JPS62109370A - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JPS62109370A
JPS62109370A JP24899885A JP24899885A JPS62109370A JP S62109370 A JPS62109370 A JP S62109370A JP 24899885 A JP24899885 A JP 24899885A JP 24899885 A JP24899885 A JP 24899885A JP S62109370 A JPS62109370 A JP S62109370A
Authority
JP
Japan
Prior art keywords
diaphragm
center
gauge
elements
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24899885A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamada
洋 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP24899885A priority Critical patent/JPS62109370A/en
Publication of JPS62109370A publication Critical patent/JPS62109370A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the irregularity and nonlinearity of a resistance between gauge elements by disposing the gauge elements tangentially and radially on a diaphragm in the vicinity. CONSTITUTION:A pair of gauges 2, 2' made of amorphous semiconductor are formed tangentially of a circle having a radius ra at the center O of a diaphragm 1 formed of a glass, stainless steel thin plate or an organic film as a center and gauge elements 3, 3' made of amorphous semiconductor are formed radially of the circle having a radius rb at the center O as a center at a suitable interval. The elements 2, 2', 3, 3' are disposed on the circles of the radii rb, ra to measure a pressure applied to the diaphragm 1. Since the elements 2, 2', 3, 3' are disposed at extremely near positions, the irregularity and the nonlinearity of the resistance value between the gauges 2, 2', 3, 3' can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はアモルファス半導体をゲージ素子として用い
る圧力センサに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a pressure sensor using an amorphous semiconductor as a gauge element.

従来の技術 従来この種圧力センサは、ゲージ素子を単結晶基板上に
エピタキシャル成長させる必要があること、及びセンサ
としての感度向上や、非線形性を小さくする九め単結晶
基板jpなるダイヤフラムαに対してゲージ素子A、A
’、B、B’を第2図4)または第2図(ロ)に示すよ
うに配置する必要がある。しかし第2図(イに示す配置
の場合、ゲージ素子AとA′の距離が、また第2図(口
1に示す配置の部付ゲージ素子AとA′及びBとB′の
距離がそれぞれ離れている几め、ウエーノ・内で±7〜
g俤、チップ内でも数係のバラツキが生じるなど、各抵
抗値のバラツキが大きくなる不具会があった。
Conventional technology Conventionally, this type of pressure sensor requires that the gauge element be epitaxially grown on a single crystal substrate, and that the diaphragm α, which is a single crystal substrate, is used to improve the sensitivity of the sensor and reduce nonlinearity. Gauge element A, A
', B, and B' must be arranged as shown in Fig. 2 (4) or Fig. 2 (b). However, in the case of the arrangement shown in Figure 2 (a), the distance between gauge elements A and A', and the distance between gauge elements A and A' and B and B' in the arrangement shown in Figure 2 (portion 1), respectively. ±7~ within the remote location, Ueno
There was a problem that the variation in each resistance value became large, such as variation in the numerical coefficient even within the chip.

上記不具仕を改善するものとして、ゲージ素子を互に入
り組んだ蛇行パターンとすることにより、抵抗値のバラ
ツキを低減させた半導体圧力センサが特開昭56−14
0669号公報などで提案されている。
In order to improve the above-mentioned defects, a semiconductor pressure sensor was developed in Japanese Patent Laid-Open No. 56-14 in which the variation in resistance value was reduced by forming the gauge element into an intertwined meandering pattern.
This is proposed in Publication No. 0669 and the like.

発明が解決しようとする問題点 しかし上記従来のものでも次の理由から抵抗値のバラツ
キや非線形性をきわめて小さくすることは困難である。
Problems to be Solved by the Invention However, even with the above-mentioned conventional devices, it is difficult to minimize variations in resistance values and nonlinearity for the following reasons.

半導体圧力センサのダイヤフラムαに均一な圧力が一様
に作用し之場せ、接線方向の応力は第3園何1に示す通
りである。
A uniform pressure is uniformly applied to the diaphragm α of the semiconductor pressure sensor, and the stress in the tangential direction is as shown in Fig. 1 of the third garden.

またダイヤフラムαに設けられ次ゲージ素子A + A
 、B e Wの抵抗の変化は式ヘーπr σr + 
πt σt (ゲージ人)・・・・・・(1)ぺに −
πt  6t  + πr σt (ゲージB)・・・
・・・(2)(なおσrは半径方向の応力、σtは接線
方向の圧力(第−let口1参照)、πt、πrは8i
半導体のピエゾ抵抗係数) で表わされる。単結晶Siの場会通常πr >>πtで
あるから、 式(1)及び式(21は 入 φπ7σ7 ・・・・・・(3) 十、中π7σt・・・・・・(4) となり、応力に比例し之変化が得られる。
Also, the next gauge element A + A provided on the diaphragm α
, B e The change in resistance of W is expressed as
πt σt (Gauge person)・・・・・・(1) Peni −
πt 6t + πr σt (Gauge B)...
...(2) (σr is the stress in the radial direction, σt is the pressure in the tangential direction (see port 1), πt, πr are 8i
It is expressed as the piezoresistance coefficient of the semiconductor. In the case of single crystal Si, normally πr >> πt, so Equation (1) and Equation (21 are entered) φπ7σ7 ...... (3) 10, medium π7σt ...... (4) The change is proportional to the stress.

しかし式(3)、式(4)は近似値であって午、σtの
大となるダイヤフラム中心付近では式(3]、式(4]
の近似がずれる之め、非線形効果が生、じる。この九め
σ7〉〉σtとなる円周近傍に配置する方法が有利であ
るが、前述し念ように、ゲージA。
However, equations (3) and (4) are approximate values, and near the center of the diaphragm where σt is large, equations (3) and (4)
Since the approximation of is deviated, nonlinear effects occur. It is advantageous to place the gauge A near the circumference where σ7〉σt.

A′間が離れるため、依然として抵抗値のノ(ラツキは
解消されない。
Since the distance between A' and A' is far apart, the fluctuation in resistance value is still not resolved.

この発明は上記不具合を改善する目的でなされたもので
ある。
This invention was made for the purpose of improving the above-mentioned problems.

問題点を解決する之めの手段及び作用 ダイヤプラム上に、該ダイヤフラムの中心Oを中心とす
る円の接線方向及び半径方向に互に近接させてアモルフ
ァス半導体よりなるゲージ素子を互に近接するよう配置
して、各ゲージ素子相互間の抵抗のバラツキと非線形性
を小さくした半導体圧力センサ。
Means for Solving the Problem and Working Diaphragm Gauge elements made of amorphous semiconductors are placed close to each other on the diaphragm in the tangential direction and radial direction of a circle centered on the center O of the diaphragm. A semiconductor pressure sensor that reduces resistance variation and nonlinearity between each gauge element.

実施例 この発明を第1図に示す一実施例を参照して詳述する。Example This invention will be described in detail with reference to an embodiment shown in FIG.

図において1は、ガラスやステンレス薄板、有機フィル
ムなどにニジ形成されたダイヤプラムで、このダイヤフ
ラム1の中心0を中心とする半径rαの円上に、該円の
接線方向にアモルファス半導体よりなる一対のゲージ2
゜2′が、そして上記中心0を中心とする半径rbの円
上に、該円の半径方向にアモルファス半導体よシなるゲ
ージ素子3,3′が適当な間隔を存して形成されている
In the figure, 1 is a diaphragm formed on glass, a thin stainless steel plate, an organic film, etc. On a circle of radius rα centered on the center 0 of this diaphragm 1, a pair of amorphous semiconductors are arranged in the tangential direction of the circle. gauge 2
Gauge elements 3 and 3' made of amorphous semiconductor are formed at appropriate intervals in the radial direction of the circle on a circle having radius rb centered on the center 0.

なおアモルファス半導体は基板1の種類を問わずに蒸着
が可能なことから、ガラスやステンレス、有機フィルム
などに簡単に蒸着でき−ると共に、基板I上の配置とし
ても結晶軸の制限を受けないので、上記実施例の配置も
容易である。
Since amorphous semiconductors can be deposited regardless of the type of substrate 1, they can be easily deposited on glass, stainless steel, organic films, etc., and their arrangement on substrate I is not limited by crystal axes. , the arrangement of the above embodiments is also easy.

ま之アモルファス半導体の場合単結晶半導体と同様ピエ
ゾ抵抗効果があり、これは電流方向と応力方向のみによ
り決まる。従ってアモルファス半導体をゲージ素子2 
、2’、 3 、3’に用い、かつ上記実施例の配置に
することにより、この発明の目的を達成することができ
る。
In the case of amorphous semiconductors, there is a piezoresistance effect similar to single crystal semiconductors, and this is determined only by the direction of current and stress. Therefore, the amorphous semiconductor is used as the gauge element 2.
, 2', 3, and 3', and by using the arrangement as in the above embodiment, the object of the present invention can be achieved.

次にその理由を説明すると、使用中ダイヤフラム1に加
わる圧力に対する半径方向の応力σr及び接線方向の応
力σtは次式で表わされる。
Next, the reason will be explained. The stress σr in the radial direction and the stress σt in the tangential direction with respect to the pressure applied to the diaphragm 1 during use are expressed by the following equations.

σr−”/6)2(t l +U)α2− (3+U)
r2)(It−”/B12C(1+U) a’ −+1
+3σ)r2〕P:印加圧力、 A:ダイヤプラム厚み
■:ボアソン比 α:   〃  半径従って となり、得られ九半径rb # rαの円上にゲージ素
子2.2′,3,3′を配置することによυ、ダイヤフ
ラム1に加わる圧力の測定が可能になると共に、各ゲー
ジ素子2.2’、3.3’は互にきわめて近接して配置
されているので、ゲージ素子2.2’、3.3’相互間
の抵抗値のバラツキや非線形性を小さくすることができ
るようになる。
σr−”/6)2(t l +U) α2− (3+U)
r2)(It-"/B12C(1+U) a'-+1
+3σ) r2] P: applied pressure, A: diaphragm thickness ■: Boisson's ratio α: 〃 radius Therefore, the gauge elements 2.2', 3, and 3' are placed on the circle with nine radius rb # rα. In particular, υ makes it possible to measure the pressure exerted on the diaphragm 1, and since each gauge element 2.2', 3.3' is arranged very close to each other, the gauge elements 2.2', 3.3'3.3' It becomes possible to reduce variations in resistance values and non-linearity between them.

発明の効果 この発明は以上詳述し定ように、ダイヤフラム上に接線
方向及び半径方向にゲージ素子を近接させて配置し九こ
とから、各ゲージ素子相互間の抵抗値のバラツキや非線
形性を小さくすることができると共に、ゲージ素子の配
置を変えるだけでよいことから、安価に実施できる。ま
たアモルファス半導体をゲージ素子に用いることにニジ
基板に梅々の材質が利用でき、目的に合った圧力センサ
が容易に得られるようになる。
Effects of the Invention As described in detail above, this invention arranges gauge elements close to each other in the tangential and radial directions on the diaphragm, thereby reducing variations in resistance values and nonlinearity between each gauge element. In addition, since it is only necessary to change the arrangement of the gauge elements, it can be implemented at low cost. Furthermore, by using an amorphous semiconductor for the gauge element, a similar material can be used for the rainbow substrate, and a pressure sensor suitable for the purpose can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図げこの発明の一実施例を示す配置図、第2図ヒ)
、(ロ)及び第3図1() 、 を口)は従来の説明図
である。 1けダイヤフラム、2.2’、3.3’はゲージ素子。
Figure 1 is a layout diagram showing an embodiment of the invention; Figure 2 H)
, (b) and FIG. 1 diaphragm, 2.2' and 3.3' are gauge elements.

Claims (1)

【特許請求の範囲】[Claims] ダイヤフラム1上に、該ダイヤフラム1の中心Oを中心
とする円の接線方向及び半径方向に互に近接させてアモ
ルファス半導体よりなるゲージ素子2,2′,3,3′
を配置してなる半導体圧力センサ。
On the diaphragm 1, gauge elements 2, 2', 3, 3' made of amorphous semiconductor are arranged close to each other in the tangential direction and radial direction of a circle centered on the center O of the diaphragm 1.
A semiconductor pressure sensor made by arranging.
JP24899885A 1985-11-08 1985-11-08 Semiconductor pressure sensor Pending JPS62109370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24899885A JPS62109370A (en) 1985-11-08 1985-11-08 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24899885A JPS62109370A (en) 1985-11-08 1985-11-08 Semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPS62109370A true JPS62109370A (en) 1987-05-20

Family

ID=17186487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24899885A Pending JPS62109370A (en) 1985-11-08 1985-11-08 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPS62109370A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338122A (en) * 1993-05-26 1994-12-06 Yasuyoshi Ochiai Information card
US5928010A (en) * 1996-06-05 1999-07-27 Sumitomo Wiring Systems, Ltd. Locking apparatus for resin moulded product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338122A (en) * 1993-05-26 1994-12-06 Yasuyoshi Ochiai Information card
US5928010A (en) * 1996-06-05 1999-07-27 Sumitomo Wiring Systems, Ltd. Locking apparatus for resin moulded product

Similar Documents

Publication Publication Date Title
US5259248A (en) Integrated multisensor and static and differential pressure transmitter and plant system using the integrated multisensor
US20100192697A1 (en) Rotating body dynamic quantity measuring device and system
JPH0797010B2 (en) Semiconductor strain gage bridge circuit
CA1186163A (en) Semiconductor pressure transducer
US3641812A (en) Silicon diaphragm with integral bridge transducer
EP0321097A3 (en) Pressure sensors
JPS62109370A (en) Semiconductor pressure sensor
Wilner A diffused silicon pressure transducer with stress concentrated at transverse gages
JP3238001B2 (en) Composite sensor and composite transmitter using the same
JPS6351488B2 (en)
JPS5924552B2 (en) Silicon diaphragm strain gauge
JPS5451489A (en) Semiconductor pressure converter
JPH027573A (en) Semiconductor pressure sensor
JPS6141251Y2 (en)
JPH0419494B2 (en)
JPH06160221A (en) Wiring pattern of strain sensor
JPH04119672A (en) Semiconductor pressure sensor
JPS6238651B2 (en)
JPH03180732A (en) Sensor element for semiconductor pressure sensor
JPS5687372A (en) Semiconductor type measuring diaphragm
CA1189727A (en) Semiconductor pressure transducer
JPH0239474A (en) Semiconductor pressure sensor
JPH02168133A (en) Stress sensor for manufacture thereof
JPH04114478A (en) Semiconductor device
JPH0344079A (en) Composite sensor