JPS62108442A - Electrostatic lens - Google Patents

Electrostatic lens

Info

Publication number
JPS62108442A
JPS62108442A JP24702185A JP24702185A JPS62108442A JP S62108442 A JPS62108442 A JP S62108442A JP 24702185 A JP24702185 A JP 24702185A JP 24702185 A JP24702185 A JP 24702185A JP S62108442 A JPS62108442 A JP S62108442A
Authority
JP
Japan
Prior art keywords
potential
electrode
electrodes
lens
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24702185A
Other languages
Japanese (ja)
Inventor
Toru Ishitani
亨 石谷
Yoshimi Kawanami
義実 川浪
Kaoru Umemura
馨 梅村
Hifumi Tamura
田村 一二三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24702185A priority Critical patent/JPS62108442A/en
Publication of JPS62108442A publication Critical patent/JPS62108442A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the precise and quick adjustment of the diameter of a beam, which includes focusing, by applying the potential of the ground to both end electrodes, applying a potential near the potential of the ground to one of electrodes next to both the end electrodes, and applying a prescribed potential to the other electrode. CONSTITUTION:An electrostatic lens 5a for converging emitted ions from the emitter 1 of an ion source onto a sample 7 comprises four electrodes 6, 6', 6'', 6''' having circular holes coaxial with each other. The potential of the ground is applied to the first and the fourth electrodes 6, 6''', which are numbered from the side of the emitter 1. An optimal potential is applied from a lens power supply 9 to the electrode 6'' to perform rough adjustment for focusing. A potential DELTAVL is applied from an auxiliary lens power supply 14 to the electrode 6'. Secondary electrons 11 emitted from the sample 7 are detected at 12 correspondingly to a beam scanning signal to measure the diameter of a beam by a beam control section 15. The potential DELTAVL is set by a control signal supplied from the control section 15 and corresponding to the diameter of the beam, to equalize the diameter to the minimum or a prescribed value.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、集束イオンビームによる打込みや露光などに
使用する集束イオンビーム装置などにおいて、試料上で
ビーム走査する時に動的焦点補正を行うに好適な静電レ
ンズに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is suitable for performing dynamic focus correction when scanning a beam on a sample in a focused ion beam device used for implantation or exposure using a focused ion beam. Regarding electrostatic lenses.

〔発明の背景〕[Background of the invention]

従来の静電レンズは集束イオンビーム装置などに組込ま
れて使用されている。集束イオンビーム装置の概略を第
1図に示し、従来の静電レンズについて説明する。イオ
ン源のエミッタ1と引出し電極2との間に例えば10K
v程度の電圧を引出し電源3により印加し、それにより
エミッタ1より引出されたイオンを加速電源4により例
えば100KV程度に加速する。イオンは静電レンズ5
により試料7上に集束される。その集束ビームは偏向電
極8により走査される。静電レンズ5は。
Conventional electrostatic lenses are used by being incorporated into focused ion beam devices and the like. An outline of a focused ion beam device is shown in FIG. 1, and a conventional electrostatic lens will be explained. For example, 10K is applied between the emitter 1 of the ion source and the extraction electrode 2.
A voltage of approximately V is applied by an extraction power source 3, and the ions extracted from the emitter 1 are accelerated by an acceleration power source 4 to, for example, approximately 100 KV. Ion is an electrostatic lens 5
is focused onto the sample 7 by The focused beam is scanned by a deflection electrode 8. The electrostatic lens 5.

2枚以上の電極で構成されるものであるが、ここでは3
枚電極でるη成されているアインツェル・レンズが用い
られている。この静電レンズ5は両端電極6.6′が接
地電位であり、中央電極6′に約80KVの高電圧がレ
ンズ電源9より印加される。試料7からはイオンビーム
照射により2次電子11が放出して2次電子検知器12
より検知され、2次電子像NI!測部13により、試料
表面に関する情報が観測されたり、ビーム径がモニター
されたりする。イオンマイクロビーム装置では、ビーム
径を細くする。つまり、試料7上の所定の場所にビーム
を偏向電極8で偏向し、かつレンズ5により正確に焦点
を合わせてよく用いられる。そのためにはイオン打込み
、露光などの作業に先立ちレンズ電圧VLを最適レンズ
電圧の前後約100vの間を走査し、ビーム径をモニタ
ーしながらそのビーム径の最小値を前もって探索するこ
とになる。しかし、この従来静電レンズでは、100K
V程度の高電圧のレンズな源9で、わずか±100v程
度の範囲を、、0.5V以下の精度で走査するには、時
定数が大きいため1.0秒程度以上が必要となる。焦点
合わせの短時間化という点で欠点があった。
It is composed of two or more electrodes, but here we use three
An Einzel lens consisting of a single electrode is used. In this electrostatic lens 5, both end electrodes 6 and 6' are at ground potential, and a high voltage of about 80 KV is applied from a lens power source 9 to the center electrode 6'. Secondary electrons 11 are emitted from the sample 7 by ion beam irradiation, and a secondary electron detector 12 is detected.
Detected by secondary electron image NI! The measuring section 13 observes information regarding the sample surface and monitors the beam diameter. In the ion microbeam device, the beam diameter is reduced. That is, it is often used by deflecting the beam to a predetermined location on the sample 7 with the deflection electrode 8 and focusing it accurately with the lens 5. To this end, prior to operations such as ion implantation and exposure, the lens voltage VL must be scanned between about 100 V before and after the optimum lens voltage, and the minimum value of the beam diameter must be searched for in advance while monitoring the beam diameter. However, with this conventional electrostatic lens, 100K
In order to scan a range of only about ±100 V with an accuracy of 0.5 V or less using a lens source 9 with a high voltage of about V, it takes about 1.0 seconds or more because the time constant is large. There was a drawback in terms of shortening the focusing time.

また、厳密には試料7上でのビーム偏向の中心とその周
辺とではそれらのビーム照射点とレンズ5の中心までの
距離がわずか異なっている。従って、ビーム径を0.1
μm程度と非常に集束してイオン打込み、露光などの作
業をする場合は、レンズ5の焦点を偏向位置の関数とし
て補正する6つまり動的焦点補正をする必要がある。こ
の従来静電レンズでは、100KV程度の高電圧のレン
ズ電源9で、±100v程度の範囲を±2Vv1度の精
度で変化させるには数IQmsecの時定数が必要であ
り、高速のビーム偏向に対しては応答性の点で問題があ
った。
Strictly speaking, the distances between the beam irradiation point and the center of the lens 5 are slightly different between the center of beam deflection on the sample 7 and its periphery. Therefore, the beam diameter is set to 0.1
When carrying out work such as ion implantation or exposure with extremely focused light on the order of μm, it is necessary to correct the focus of the lens 5 as a function of the deflection position 6, that is, dynamic focus correction. In this conventional electrostatic lens, a time constant of several IQmsec is required to change the range of about ±100V with an accuracy of ±2Vv1 degree using the lens power supply 9 with a high voltage of about 100KV, and it is necessary to use a time constant of several IQ msec to change the range of about ±100V with an accuracy of ±2Vv1 degree. However, there was a problem with responsiveness.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、焦点合せも富めてビーム径の調整が正
確に、かつ敏速に行える静電レンズを捉供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electrostatic lens that has excellent focusing capabilities and can accurately and quickly adjust the beam diameter.

〔発明の概要〕[Summary of the invention]

上記目的も達成するために、本発明においては。 In order to also achieve the above object, in the present invention.

共軸に並べたn(ただし、nは4以上の整数)枚の円孔
をもつ電極からなるレンズにおい′C、ビーム軸の片側
から順に数えて、両端の第1と第n番目の電極は接地、
第2あるいは第(n−1,)番目のいずれかの電極の電
位は、他の残りの電極の電位より接地電位に近く、かつ
、その電位は高速に可変できる制御電源から印加され、
他の残りの電極は所定の電位が印加されるよう高圧電源
に接続されていることを特徴としている。
In a lens consisting of electrodes with n (where n is an integer greater than or equal to 4) circular holes arranged coaxially, the first and nth electrodes at both ends, counting sequentially from one side of the beam axis, are ground,
The potential of either the second or (n-1,)th electrode is closer to the ground potential than the potential of the other remaining electrodes, and the potential is applied from a control power source that can be varied at high speed;
The other remaining electrodes are characterized in that they are connected to a high voltage power source so that a predetermined potential is applied to them.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図によ゛り説明する。第
2図は集束イオンビーム装置の概略図であり、本発明の
実施例の静電レンズ5aを示している。イオン源のエミ
ッタ1から放出されたイオンは静電レンズ5aにより試
料7上に集束される。
An embodiment of the present invention will be described below with reference to FIG. FIG. 2 is a schematic diagram of a focused ion beam device, showing an electrostatic lens 5a according to an embodiment of the present invention. Ions emitted from the emitter 1 of the ion source are focused onto the sample 7 by an electrostatic lens 5a.

レンズ5aは4枚電極6.6’ 、6’ 、6″′で構
成されており、共軸で円孔を持っている。これらの4枚
電極を6.6’ 、6“、 6”’ をイオン源側から
数えて、第1番目と第4番目の電極、6゜6″は接地電
位である。第311i極6″′にレンズ電源9.より最
適電位にほぼ近い電位を与え、焦点合わせに関して粗調
整を行う。第2電極に補助レンズ電源14より電位ΔV
 +、を与える。ビーム径は試料7から放出される二次
電子11を検知器12で検知し、ビーム走査信号と対応
させることにより、ビーム制御部15で計測する。補助
レンズ電源14の出力電圧ΔVLは、所定のビーム偏向
位置に対して、ビーム制御部15からのビーム径に応じ
た制御信号によりビーム径が最小あるいは所定の値にな
るように設定する。イオン打込み。
The lens 5a is composed of four electrodes 6.6', 6', 6"', which are coaxial and have circular holes. These four electrodes are arranged as 6.6', 6", 6"'. Counting from the ion source side, the first and fourth electrodes, 6°6'', are at ground potential. A potential close to the optimum potential is applied to the 311i pole 6'' from the lens power supply 9, and coarse adjustment is made for focusing.A potential ΔV is applied to the second electrode from the auxiliary lens power supply 14.
+, is given. The beam diameter is measured by the beam controller 15 by detecting the secondary electrons 11 emitted from the sample 7 with the detector 12 and making them correspond to the beam scanning signal. The output voltage ΔVL of the auxiliary lens power supply 14 is set so that the beam diameter becomes the minimum or a predetermined value for a predetermined beam deflection position by a control signal according to the beam diameter from the beam control section 15. Ion implantation.

霧光などの作業に先立ち、前もって試料7上のビーム走
査範囲内の全てのビーム偏向位置に対して。
Prior to operations such as fogging, all beam deflection positions within the beam scanning range on the sample 7 are measured in advance.

ビーム制御部15でΔv1、の設定値を求め、メモリー
に書込む。
The beam controller 15 determines the set value of Δv1 and writes it into the memory.

実際の作字時にはビーム制御部15内のメモリーから偏
向電源10からの走査信号に対応してΔVLの制御信号
を読み出し、この制御信号を補助レンズ電源14に送り
、ビームを照射すればよい。ビーム照射をオン、オフす
るためにビームをビーム軸から偏向するブランギング用
電極が必要であるが、これは第2図に示していない。
During actual writing, the control signal of ΔVL is read out from the memory in the beam control unit 15 in response to the scanning signal from the deflection power source 10, and this control signal is sent to the auxiliary lens power source 14 to irradiate the beam. Blanking electrodes are required to deflect the beam from the beam axis in order to turn the beam on and off, but this is not shown in FIG.

本実施例では、Ga液体金属イオン源を用い、100K
Vで加速したGa+ビームの焦点合わせに対して、静電
レンズ5aの第3fi目のレンズ電極6′の電位は81
KVに粗調整し、その後、第2番目のレンズ電極6′の
電位Δvしを補助レンズ電源14から与え、偏向中心場
所で最小ビーム径となるΔvしの最適値540Vを得た
。この時の最小ビーム径は0.5μm、ビーム電流は約
0.4nAであった。補助レンズ電源14に最高電圧I
KVの電源を用いて±2vの精度で調整するには数1、
Qmsecで可能となり、高速のビーム径の調整つまり
動的焦点補正が可能となった。
In this example, a Ga liquid metal ion source was used and 100K
For focusing of the Ga+ beam accelerated by V, the potential of the 3fi-th lens electrode 6' of the electrostatic lens 5a is 81
KV was roughly adjusted, and then the potential Δv of the second lens electrode 6' was applied from the auxiliary lens power source 14, and the optimum value of Δv, 540 V, which gave the minimum beam diameter at the center of deflection was obtained. The minimum beam diameter at this time was 0.5 μm, and the beam current was about 0.4 nA. Maximum voltage I to auxiliary lens power supply 14
To adjust with an accuracy of ±2v using a KV power supply, use the following formula:
Qmsec, which enables high-speed beam diameter adjustment, that is, dynamic focus correction.

次に本発明の別の実施例を第3図を用いて説明する。第
3(a)は、本発明の静電レンズの概略構成の側面図で
あり第2図の静電レンズ5aに対応するものである。第
3図(b)は第3図(a)の第2番目電極6′を取り出
し、この概略構成の正面図である。電極6′は円孔を持
つ板状電極が8等分に分割されたものから構成されてお
り、それぞれの電極■〜■には第3図(b)に書き込ん
だ電位が補助レンズ電源14′ (図示されていない)
から与えられる。ここで、 Va=Vs−cos(2θ+ )、Vb=Vs−cos
(2θ−一)でVsは0〜2oOvの可変DC,θはO
〜27cの可変量である。又、ΔVoは第2図の場合と
同様に0〜IKVの可変DCである。この第3図の静電
レンズを第2図の集束イオンビーム装置の静電レンズ5
aに組み込むことにより、動的焦点補正ばかりでなく非
点補正も可能になった。ここで、非点補正とは、レンズ
電極などの絹み立てにおけるビーム軸に対するずれ、レ
ンズ電極の円孔の形状の軸対称からのずれなどによるビ
ーム軸に対する非対称成分のビームの拡がりを補正する
ものである。
Next, another embodiment of the present invention will be described with reference to FIG. 3(a) is a side view of the schematic structure of the electrostatic lens of the present invention, and corresponds to the electrostatic lens 5a of FIG. 2. FIG. 3(b) is a front view of the schematic configuration of the second electrode 6' of FIG. 3(a). The electrode 6' is composed of a plate-like electrode with a circular hole divided into eight equal parts, and each of the electrodes 1 to 2 has the potential written in FIG. 3(b) to the auxiliary lens power source 14'. (not shown)
given from. Here, Va=Vs-cos(2θ+), Vb=Vs-cos
(2θ-1), Vs is variable DC from 0 to 2oOv, θ is O
It is a variable amount of ~27c. Further, ΔVo is a variable DC of 0 to IKV as in the case of FIG. This electrostatic lens in Fig. 3 is used as the electrostatic lens 5 of the focused ion beam device in Fig. 2.
By incorporating it into a, it became possible to perform not only dynamic focus correction but also astigmatism correction. Here, astigmatism correction refers to the correction of beam spread due to asymmetric components with respect to the beam axis due to deviations from the beam axis in the fabrication of lens electrodes, etc., deviations from axial symmetry of the circular hole shape of the lens electrodes, etc. It is.

さらに本発明の静電レンズはその構成電極の両端が必ら
ず接地電位となるため、静電レンズの特性が設置される
周囲の電界分布の影響を受けないという長所をもってい
る。
Furthermore, the electrostatic lens of the present invention has the advantage that the characteristics of the electrostatic lens are not affected by the electric field distribution around the lens because both ends of its constituent electrodes are necessarily at ground potential.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、焦点合わせを含めたビー11径調整が
正確に、かつ敏速に行え、焦束イオンビーム装置などに
組み込むことにより、イオン打込みや露光などが高能率
で行えるようになった。
According to the present invention, the diameter adjustment of the bead 11 including focusing can be performed accurately and quickly, and by incorporating it into a focused ion beam device, etc., it has become possible to perform ion implantation, exposure, etc. with high efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の静電レンズを用いた焦束イオンビーム装
置の基本構成図、第2図は本発明の一実施例を示す静電
レンズを用いた焦束イオンビーム装置の基本構成図、第
3図は本発明の静電レンズの他の実施例である。 1・・エミッタ、2・・・引出し電極、3・・・引出し
電源、4・・・加速電源、5a・・・静電レンズ、6.
6’ 、6’ 。 6″′・・・レンズ電極、7・・・試料、8・・・偏向
電極、9・・・レンズ電源、10・・・偏向電源、11
・・・2次電子、12・・・2次電子検知器、13・・
・2次電子像観側部、14・・・補助レンズ電源、15
・・・ビーム制御部、16・・・真空容器。 第 j 口
FIG. 1 is a basic configuration diagram of a focused ion beam device using a conventional electrostatic lens, and FIG. 2 is a basic configuration diagram of a focused ion beam device using an electrostatic lens showing an embodiment of the present invention. FIG. 3 shows another embodiment of the electrostatic lens of the present invention. 1... Emitter, 2... Extracting electrode, 3... Extracting power source, 4... Accelerating power source, 5a... Electrostatic lens, 6.
6', 6'. 6″'... Lens electrode, 7... Sample, 8... Deflection electrode, 9... Lens power supply, 10... Deflection power supply, 11
...Secondary electron, 12...Secondary electron detector, 13...
・Secondary electron image viewing side part, 14...Auxiliary lens power supply, 15
... Beam control unit, 16... Vacuum vessel. Jth part

Claims (1)

【特許請求の範囲】 1、共軸の並べたn枚(ただし、nは4以上の整数)の
円孔をもつ電極からなる静電レンズにおいて、ビーム軸
の片側から順に数えて、第1と第n番目の電極は接地、
第2あるいは第(n−1)番目のいずれかの電極の電位
は、他の残りの電極の電位より接地電位に近く、かつそ
の電位は高速に可変できる制御装置から印加され、他の
残りの電極は所定の高電位が印加されるよう高圧電源に
接続されていることを特徴とする静電レンズ。 2、第2あるいは第(n−1)番目のいずれかの電極が
ビーム軸を中心に8等分に分割され、それぞれの電極に
独立に電位を印加する制御電源が接続されていることを
特徴とする特許請求の範囲第1項記載の静電レンズ。
[Claims] 1. In an electrostatic lens consisting of an electrode having n coaxially arranged circular holes (where n is an integer of 4 or more), counting sequentially from one side of the beam axis, the first and the nth electrode is grounded,
The potential of either the second or (n-1)th electrode is closer to the ground potential than the potential of the other remaining electrodes, and the potential is applied from a control device that can vary rapidly. An electrostatic lens characterized in that the electrodes are connected to a high voltage power source so that a predetermined high potential is applied. 2. Either the second or (n-1)th electrode is divided into eight equal parts around the beam axis, and each electrode is connected to a control power source that applies a potential independently. An electrostatic lens according to claim 1.
JP24702185A 1985-11-06 1985-11-06 Electrostatic lens Pending JPS62108442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24702185A JPS62108442A (en) 1985-11-06 1985-11-06 Electrostatic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24702185A JPS62108442A (en) 1985-11-06 1985-11-06 Electrostatic lens

Publications (1)

Publication Number Publication Date
JPS62108442A true JPS62108442A (en) 1987-05-19

Family

ID=17157221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24702185A Pending JPS62108442A (en) 1985-11-06 1985-11-06 Electrostatic lens

Country Status (1)

Country Link
JP (1) JPS62108442A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158292A (en) * 1992-11-30 1994-06-07 Shimadzu Corp Vapor deposition device using convergent ion beam
JP2008543014A (en) * 2005-06-03 2008-11-27 シーイービーティー・カンパニー・リミティッド Ultra-small electron column with simple structure
EP2672501A1 (en) * 2012-06-07 2013-12-11 Fei Company Focused charged particle column for operation at different beam energies at a target

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158292A (en) * 1992-11-30 1994-06-07 Shimadzu Corp Vapor deposition device using convergent ion beam
JP2008543014A (en) * 2005-06-03 2008-11-27 シーイービーティー・カンパニー・リミティッド Ultra-small electron column with simple structure
EP2672501A1 (en) * 2012-06-07 2013-12-11 Fei Company Focused charged particle column for operation at different beam energies at a target
US8742361B2 (en) 2012-06-07 2014-06-03 Fei Company Focused charged particle column for operation at different beam energies at a target

Similar Documents

Publication Publication Date Title
JP4037533B2 (en) Particle beam equipment
JPS6255264B2 (en)
US20230377829A1 (en) Charged Particle Beam Device and Axis Adjustment Method Thereof
US4963823A (en) Electron beam measuring instrument
US4710632A (en) Ion microbeam apparatus
JPH0917369A (en) Scanning electron microscope
GB1284061A (en) Electron beam apparatus
JPH1064464A (en) Detection element objective lens device
US2486856A (en) Electron lens
US6653632B2 (en) Scanning-type instrument utilizing charged-particle beam and method of controlling same
JPS62108442A (en) Electrostatic lens
JP2946537B2 (en) Electron optical column
JPH0378739B2 (en)
JPH09260237A (en) Electron gun, electron beam equipment and electron beam irradiation method
JP2000294182A (en) Field emission electron gun
JPH0227648A (en) Charged beam device
JP3649008B2 (en) Electron beam equipment
KR20000058187A (en) Focused ion beam apparatus
JPH06251739A (en) Electrostatic lens
JP2001167725A (en) Spectrometer object lens of particle beam measuring apparatus
US2554170A (en) Electronic lens for microscopes
JPH10208653A (en) Ion source unit and focusing ion beam device using the same
JPS61114453A (en) Charged particle ray device
JPH0535540B2 (en)
JPH0530277Y2 (en)