JPS62109313A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPS62109313A
JPS62109313A JP25022585A JP25022585A JPS62109313A JP S62109313 A JPS62109313 A JP S62109313A JP 25022585 A JP25022585 A JP 25022585A JP 25022585 A JP25022585 A JP 25022585A JP S62109313 A JPS62109313 A JP S62109313A
Authority
JP
Japan
Prior art keywords
substrate
gas
raw material
reaction chamber
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25022585A
Other languages
Japanese (ja)
Inventor
Masaaki Jindou
正明 仁道
Toru Suzuki
徹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25022585A priority Critical patent/JPS62109313A/en
Publication of JPS62109313A publication Critical patent/JPS62109313A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a crystal having a uniform and abrupt boundary by placing a substrate horizontally on a substrate holder provided rotatably at a vertical shaft as a center, and supplying stock gas on the substrate from obliquely above. CONSTITUTION:A substrate 2 is horizontally placed in a substrate holder 1, stock gas or stock gas diluted by carrier gas is fed from a stock gas inlet 4 to a reaction chamber 3 at an angle inclined at 45-90 deg. from a normal to the substrate 2. A stock gas stream 5 passes in a laminar state on the substrate 2 similarly to a lateral type. Since the substrate 2 is made rotatable by rotating a vertical shaft 22 similarly to a vertical type, a crystal which has both excel lent uniformity and boundary sharpness is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原料ガスを反応室内に導入して基板上に結晶
をエピタキシャル成長する気相成長方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vapor phase growth method for epitaxially growing a crystal on a substrate by introducing a source gas into a reaction chamber.

〔従来の技術〕[Conventional technology]

気相成長法は量産性、均一性にすぐれた結晶成長法であ
るが、基板に導入される原料ガスの流れの方向によって
たて型と横型に分けられる。
The vapor phase growth method is a crystal growth method with excellent mass productivity and uniformity, but it can be divided into vertical and horizontal types depending on the flow direction of the raw material gas introduced into the substrate.

第3図は従来のたて型方式の気相成長方法を示す模式図
で、基板13を反応室14内に設けられた基板ホルダー
12上に載置し、原料ガス導入口15から原料ガスを基
板13に向は垂直下向きに導入する(図に原料ガス流1
6を示す)。また基板ホルタ゛−12が垂直な軸21を
中心として回転して基板13も回転させ、基板13の表
面上の結晶の均一性を確保している。
FIG. 3 is a schematic diagram showing a conventional vertical type vapor phase growth method, in which a substrate 13 is placed on a substrate holder 12 provided in a reaction chamber 14, and a source gas is introduced from a source gas inlet 15. The direction is vertically downward to the substrate 13 (the raw material gas flow 1 is shown in the figure).
6). Further, the substrate holder 12 rotates about a vertical axis 21, thereby also rotating the substrate 13 to ensure uniformity of the crystals on the surface of the substrate 13.

第4図は従来の横型方式の気相成長方法を示す模式図で
、基板17を反応室18内に設けられた基板ホルダー1
6上に斜めに載置し、原料ガス導入口19から原料ガス
を基板17に向き横向きに導入する(図に原料ガス流2
0を示す)。横型方式では基板17を傾斜させて、原料
ガスが層流の状態を保ったまま基板17上を通過するよ
うにできるため原料ガスの組成切り替えがスムーズに行
なわれ、基板17の表面に急峻な界面をもった結晶を得
ることができる。
FIG. 4 is a schematic diagram showing a conventional horizontal vapor phase growth method, in which a substrate 17 is placed on a substrate holder 1 provided in a reaction chamber 18.
6, and the raw material gas is introduced from the raw material gas inlet 19 sideways toward the substrate 17 (the raw material gas flow 2 is shown in the figure).
0). In the horizontal type, the substrate 17 can be tilted so that the source gas passes over the substrate 17 while maintaining a laminar flow state, so the composition of the source gas can be switched smoothly, and there is no steep interface on the surface of the substrate 17. It is possible to obtain crystals with .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の気相成長方法のうち第3図に示すたて型
方式では、原料ガスの流れが基板13及び基板ホルダー
12により乱され、原料ガス組成の切り替えがスムーズ
に行なえず急峻な界面を得ることが難しく、加熱された
基板13及び基板ホルダー12により対流の、影響をう
けやすいという欠点がある。一方、第4図に示す横型方
式では、基板17が基板ホルダー16からずり落ちない
ように基板17を回転させる回転機構の導入が難しく、
基板17を回転させることができないため結晶の均一性
を確保しにくいという欠点がある。
Among the conventional vapor phase growth methods described above, in the vertical type method shown in FIG. 3, the flow of the source gas is disturbed by the substrate 13 and the substrate holder 12, making it impossible to smoothly switch the source gas composition and causing a steep interface. It has the disadvantage that it is difficult to obtain and is easily affected by convection due to the heated substrate 13 and substrate holder 12. On the other hand, in the horizontal type shown in FIG. 4, it is difficult to introduce a rotation mechanism to rotate the substrate 17 so that the substrate 17 does not slip off the substrate holder 16.
Since the substrate 17 cannot be rotated, it is difficult to ensure uniformity of the crystal.

本発明の目的は、たて型方式、横型方式の双方の長所を
生かし、均一かつ急峻な界面をもつ結晶を得ることので
きる気相成長方法を提供することにある。
An object of the present invention is to provide a vapor phase growth method that makes use of the advantages of both the vertical method and the horizontal method to obtain crystals with uniform and steep interfaces.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の気相成長方法は、キャリアガスにより希釈され
た原料ガスを反応室内に導入して基板上に結晶をエピタ
キシャル成長する気相成長方法において、垂直な軸を中
心に回転可能で前記反応室内に設けられた基板ホルダー
上に水平に前記基板を載置し、原料ガスを垂直な方向か
ら45°〜90°傾いた方向で前記反応室内に導入する
ことを特徴とする。
The vapor phase growth method of the present invention is a vapor phase growth method in which a raw material gas diluted with a carrier gas is introduced into a reaction chamber to epitaxially grow a crystal on a substrate. The substrate is placed horizontally on a provided substrate holder, and the raw material gas is introduced into the reaction chamber in a direction inclined by 45° to 90° from the vertical direction.

本発明の気相成長方法は、キャリアガスにより希釈され
た原料ガスが前記キャリアガスよりも粘性が大きくかつ
結晶成長に関与しないバッファガスに囲まれて反応室内
に導入されるようにすることもできる。
In the vapor phase growth method of the present invention, the raw material gas diluted with a carrier gas may be introduced into the reaction chamber surrounded by a buffer gas that has a higher viscosity than the carrier gas and does not participate in crystal growth. .

〔実施例〕〔Example〕

以下、図示の実施例により本発明の気相成長方法を説明
する。
Hereinafter, the vapor phase growth method of the present invention will be explained with reference to illustrated examples.

第1図は本発明の気相成長方法の一実施例を示し、基板
ホルダー1は基板2を水平に載置し、反応室3に原料ガ
ス又はキャリアガスにより希釈された原料ガスが原料ガ
ス導入口4から基板2に対する法線から45°〜90°
かたむいた角度で導入される。原料ガス流5は横型方式
と同様に基板2上を層流の状態で通過する。また、基板
2はたて型方式と同様に基板ホルダー1を垂直な軸22
を回転させることにより回転可能なため、均一性と界面
急峻性の両方にすぐれた結晶が得られる。
FIG. 1 shows an embodiment of the vapor phase growth method of the present invention, in which a substrate 2 is placed horizontally on a substrate holder 1, and a raw material gas or a raw material gas diluted with a carrier gas is introduced into a reaction chamber 3. 45° to 90° from the normal line from the mouth 4 to the substrate 2
Introduced at an oblique angle. The raw material gas flow 5 passes over the substrate 2 in a laminar flow state as in the horizontal method. In addition, the substrate 2 is mounted on a vertical axis 22 with the substrate holder 1 in the same way as in the vertical type system.
Since it can be rotated by rotating, a crystal with excellent both uniformity and interface steepness can be obtained.

すなわち第1図に示す実施例では、基板ホルダー1が基
板2を水平に載置するため基板2を回転させる機構を導
入でき、結晶の均一性を確保することができる。さらに
原料ガスは垂直な方向から456〜90”傾いた方向か
ら導入されるため原料ガスが層流の状態で基板2の表面
を通過するため、ガス組成の切り替えが急峻にでき、急
峻な界面を有する結晶を得ることができる。
That is, in the embodiment shown in FIG. 1, since the substrate holder 1 places the substrate 2 horizontally, a mechanism for rotating the substrate 2 can be introduced, and the uniformity of the crystal can be ensured. Furthermore, since the raw material gas is introduced from a direction inclined from 456 to 90'' from the vertical direction, the raw material gas passes over the surface of the substrate 2 in a laminar flow state, which allows for a sharp change in gas composition and avoids sharp interfaces. It is possible to obtain crystals with

第2図は本発明の気相成長方法の他の実施例を示し、基
板ホルダー6、基板71反応室8.原料ガス導入口9は
第1図に示す基板ホルダー1.基板21反応室3.原料
ガス導入口4と同様であるが、原料ガスを希釈するキャ
リアガスよりも粘性が大きく、かつ結晶成長に関与しな
いガス(以下バッファガスと称する)を原料ガスをとり
かこむ形状で流すことが第1図に示す実施例と異なる。
FIG. 2 shows another embodiment of the vapor phase growth method of the present invention, which includes a substrate holder 6, a substrate 71, a reaction chamber 8. The raw material gas inlet 9 is connected to the substrate holder 1 shown in FIG. Substrate 21 reaction chamber 3. Although it is similar to the raw material gas inlet 4, the first step is to flow a gas that has a higher viscosity than the carrier gas that dilutes the raw material gas and does not participate in crystal growth (hereinafter referred to as buffer gas) in a shape that surrounds the raw material gas. This is different from the embodiment shown in FIG.

原料ガス導入口9を囲むように設けられたバ・ンファガ
ス導入口10から導入されたバッファガスはキャリアガ
スより粘性が大きいため、キャリアガス尼バッファガス
の混合がおこりに<<、原料ガス流11を整形して層流
の状態を保持させるはたらきがある(図にバッファガス
流23を示す)。
Since the buffer gas introduced from the buffer gas inlet 10 provided to surround the raw material gas inlet 9 has a higher viscosity than the carrier gas, mixing of the carrier gas and the buffer gas occurs. The buffer gas flow 23 has the function of shaping the gas flow and maintaining a laminar flow state (buffer gas flow 23 is shown in the figure).

このため、原料ガスの切り替えは第1図に示す実施例に
比べて、より円滑に行なわれ、急峻な界面をもった結晶
が得られる。
Therefore, the switching of source gases is performed more smoothly than in the embodiment shown in FIG. 1, and a crystal with a steep interface can be obtained.

すなわち第2図に示す実施例では、粘性の異なるキャリ
アガスとバッファガスは相互に混じりにくいため、バッ
ファガスにより原料ガスを整形して基板7に導くことが
できるため、原料ガスの散逸1回り込みがおさえられ、
層流の状態を保つたまま、原料ガスが基板7上を通過す
るようにすることができる。このため、ガス組成の切り
替えはより急峻になり、界面の急峻な結晶を再現性よく
得ることができる。
In other words, in the embodiment shown in FIG. 2, the carrier gas and buffer gas, which have different viscosities, are difficult to mix with each other, so the buffer gas can shape the raw material gas and guide it to the substrate 7. suppressed,
The source gas can be made to pass over the substrate 7 while maintaining a laminar flow state. Therefore, the gas composition changes more sharply, and crystals with steep interfaces can be obtained with good reproducibility.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の気相成長方法は、たて型方
式と横型方式の双方の長所を備え、均一かつ急峻な界面
をもつ結晶を得ることができる効果がある。特に本発明
はFET、レーザダイオード等のための結晶の形成にお
いて良好な界面が得られる効果がある。
As explained above, the vapor phase growth method of the present invention has the advantages of both the vertical method and the horizontal method, and has the effect of being able to obtain crystals with uniform and steep interfaces. In particular, the present invention has the effect of obtaining a good interface in the formation of crystals for FETs, laser diodes, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例の模式図および
他の実施例の模式図、第3図は従来のたて型方式の気相
成長方法を示す模式図、第4図は従来のよこ型方式の気
相成長方法を示す模式図である。 1.6,12.16・・・基板ホルダー、2,7゜13
.17・・・基板、3,8,14.18・・・反応室、
4.9,15.19・・・原料ガス導入口、5,11゜
16.20・・・原料ガス流、10・・・バッファガス
導入口。 黛2父
1 and 2 are schematic diagrams of one embodiment of the present invention and another embodiment, FIG. 3 is a schematic diagram showing a conventional vertical type vapor phase growth method, and FIG. 4 is a schematic diagram of a conventional vertical type vapor phase growth method. FIG. 1 is a schematic diagram showing a conventional horizontal type vapor phase growth method. 1.6,12.16...Substrate holder, 2.7゜13
.. 17...Substrate, 3,8,14.18...Reaction chamber,
4.9, 15.19... Raw material gas inlet, 5, 11° 16.20... Raw material gas flow, 10... Buffer gas inlet. Mayuzumi 2 Father

Claims (2)

【特許請求の範囲】[Claims] (1)キャリアガスにより希釈された原料ガスを反応室
内に導入して基板上に結晶をエピタキシャル成長する気
相成長方法において、垂直な軸を中心に回転可能で前記
反応室内に設けられた基板ホルダー上に水平に前記基板
を載置し、原料ガスを垂直な方向から45°〜90°傾
いた方向で前記反応室内に導入することを特徴とする気
相成長方法。
(1) In a vapor phase growth method in which a raw material gas diluted with a carrier gas is introduced into a reaction chamber to epitaxially grow a crystal on a substrate, a substrate holder that is rotatable around a vertical axis and provided in the reaction chamber is used. A vapor phase growth method characterized in that the substrate is placed horizontally on the substrate and the raw material gas is introduced into the reaction chamber in a direction inclined by 45° to 90° from the vertical direction.
(2)キャリアガスにより希釈された原料ガスが前記キ
ャリアガスよりも粘性が大きくかつ結晶成長に関与しな
いバッファガスに囲まれて反応室内に導入される特許請
求の範囲第1項記載の気相成長方法。
(2) Vapor phase growth according to claim 1, wherein the raw material gas diluted with a carrier gas is introduced into the reaction chamber surrounded by a buffer gas that has a higher viscosity than the carrier gas and does not participate in crystal growth. Method.
JP25022585A 1985-11-07 1985-11-07 Vapor growth method Pending JPS62109313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25022585A JPS62109313A (en) 1985-11-07 1985-11-07 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25022585A JPS62109313A (en) 1985-11-07 1985-11-07 Vapor growth method

Publications (1)

Publication Number Publication Date
JPS62109313A true JPS62109313A (en) 1987-05-20

Family

ID=17204698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25022585A Pending JPS62109313A (en) 1985-11-07 1985-11-07 Vapor growth method

Country Status (1)

Country Link
JP (1) JPS62109313A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01199424A (en) * 1987-10-08 1989-08-10 Tadahiro Omi Thin film depositing process and device thereof
JPH056835U (en) * 1991-07-05 1993-01-29 株式会社芝浦製作所 Gas replacement device
US5940557A (en) * 1996-07-30 1999-08-17 Hewlett-Packard Company Optical fibre microlens and optical radiation source employing the same
JP2009021429A (en) * 2007-07-12 2009-01-29 Ulvac Japan Ltd Surface processing apparatus, and semiconductor manufacturing apparatus equipped with the surface processing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01199424A (en) * 1987-10-08 1989-08-10 Tadahiro Omi Thin film depositing process and device thereof
JPH056835U (en) * 1991-07-05 1993-01-29 株式会社芝浦製作所 Gas replacement device
US5940557A (en) * 1996-07-30 1999-08-17 Hewlett-Packard Company Optical fibre microlens and optical radiation source employing the same
JP2009021429A (en) * 2007-07-12 2009-01-29 Ulvac Japan Ltd Surface processing apparatus, and semiconductor manufacturing apparatus equipped with the surface processing apparatus

Similar Documents

Publication Publication Date Title
JPS62109313A (en) Vapor growth method
JPH1032169A (en) Method and device for vapor growth
JPS63134663A (en) Formation of film on carbon base material surface
JPS62235728A (en) Vapor phase epitaxial growth device
JPS6291496A (en) Reaction tube for vapor growth device
JPH06349748A (en) Vapor growth device for semiconductor
JPH08250430A (en) Manufacture of single-crystal thin film
JPH0544178B2 (en)
JPH01256117A (en) Vapor phase reaction equipment
JPS61186279A (en) Production of single crystal for large-sized rectangular wafer
JP2002261023A (en) Method of manufacturing epitaxial wafer
JPH0195517A (en) Apparatus and method for manufacturing compound semiconductor
JPS61232298A (en) Production of silicon single crystal
JPS61280613A (en) Liquid epitaxial growing process
JP3393176B2 (en) Vapor phase growth equipment
JPH0431392A (en) Device for growing molecular beam crystal
JPS62105418A (en) Vapor growth equipment
JPH09129553A (en) Vapor epitaxial growth method and device
JPH09142983A (en) Horizontal vapor phase epitaxy method and apparatus therefor
Jiang et al. Corundum Single Crystal Grown From the Melt Contained in Molybdenum Crucible With a Tungsten Heater
JPS58197722A (en) Vapor growth of semiconductor
JPH1053500A (en) Film-forming apparatus and film-forming method
JPH02146725A (en) Organic metal vapor growth device
JPH085687B2 (en) Method for producing porous quartz glass base material
JPS6376418A (en) Vapor growth method