JPS62108591A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPS62108591A
JPS62108591A JP24701985A JP24701985A JPS62108591A JP S62108591 A JPS62108591 A JP S62108591A JP 24701985 A JP24701985 A JP 24701985A JP 24701985 A JP24701985 A JP 24701985A JP S62108591 A JPS62108591 A JP S62108591A
Authority
JP
Japan
Prior art keywords
layer
gaas
semiconductor
crystal
gaalas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24701985A
Other languages
Japanese (ja)
Inventor
Tadashi Fukuzawa
董 福沢
Yuichi Ono
小野 佑一
Shinichi Nakatsuka
慎一 中塚
Takashi Kajimura
梶村 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24701985A priority Critical patent/JPS62108591A/en
Priority to US06/924,774 priority patent/US4783425A/en
Publication of JPS62108591A publication Critical patent/JPS62108591A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To grow a crystal on a semiconductor with an active surface twice or more by attaching a semiconductor thin-film with a stable surface onto the surface of a semiconductor with an unstable surface, using the thin-film as a protective film and substantially annihilating the protective film by utilizing the mutual diffusion of constituent elements by an impurity. CONSTITUTION:An N-GaAlAs clad layer 2, a GaAs/GaAlAs superlattice laser active layer 3, a P-GaAlAs clad layer 4, an undoped GaAs protective layer 5, an undoped GaAlAs layer 6 and an absorption layer 7 are grown on a substrate 1 in succession. A crystal is taken out of a growth device, and dry-etched selectively by a CO2F2 group gas, GaAs 7 is removed in a striped manner, GaAlAs 6 in a region 10 is removed by a mixed liquid of hydrofluoric acid and ammonium peroxide, and the whole is introduced into a growth chamber and second growth is conducted. A P-GaAlAs clad layer 8 using Zn as a dopant and a cap layer are grown, and heat treatment is performed under As pressure. The thin-film 5 corresponding to the region 10 is eliminated by a change into an impurity-induced mixed crystal of Zn.

Description

【発明の詳細な説明】 〔発明の利用分野〕 半導体レーザ内に横モード閉じ込め等の構造を有する場
合に、容易に所望の構造を得るための結晶成長技術と、
プロセス技術に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] A crystal growth technique for easily obtaining a desired structure when a semiconductor laser has a structure such as transverse mode confinement;
Regarding process technology.

〔発明の背景〕[Background of the invention]

GaA Q As系可視半導体レーザの横モード制御を
簡単に行う方法として、p型GaA Q Asクラッド
層上にnfiGaAs層をつけ、レーザ活性領域のみ、
GaAsを除去し、p型GaA Q Asクラッド層を
再成長する構造が知られている。
As a method for easily controlling the transverse mode of a GaA Q As-based visible semiconductor laser, an nfiGaAs layer is attached on the p-type GaA Q As cladding layer, and only the laser active region is
A structure is known in which GaAs is removed and a p-type GaA Q As cladding layer is regrown.

しかしながら、この方法は、表面が活性なGaAΩAs
を空気中にさらすため、表面が酸化し、再成長時に界面
に欠陥をとりこみやすいという欠点がある。
However, this method does not work well with surface-active GaAΩAs.
Because it is exposed to air, the surface oxidizes and defects are likely to be introduced at the interface during regrowth.

これに対し、再成長を始める前の結晶表面が、G a 
A sであれば、酸化膜が形成されにくく、良好な界面
が得られることから、虫上達は、応用物理学会1985
年春季講演会予稿集第131頁講演番号30a−ZB−
7において、p −GaA 41 As上に、厚さ0.
1〜0.2μmのG a A sを残した状態で、分子
線エピタキシ(MBE)装置内に結晶を入れ。
In contrast, the crystal surface before starting regrowth is Ga
With A s, it is difficult to form an oxide film and a good interface can be obtained.
Spring Lecture Proceedings, page 131 Lecture number 30a-ZB-
7, on p-GaA 41 As with a thickness of 0.
The crystal was placed in a molecular beam epitaxy (MBE) apparatus with 1 to 0.2 μm of Ga As remaining.

As分子線をあてながら、加熱することで、G a A
 s薄膜を熱的にエツチングし、高真空中でクラッドの
p −GaA Q Asを表面に出し、p−GaA Q
 Asをその上に再成長することを報告している。しか
しながら、この方法は、超高真空である必要があり、大
量生産に適したOMVPE(有機金属気相成長法)では
、利用できない。
By heating while applying As molecular beam, G a A
The p-GaA Q As cladding is exposed to the surface by thermally etching the s thin film in a high vacuum.
It has been reported that As re-grows thereon. However, this method requires ultra-high vacuum and cannot be used with OMVPE (organic metal vapor phase epitaxy), which is suitable for mass production.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、半導体レーザに横モード閉じこめ機能
を与えるのに必要な内部構造を作るために、2回以上の
結晶成長を表面が活性な半導体上にも可能にする方法を
OMVPE法で可能にする手段を与える。
The purpose of the present invention is to develop a method using the OMVPE method that allows crystal growth to be performed more than once on a semiconductor with an active surface in order to create the internal structure necessary to provide a transverse mode confinement function to a semiconductor laser. give you the means to do so.

〔発明の概要〕[Summary of the invention]

本発明は、表面が不安定な半導体表面上に1表面が安定
な半導体薄膜をつけ保護膜として用いた後、不純物によ
る構成元素の相互拡散を利用して保護膜を実質的に消滅
させる方法を発明し、実証した。
The present invention provides a method in which a semiconductor thin film with a stable surface is attached on a semiconductor surface with an unstable surface and used as a protective film, and then the protective film is substantially eliminated by utilizing interdiffusion of constituent elements caused by impurities. Invented and demonstrated.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

nGaAs、基板1上にn −G a 0.4A A 
o、aAsクラッド層2、G a A s / G a
 o、sA n o、aA s超格子レーザ活性層3 
+ p−G ao、aA Mo、sA sクラッド層4
.アンドープG a A s保護層5厚さ100人)、
アンドープG a o、aA Q 0.7A s層6(
厚さ0.2pm)、n−GaAs層吸収層7をOMVP
E!法で順次成長する。このとき、層4のp型不純物は
、Mgを用いた。
nGaAs, n-Ga 0.4A A on substrate 1
o, aAs cladding layer 2, Ga As / Ga
o, sA no, aA s superlattice laser active layer 3
+ p-G ao, aA Mo, sAs cladding layer 4
.. Undoped G a As protective layer 5 thickness 100 people),
Undoped G ao, aA Q 0.7A s layer 6 (
thickness 0.2 pm), n-GaAs layer absorption layer 7 is OMVP
E! It grows sequentially by law. At this time, Mg was used as the p-type impurity of layer 4.

成長装置から結晶を取り出し1通常のフォトリングラフ
ィ法によりフォトレジストのマスクを作り、C0zFz
系ガスを用いてGaAs 7の選択的ドライエツチング
を行い、レーザの活性層領域となる部分の上部10にあ
るG a A sを幅3μmのストライプ状に除去する
。   ゛ 次いで、沸酸、過酸化アンモン混液(1: 6)を用い
て領域10のG a o、sA Q 0.7A s 6
を除去する。
Take out the crystal from the growth apparatus, make a photoresist mask using the usual photolithography method, and add C0zFz.
Selective dry etching of the GaAs 7 is performed using a system gas to remove the GaAs in the upper part 10 of the portion that will become the active layer region of the laser in the form of a stripe with a width of 3 μm.゛Next, using a mixed solution of hydrofluoric acid and ammonium peroxide (1:6), Ga o, sA Q 0.7A s 6 in area 10
remove.

ただちにOMVPE成長室に導入し、2回目の成長を行
う。
Immediately introduce it into the OMVPE growth chamber and perform the second growth.

Znをドーパントとしたp −G a o、a A Q
 o、e A sクラッド層8.p−GaAsキャップ
層を成長する。この段階での結晶の断面を第2図に示す
p -G ao, a A Q with Zn as a dopant
o, e As cladding layer 8. Grow a p-GaAs cap layer. A cross section of the crystal at this stage is shown in FIG.

As圧下で850℃lhrの熱処理を行ったあとのレー
ザの断面を第3図に示す、領域10に相当するG a 
A s薄膜5が、Znの不純物誘起混晶化により消滅し
ている。
FIG. 3 shows the cross section of the laser after heat treatment at 850° C.lhr under As pressure. Ga corresponding to region 10
The As thin film 5 has disappeared due to impurity-induced mixed crystal formation of Zn.

以下通常の半導体レーザの製造を用いて、p側電柱12
及びn側電極13を形成後、襞間2粗立をおこなって半
導体レーザを作製した。得られた半導体レーザの発振し
きい電流値は、15mA。
Below, using normal semiconductor laser manufacturing, the p-side utility pole 12 is
After forming the n-side electrode 13, two rough edges were formed between the folds to produce a semiconductor laser. The oscillation threshold current value of the obtained semiconductor laser was 15 mA.

出力は150mWであった。10枚成長した結晶におい
てしきい値のウェーハー間のバラつきは、±2%で、極
めて再現性の良い結晶の再成法であることが示された。
The output was 150mW. In the 10 crystals grown, the variation in threshold value between wafers was ±2%, indicating that this method is a crystal regeneration method with extremely good reproducibility.

〔発明の効果〕〔Effect of the invention〕

本発明は、 OMVPEという大量生産に適した結晶成
長法において、GaA Q As上にGaAΩAsを再
現性良く再成長する方法を提供した。この方法により、
結晶成長の歩留りを3倍にすることが可能になり、検査
過程の簡略化を含め、大幅のコストダウンができる効果
がある。
The present invention provides a method for regrowing GaAΩAs on GaAQAs with good reproducibility using OMVPE, a crystal growth method suitable for mass production. With this method,
This makes it possible to triple the yield of crystal growth, and has the effect of significantly reducing costs, including simplifying the inspection process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は、本発明の方法により成長した結晶の
断面図である。 l −−−n−G a A s基板、 2−= n −
GaA Q As層、3・・・レーザ活性層、4・・・
p −G a AΩAs、5・・・アンドープG a 
A s、6・・・アンドープGa1lAs 、7−−−
 n−GaAs、8− p −GaA Q As、 9
− p −GaAs、10・・・エツチングで層を除去
する領域、11・・・G a A s保護膜が不純物誘
起混晶化により消滅した領域、12・・・p側電極、1
3・・・n側電極。 第 2 口
1 to 3 are cross-sectional views of crystals grown by the method of the present invention. l---n-Ga As substrate, 2-=n-
GaA Q As layer, 3... laser active layer, 4...
p-G a AΩAs, 5... undoped Ga
As, 6... Undoped Ga1lAs, 7---
n-GaAs, 8-p-GaA Q As, 9
-p-GaAs, 10...A region where the layer is removed by etching, 11...A region where the GaAs protective film has disappeared due to impurity-induced mixed crystal formation, 12...p-side electrode, 1
3...n-side electrode. 2nd mouth

Claims (1)

【特許請求の範囲】 1、表面が不安定な半導体(1)上に、表面が安定なヘ
テロ半導体薄膜構造(2)を成長後、成長室外にて所定
の処理を加えた半導体結晶上に、前記(2)よりも、エ
ネルギーバンドギャップが大きな半導体結晶(3)を成
長し、あらかじめ前記(3)にドーピングした不純物、
もしくは、後から、拡散あるいは、イオン打込等により
加えた不純物により、前記(2)と前記(3)又は前記
(1)、前記(2)、前記(3)中の構成元素の空間的
な置換、交換により混晶化することで、前記(2)のバ
ンドギャップを大きくすることを特徴とする半導体レー
ザの製造方法。 2、半導体レーザのGa_1_−_xAl_xAsクラ
ッド層(0)等の表面活性で酸化されやすい材料上に、
結晶の再成長を行う際に、GaAs薄膜(好ましくは、
その薄膜が50〜200Åである)層(1)Ga_1_
−_xAl_xAs(0.1≦x≦1、好ましくは0.
3≦x)層(2)、GaAs層(3)を成長した後、結
晶成長を停止し、前記層(3)と前記層(2)をGaA
sの選択エッチングにより、前記層(3)のみを除去し
た後、GaAlAsの選択エッチングにより、前記層(
2)のみ除去し清浄なGaAs表面を出した後、MBE
法又は、MOCVD法により、不純物をドーピングした
Ga_1_−_yAl_yAs(0.1≦y≦1)層(
4)が前記GaAs層(1)に接して成長されており、
成長時又は、成長後の加熱処理により、前記層(0)、
前記層(1)、前記層(4)中のGaとAlが、不純物
誘起混晶化を生じ、前記層(1)のエネルギー・バンド
ギャップが増加し、レーザ光に対し、実質的に吸収を生
じなくなるようにすることを特徴とする半導体レーザの
製造方法。
[Claims] 1. A hetero semiconductor thin film structure (2) with a stable surface is grown on a semiconductor (1) with an unstable surface, and then a semiconductor crystal is subjected to a predetermined treatment outside the growth chamber, Growing a semiconductor crystal (3) with a larger energy band gap than in (2) above, doping impurities into (3) in advance,
Alternatively, impurities added later by diffusion, ion implantation, etc. may cause spatial changes in the constituent elements in (2) and (3), or (1), (2), and (3). A method for manufacturing a semiconductor laser, characterized in that the bandgap described in (2) above is increased by forming a mixed crystal by substitution or exchange. 2. On a surface active and easily oxidized material such as the Ga_1_-_xAl_xAs cladding layer (0) of a semiconductor laser,
When performing crystal regrowth, a GaAs thin film (preferably,
(1) Ga_1_ whose thin film is 50-200 Å
−_xAl_xAs(0.1≦x≦1, preferably 0.
3≦x) After growing the layer (2) and the GaAs layer (3), the crystal growth is stopped and the layer (3) and the layer (2) are replaced with GaAs.
After removing only the layer (3) by selective etching of GaAlAs, the layer (3) is removed by selective etching of GaAlAs.
After removing only 2) to expose a clean GaAs surface, MBE
Ga_1_-_yAl_yAs (0.1≦y≦1) layer (0.1≦y≦1) doped with impurities by method or MOCVD method.
4) is grown in contact with the GaAs layer (1),
During growth or by heat treatment after growth, the layer (0),
Ga and Al in the layer (1) and the layer (4) undergo impurity-induced mixed crystallization, and the energy bandgap of the layer (1) increases, making it substantially unable to absorb laser light. A method of manufacturing a semiconductor laser, characterized in that:
JP24701985A 1985-11-06 1985-11-06 Manufacture of semiconductor laser Pending JPS62108591A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24701985A JPS62108591A (en) 1985-11-06 1985-11-06 Manufacture of semiconductor laser
US06/924,774 US4783425A (en) 1985-11-06 1986-10-30 Fabrication process of semiconductor lasers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24701985A JPS62108591A (en) 1985-11-06 1985-11-06 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPS62108591A true JPS62108591A (en) 1987-05-19

Family

ID=17157189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24701985A Pending JPS62108591A (en) 1985-11-06 1985-11-06 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS62108591A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125686A (en) * 1988-11-04 1990-05-14 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH04133383A (en) * 1990-09-25 1992-05-07 Mitsubishi Electric Corp Semiconductor laser and manufacture thereof
EP1033796A2 (en) * 1999-03-03 2000-09-06 Matsushita Electronics Corporation Semiconductor laser and a manufacturing method for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125686A (en) * 1988-11-04 1990-05-14 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH04133383A (en) * 1990-09-25 1992-05-07 Mitsubishi Electric Corp Semiconductor laser and manufacture thereof
EP1033796A2 (en) * 1999-03-03 2000-09-06 Matsushita Electronics Corporation Semiconductor laser and a manufacturing method for the same
EP1033796A3 (en) * 1999-03-03 2002-05-02 Matsushita Electric Industrial Co., Ltd. Semiconductor laser and a manufacturing method for the same
US6822989B1 (en) 1999-03-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Semiconductor laser and a manufacturing method for the same

Similar Documents

Publication Publication Date Title
JP3734849B2 (en) Manufacturing method of semiconductor laser device
JP2555282B2 (en) Semiconductor laser device and method of manufacturing the same
JP2647076B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6381884A (en) Semiconductor laser device and manufacture of the same
JPS62108591A (en) Manufacture of semiconductor laser
JPH04144185A (en) Semiconductor laser
JP2525788B2 (en) Method for manufacturing semiconductor laser device
JP2564813B2 (en) A (1) GaInP semiconductor light emitting device
JP2559373B2 (en) Method for manufacturing semiconductor laser device
JPH01304793A (en) Manufacture of semiconductor laser device
JP2642403B2 (en) Manufacturing method of semiconductor laser
JP3689733B2 (en) Manufacturing method of semiconductor device
JP3143105B2 (en) Method for manufacturing semiconductor laser device
JPH0282678A (en) Manufacture of semiconductor light emitting device
JP2685800B2 (en) Semiconductor laser device
JPS5850789A (en) Semiconductor laser device and manufacture thereof
JPH01217990A (en) Semiconductor laser device and manufacture thereof
JPH02246180A (en) Manufacture of semiconductor laser
JPH02240988A (en) Semiconductor laser
JPS63281487A (en) Semiconductor laser
JPH05291680A (en) Semiconductor laser and manufacture thereof
JPH04206587A (en) Semiconductor laser and manufacture thereof
JPH0371796B2 (en)
JPS61284985A (en) Manufacture of semiconductor laser device
JPH01166592A (en) Semiconductor laser element