JPH02246180A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH02246180A
JPH02246180A JP6494889A JP6494889A JPH02246180A JP H02246180 A JPH02246180 A JP H02246180A JP 6494889 A JP6494889 A JP 6494889A JP 6494889 A JP6494889 A JP 6494889A JP H02246180 A JPH02246180 A JP H02246180A
Authority
JP
Japan
Prior art keywords
layer
inp
ingaasp
mesa
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6494889A
Other languages
Japanese (ja)
Inventor
Toshihiro Kusuki
楠木 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6494889A priority Critical patent/JPH02246180A/en
Publication of JPH02246180A publication Critical patent/JPH02246180A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To suppress a mass transport phenomenon and to avoid that unpreferable n-InP is formed on side faces of an InP upper-side clad layer by a method wherein, when a mesa-type structure body is formed, a composition ratio of Ga or As in an InGaAsP cap layer is set to a composition ratio or lower of Ga or As in an InGaAsP active layer in such a way that the upper-end part of the InP upper-side clad layer has an angle of 90 deg. or higher. CONSTITUTION:When an angle theta at the upper-end part of an InP upper-side clad layer 24 is set to 90 deg. or higher at a mesa etching operation, it is possible to sharply suppress a reduction in a mass transport which has been caused immediately before a liquid epitaxial growth operation for a filling operation, and n-InP is hardly formed on side faces of the clad layer. The angle theta at the upper-end part can be set to 90 deg. or higher when an etch rate of InGaAsP layer situated at the upper part and the lower part of the clad layer 24 is controlled; it is enough to set an etch rate of an InGaAsP cap layer 25 at the upper part is made faster than or equal to an etch rate of an InGaAsP active layer 23 at the lower part.

Description

【発明の詳細な説明】 〔概 要〕 化合物半導体レーザ、より詳しくは、埋め込み型半導体
レーザの製造方法に関し、 マストランスポート現象を抑制して好ましくないn−r
nPがInP上側クラッド層側面に形成されるのを回避
して、特性向上を図った半導体レーザの製造方法を提供
することを目的とし、 InP下側クラッド層と、Int−a6a@^5bPt
−b活性層と、InP上側クラッド層と、In 1−c
GacAsdP I−1キャップ層とを少なくとも順次
形成した多層構造体にし、キャップ層の上にマスク層を
形成し、多層構造体をHerと、H802と、H2Oと
の混合液によってメサエッチングしてメサ型構造体にし
、そして、該メサ型構造体をInP層で埋め込む埋め込
み型半導体レーザの製造方法に右いて、メサ型構造体に
する際にInP上側クラッド層の上端部が9.o。
[Detailed Description of the Invention] [Summary] Regarding a method for manufacturing a compound semiconductor laser, more specifically, a buried semiconductor laser, the mass transport phenomenon is suppressed and undesirable n-r
The purpose of the present invention is to provide a method for manufacturing a semiconductor laser with improved characteristics by avoiding the formation of nP on the side surface of the InP upper cladding layer.
-b active layer, InP upper cladding layer, In 1-c
A multilayer structure is formed in which a GacAsdP I-1 cap layer is formed at least sequentially, a mask layer is formed on the cap layer, and the multilayer structure is mesa-etched using a mixed solution of Her, H802, and H2O to form a mesa shape. According to a method of manufacturing a buried semiconductor laser in which the mesa-type structure is formed into a structure and the mesa-type structure is embedded with an InP layer, the upper end of the InP upper cladding layer is 9. o.

以上の角度を有するように、InGaAsPキャップ層
のGa又はAsの組成比(c又はd値)をInGaAs
P活性層のGa又はAsの組成比(a又はb値)以下に
するように構成する。
The Ga or As composition ratio (c or d value) of the InGaAsP cap layer is adjusted so that the InGaAsP cap layer has the above angle.
The composition ratio of Ga or As (a or b value) of the P active layer is set to be equal to or lower than that of the P active layer.

〔産業上の利用分野〕[Industrial application field]

本発明は、化合物半導体レーザ、より詳しくは、埋め込
み型半導体レーザの製造方法に関する。
The present invention relates to a compound semiconductor laser, and more particularly, to a method for manufacturing a buried semiconductor laser.

〔従来の技術〕[Conventional technology]

第3E図に示す従来のInP /InGaAsP系半導
体レーザを製造するには、まず、第3A図に示すように
n−InP基板1上に連続液相エピタキシャル成長法に
よってn−InP下側クラツド層2、InGaAsP活
性層(Eg =0.8eV)  3、p−InP上側ク
ラツド層4およびG1−InGaAsPキャップ層(E
g =1.Q3eV)5を少なくとも順次形成し多層構
造にす・る。そして、キャップ層5の上に5i02など
のマスク材を全面に形成し、選択エツチングによってス
トライブ状のマスク層6にする。
To manufacture the conventional InP/InGaAsP semiconductor laser shown in FIG. 3E, first, as shown in FIG. 3A, an n-InP lower cladding layer 2 is formed on an n-InP substrate 1 by continuous liquid phase epitaxial growth. InGaAsP active layer (Eg = 0.8 eV) 3, p-InP upper cladding layer 4 and G1-InGaAsP cap layer (E
g=1. Q3eV)5 is formed at least sequentially to form a multilayer structure. Then, a mask material such as 5i02 is formed on the entire surface of the cap layer 5, and a striped mask layer 6 is formed by selective etching.

第3B図に示すように、Her と、H8口、と、8.
0との混合液(エツチング液)によって多層構造体をエ
ツチングしてメサ型構造にする。
As shown in FIG. 3B, Her, H8 mouth, and 8.
The multilayer structure is etched into a mesa-type structure using a mixed solution (etching solution) with 0 and 0.

5in2マスク層6の庇部分をエツチング除去して、第
3D図に示すように、キャップ層5の上に依然としてマ
スク層として残す。
The eaves portion of the 5in2 mask layer 6 is etched away, leaving it still as a mask layer on the cap layer 5, as shown in FIG. 3D.

次に、p−InP層10右よびn−InP層11 (第
3D図)を液相エピタキシャル成長法によって形成して
埋め込みを行なうわけであるが、該エビ成長前にメサ型
構造体をInP板とともに昇温して所定高温状態にする
必要がある。このInP板によってそのP(リン)成分
が解離してリン雰囲気にしであるが、それでも上側クラ
ッド層4右よびキャップ層5の上端部コーナからP成分
が解離してしまう。さらにこれら上端部コーナのIn成
分はマイグレーションし、第3C図での破線で示すよう
にInP 7の再成長が生じ、生じたInP 7はn型
になっている。このような現象がマストランスポートと
呼ばれており、上側クラッド層4の側面上にn−InP
層7が形成されてしまう。このときに、上側クラッド層
4の上端部はそのコーナ角度θが90’以下であること
がわかった。
Next, the p-InP layer 10 and the n-InP layer 11 (Fig. 3D) are formed by liquid phase epitaxial growth and buried, but before the growth, the mesa structure is formed together with the InP plate. It is necessary to raise the temperature to a predetermined high temperature state. Although the P (phosphorus) component is dissociated by this InP plate into a phosphorus atmosphere, the P component is still dissociated from the right side of the upper cladding layer 4 and the upper end corner of the cap layer 5. Furthermore, the In component at the upper end corners migrates, and as shown by the broken line in FIG. 3C, InP 7 re-grows, and the resulting InP 7 becomes n-type. This phenomenon is called mass transport, and n-InP is deposited on the side surface of the upper cladding layer 4.
Layer 7 is formed. At this time, it was found that the corner angle θ of the upper end portion of the upper cladding layer 4 was 90′ or less.

それから、第3D図に示すように、p−InP層10お
よびn−InP層1102層埋め込みを行なう。
Then, as shown in FIG. 3D, the p-InP layer 10 and the n-InP layer 1102 are buried.

次に、Si口、マスク層6をエツチング除去し、さらに
、キャップ層5をエツチング除去する。そして、第3E
図に示すように、p−InP層12を液相エピタキシャ
ル成長法で全体を覆うように形成する。゛このp−In
P層12の上にp型電極(Au−Zn)13を、一方、
InP基板1の上にn型電極(Au−3n)14を形成
して、半導体レーザが得られる。
Next, the Si port and the mask layer 6 are etched away, and the cap layer 5 is further etched away. And the 3rd E
As shown in the figure, a p-InP layer 12 is formed by liquid phase epitaxial growth to cover the entire structure.゛This p-In
A p-type electrode (Au-Zn) 13 is placed on the P layer 12, while
An n-type electrode (Au-3n) 14 is formed on the InP substrate 1 to obtain a semiconductor laser.

なお、上述の場合にキャップ層を除去して新らたにp−
InP層を形成しているが、p−InP層を形成するこ
となく InGaAsPキャップ層およびno−1n 
P埋め込み層上にn型電極を形成してもよい。
Note that in the above case, the cap layer is removed and a new p-
Although an InP layer is formed, an InGaAsP cap layer and a no-1n layer are formed without forming a p-InP layer.
An n-type electrode may be formed on the P buried layer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したようにマストランスポートによってp−InP
上側クラッド層の側面にn−InP層が形成されると、
レーザ素子のシリーズ抵抗が増大して、第2図中の実線
Aで示すように電流1  (m^〉に対する光出力L 
(mW)の特性(70℃にて)は不十分である。電流を
大きくしていったときに、効率が低下し、かつ光出力も
飽和し、大きな光出力が得られない。
As mentioned above, p-InP is produced by mass transport.
When an n-InP layer is formed on the side surface of the upper cladding layer,
As the series resistance of the laser element increases, the optical output L for a current 1 (m^) increases as shown by the solid line A in Figure 2.
(mW) characteristics (at 70°C) are insufficient. When the current is increased, the efficiency decreases and the optical output is saturated, making it impossible to obtain a large optical output.

本発明の目的は、マストランスポート現象を抑制して好
ましくないn−InPがInP上側クラッド層側面に形
成されるのを回避して、特性向上を図った半導体レーザ
の製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor laser in which characteristics are improved by suppressing the mass transport phenomenon and avoiding the formation of undesirable n-InP on the side surface of the InP upper cladding layer. be.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的が、InP下側クラッド層と、IJ−aGa
aAsbP t−b活性層と、lnP上側クラッド層と
、InI−cGacAsdP l−dキャップ層とを少
なくとも順次形成した多層構造体にし、キャップ層の上
にマスク層を形成し、多層構造体をHerと、H2O2
と、H30との混合液によってメサエッチングしてメサ
型構造体にし、そして、該メサ型構造体をInP層で埋
め込む埋め込み型半導体レーザの製造方法において、メ
サ型構造体にする際にInP上側クラッド層の上端部が
90°以上の角度を有するように、InGaAsPキャ
ップ層のGa又はAsの組成比(c又はd値)をInG
aAsP活性層のGa又はAsの組成比(a又はb値)
以下にすることを特徴とする半導体レーザの製造方法に
よって達成される。
If the above purpose is to form an InP lower cladding layer and an IJ-aGa
A multilayer structure is formed in which an aAsbP t-b active layer, an InP upper cladding layer, and an InI-cGacAsdP ld cap layer are formed at least sequentially, a mask layer is formed on the cap layer, and the multilayer structure is formed with Her. , H2O2
In a method for manufacturing a buried semiconductor laser in which a mesa-type structure is formed by mesa etching using a mixed solution of H30 and H30, and the mesa-type structure is embedded with an InP layer, the InP upper cladding is The Ga or As composition ratio (c or d value) of the InGaAsP cap layer is adjusted to InGaAsP so that the upper end of the layer has an angle of 90° or more.
Ga or As composition ratio (a or b value) of the aAsP active layer
This is achieved by a semiconductor laser manufacturing method characterized by the following.

〔作 用〕[For production]

本発明者は、メサエッチングにおいてInP上側クラッ
ド層の上端部の角度θを90@以上にすれば、埋め込み
のための液層エピタキシャル成長の直前に生じていたマ
ストランスポート現象は大幅に抑制できて、クラッド層
側面上への叶InPがほとんど形成されないことを見出
した。そして、角度θを90℃以上にすることは、クラ
ッド層の上と下にあるInGaAsP層のエッチ速度を
コントロールすれば可能であり、上のInGaAsPキ
ャップ層のエッチ速度を下のInGaAsP活性層のエ
ッチ速度よりも大きいか又は同じにすれば良い。そして
、エツチング混合液によるIn 1−116aJsyP
 I−yのエッチ速度はその組成でGa又はAsの割合
が多いほど、つまり、X又はyの値が大きいほどエッチ
速度は大きくなり、すなわち、禁制帯幅(エネルーギャ
ップ、Eg )の大きいほどエッチ速度は小さい。
The present inventor has found that by setting the angle θ of the upper end of the InP upper cladding layer to 90@ or more during mesa etching, the mass transport phenomenon that occurred immediately before the liquid layer epitaxial growth for embedding can be significantly suppressed. It has been found that almost no InP is formed on the side surface of the cladding layer. Setting the angle θ to 90°C or more is possible by controlling the etch rate of the InGaAsP layers above and below the cladding layer, and the etch rate of the upper InGaAsP cap layer can be made lower than the etch rate of the InGaAsP active layer below. may be larger or the same. Then, In 1-116aJsyP by etching mixture
The etch rate of I-y increases as the proportion of Ga or As increases, that is, the value of X or y increases. In other words, the larger the forbidden band width (energy gap, Eg) The speed is small.

したがって、半導体レーザの発光波長によって活性層の
組成が決まり、それに応じてキャップ層の組成もEgが
同じかより小さくなるものにする。
Therefore, the composition of the active layer is determined by the emission wavelength of the semiconductor laser, and accordingly, the composition of the cap layer is made to have the same or smaller Eg.

〔実施例〕〔Example〕

以下、添付図面を参照して本発明の実施態様例によって
本発明を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described by way of example embodiments with reference to the accompanying drawings.

第1A図〜第1E図は本発明に係る半導体レーザの製造
方法にしたがった製造工程を説明する埋め込み型半導体
レーザの断面図である。
1A to 1E are cross-sectional views of a buried semiconductor laser illustrating the manufacturing process according to the semiconductor laser manufacturing method according to the present invention.

第1A図に示すように、n−InP基板21上に従来と
同様に連続液相エピタキシャル成長法によってn−In
P(不純物濃度:約2 X 10 ”cm−”)の下側
クラッド層22、Inn、 、Ga、1^So、 5s
Po、 rs(不純物濃度:約I X 10 ”Cm−
’、厚さ:約0.15J11. Eg=0.8eV)の
活性層23 、p−fnP(不純物濃度:約5 X 1
017cm−’、厚さ:約0.4JIIl)ノ上側クラ
ッド層24およびIna、 8GaO,aAso、 5
sPo、 +s(不純物濃度:約lXl0”cm″″3
、厚さ: O,isSEg =0.8eV)のキャップ
層25を順次形成し、多層構造にする。この場合は、本
発明にしたがって、キャップ層25の禁制帯幅Egを活
性層のEgと同じにしである。そして、キャップ層25
の上にSin2層を全面に形成し、選択エツチングによ
ってストライプ幅が約3−のSin、マスク層26とす
る。
As shown in FIG. 1A, n-InP is grown on an n-InP substrate 21 by continuous liquid phase epitaxial growth as in the past.
Lower cladding layer 22 of P (impurity concentration: about 2 x 10 "cm-"), Inn, , Ga, 1^So, 5s
Po, rs (Impurity concentration: approx. I x 10"Cm-
', Thickness: approx. 0.15J11. Eg=0.8eV) active layer 23, p-fnP (impurity concentration: about 5×1
017cm-', thickness: about 0.4JIIl) upper cladding layer 24 and Ina, 8GaO, aAso, 5
sPo, +s (Impurity concentration: approx. lXl0"cm""3
, thickness: O, isSEg =0.8 eV) to form a multilayer structure. In this case, according to the invention, the forbidden band width Eg of the cap layer 25 is made equal to the Eg of the active layer. And the cap layer 25
A Sin2 layer is formed on the entire surface, and selective etching is performed to form a Sin mask layer 26 having a stripe width of about 3-.

臭化水素水(47wt%)6ccと、過酸化水素水(3
1wt%)3ccと、水30ccの混合液をエツチング
液として用意し、これで多層構造体を約5分間エツチン
グすると、第1B図に示すように、メサ型構造になる。
6 cc of hydrogen bromide solution (47 wt%) and 3 cc of hydrogen peroxide solution
A mixed solution of 3 cc of 1wt%) and 30 cc of water is prepared as an etching solution, and when the multilayer structure is etched with this for about 5 minutes, it becomes a mesa-type structure as shown in FIG. 1B.

このエツチング液ではInPよりもInGaAsPの4
元系材料のエッチ速度が速く、InP上側クラッド層2
4の上端部はその角度θが第1C図に示すように90°
以上となり、活性層230幅は約IJmとなる。
In this etching solution, InGaAsP has a 4
The etch rate of the base material is fast, and the InP upper cladding layer 2
The angle θ of the upper end of 4 is 90° as shown in Figure 1C.
As a result, the width of the active layer 230 is approximately IJm.

次に、Sin、マスク層26をバッフアート弗酸液によ
ってエツチングして、庇部分を除去し、第1D図に示す
ように、キャップ層25の上にマスク層26として残す
Next, the Sin mask layer 26 is etched with a buffered hydrofluoric acid solution to remove the eaves portion, leaving the mask layer 26 on the cap layer 25 as shown in FIG. 1D.

液層エピタキシャル成長前に所定温度までメサ型構造体
をInP板とともに昇温する。このときに、従来はマス
トランスポート現象はほとんど起こらずにfnP上側ク
ラッド層24の側面にn−InPは付着していない。そ
して、p−InP層30およびn−InP層31の2層
埋め込みを、第1D図に示すように、行なう。
Before liquid layer epitaxial growth, the mesa structure and the InP plate are heated to a predetermined temperature. At this time, conventionally, the mass transport phenomenon hardly occurs and n-InP does not adhere to the side surfaces of the fnP upper cladding layer 24. Then, two-layer embedding of the p-InP layer 30 and the n-InP layer 31 is performed as shown in FIG. 1D.

次に、Si口、マスク層26をバッフアート弗酸液によ
って完全にエツチング除去し、さらに、キャップ層25
をエツチング除去する。そして、第1E図に示すように
、p−InP層32を液層エピタキシャル成長法で全体
を覆うように形成する。このp−InPnP2O5にp
型電極33を、一方、InP基板21の上にn型電極3
4を形成して、埋め込み型半導体レーザが得られる。得
られた半導体レーザのI−L特性(70℃にて)は第2
図の破線Bで示すようになり、従来の100mA時に6
mWの光出力であったものが8mWに向上し、より大き
な光出力が得られる。
Next, the Si port and the mask layer 26 are completely etched away using a buffered hydrofluoric acid solution, and then the cap layer 25 is completely etched away.
Remove by etching. Then, as shown in FIG. 1E, a p-InP layer 32 is formed by liquid layer epitaxial growth to cover the entire surface. In this p-InPnP2O5, p
On the other hand, the n-type electrode 3 is placed on the InP substrate 21.
4, a buried semiconductor laser is obtained. The I-L characteristics (at 70°C) of the obtained semiconductor laser were as follows.
As shown by the broken line B in the figure, 6
The optical output of mW has been improved to 8 mW, and a larger optical output can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、InP上側クラ
ッド層側面へのマストランスポートによるn−InPの
付着(再成長)がほとんどないので、レーザ素子のシリ
ーズ抵抗の増加が防げる。そして、半導体レーザの光出
力の向上が図れる。
As described above, according to the present invention, since there is almost no adhesion (regrowth) of n-InP due to mass transport to the side surface of the InP upper cladding layer, an increase in the series resistance of the laser element can be prevented. Furthermore, the optical output of the semiconductor laser can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図〜第1E図は、本発明に係る製造方法による製
造工程を説明する埋め込み型半導体レーザの断面図であ
り、 第2図は、半導体レーザの電流(1)−光出力(L)特
性を示すグラフであり、 第3A図〜第3E図は従来の製造工程による埋め込み型
半導体レーザの断面図である。 21・・・InP基板、 22・・・n−InP下側クラツド層、23 ・−In
GaAsP活性層、 24・・・p−InP上側クラツド層、25・・・夏n
GaAsPキャップ層、30 ・・−p−InP層、 
  31−n−InP層、32・・・p−InP層、 34・・・n型電極。 33・・・p型電極、
1A to 1E are cross-sectional views of an embedded semiconductor laser for explaining the manufacturing process according to the manufacturing method according to the present invention, and FIG. 2 shows the current (1)-light output (L) characteristics of the semiconductor laser. FIG. 3A to FIG. 3E are cross-sectional views of an embedded semiconductor laser according to a conventional manufacturing process. 21...InP substrate, 22...n-InP lower cladding layer, 23.-In
GaAsP active layer, 24...p-InP upper cladding layer, 25... summer n
GaAsP cap layer, 30...-p-InP layer,
31-n-InP layer, 32... p-InP layer, 34... n-type electrode. 33...p-type electrode,

Claims (1)

【特許請求の範囲】[Claims] 1、InP下側クラッド層と、In_1_−_aGa_
aAS_bP_1_−_b活性層と、InP下側クラッ
ド層と、In_1_−_cGa_cAs_dP_1_−
_dキャップ層とを少なくとも順次形成した多層構造体
にし、前記キャップ層の上にマスク層を形成し、前記多
層構造体をHBrと、H_2O_2とH_2Oとの混合
液によってメサエッチングしてメサ型構造体にし、そし
て、該メサ型構造体をInP層で埋め込む埋め込み型半
導体レーザの製造方法において、前記メサ型構造体にす
る際に前記InP上側クラッド層の上端部が90°以上
の角度を有するように、前記InGaAsPキャップ層
のGa又はAsの組成比(c又はd値)を前記InGa
AsP活性層のGa又はAsの組成比(a又はb値)以
下にすることを特徴とする半導体レーザの製造方法。
1. InP lower cladding layer and In_1_-_aGa_
aAS_bP_1_-_b active layer, InP lower cladding layer, In_1_-_cGa_cAs_dP_1_-
_d cap layer is formed at least sequentially to form a multilayer structure, a mask layer is formed on the cap layer, and the multilayer structure is mesa-etched with a mixed solution of HBr, H_2O_2, and H_2O to obtain a mesa-type structure. and in the method for manufacturing a buried semiconductor laser in which the mesa-type structure is embedded with an InP layer, the upper end of the InP upper cladding layer has an angle of 90° or more when forming the mesa-type structure. , the Ga or As composition ratio (c or d value) of the InGaAsP cap layer is
A method for manufacturing a semiconductor laser, characterized in that the composition ratio (a or b value) of Ga or As in an AsP active layer is set to below.
JP6494889A 1989-03-18 1989-03-18 Manufacture of semiconductor laser Pending JPH02246180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6494889A JPH02246180A (en) 1989-03-18 1989-03-18 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6494889A JPH02246180A (en) 1989-03-18 1989-03-18 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH02246180A true JPH02246180A (en) 1990-10-01

Family

ID=13272771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6494889A Pending JPH02246180A (en) 1989-03-18 1989-03-18 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH02246180A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5748659A (en) * 1994-11-22 1998-05-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
US7072557B2 (en) 2001-12-21 2006-07-04 Infinera Corporation InP-based photonic integrated circuits with Al-containing waveguide cores and InP-based array waveguide gratings (AWGs) and avalanche photodiodes (APDs) and other optical components containing an InAlGaAs waveguide core
JP2012248746A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Manufacturing method of optical semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5748659A (en) * 1994-11-22 1998-05-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
US7072557B2 (en) 2001-12-21 2006-07-04 Infinera Corporation InP-based photonic integrated circuits with Al-containing waveguide cores and InP-based array waveguide gratings (AWGs) and avalanche photodiodes (APDs) and other optical components containing an InAlGaAs waveguide core
JP2012248746A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Manufacturing method of optical semiconductor device

Similar Documents

Publication Publication Date Title
JPH08148752A (en) Manufacture of semiconductor laser device and semiconductor laser device
JPH06244490A (en) Semiconductor laser and its manufacture
JPH02246180A (en) Manufacture of semiconductor laser
JP2525788B2 (en) Method for manufacturing semiconductor laser device
JP2010010284A (en) Method of manufacturing integrated optical semiconductor device, and integrated optical semiconductor device
JPH08250801A (en) Semiconductor laser device and its manufacture
JPH10270786A (en) Etching method of compound semiconductor, manufacture of compound semiconductor, and semiconductor laser
JPS6349396B2 (en)
JP2554192B2 (en) Semiconductor laser manufacturing method
JPH0646667B2 (en) Manufacturing method of AlGaInP semiconductor laser
JP3689733B2 (en) Manufacturing method of semiconductor device
JP2642403B2 (en) Manufacturing method of semiconductor laser
JPH05275797A (en) Manufacture of semiconductor laser
JPS61288481A (en) Manufacture of semiconductor light emitting device
JP2000252587A (en) Semiconductor laser and its manufacturing method
JPS5956783A (en) Semiconductor laser
JPS62179790A (en) Semiconductor laser
JPH0680861B2 (en) Method for manufacturing semiconductor light emitting device
JPS6237835B2 (en)
JPS61125099A (en) Semiconductor laser and manufacture thereof
JPS62108591A (en) Manufacture of semiconductor laser
JPH04133315A (en) Manufacture of semiconductor device
JPS60235485A (en) Manufacture of semiconductor laser device
JP2002217490A (en) Manufacturing method for compound semiconductor device
JPH01115185A (en) Manufacture of buried heterojunction type semiconductor laser element