powder, its production and use thereof
US3397952A (en) Production of fused alumina
JPH1129308A (en) Hexagonal boron nitride powder and its use
US3396043A (en) Process for producing cellulated silica
JPH0610105B2 (en) Method for manufacturing boron nitride sintered body
JPH0735303B2 (en) Method for manufacturing boron nitride sintered body
JP3397503B2 (en) Method for producing low pressure phase boron nitride powder