JP3649008B2 - Electron beam equipment - Google Patents

Electron beam equipment Download PDF

Info

Publication number
JP3649008B2
JP3649008B2 JP34254998A JP34254998A JP3649008B2 JP 3649008 B2 JP3649008 B2 JP 3649008B2 JP 34254998 A JP34254998 A JP 34254998A JP 34254998 A JP34254998 A JP 34254998A JP 3649008 B2 JP3649008 B2 JP 3649008B2
Authority
JP
Japan
Prior art keywords
electron beam
lens
sample
objective lens
decelerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34254998A
Other languages
Japanese (ja)
Other versions
JP2000173519A (en
Inventor
久弥 村越
浩士 牧野
博之 品田
裕子 岩淵
福原  悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34254998A priority Critical patent/JP3649008B2/en
Publication of JP2000173519A publication Critical patent/JP2000173519A/en
Application granted granted Critical
Publication of JP3649008B2 publication Critical patent/JP3649008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子線装置に係り、低加速電圧で高分解能が得られる電子線装置に関する。
【0002】
【従来の技術】
低加速電圧で高分解能が得られる電子線装置としては、特公昭63−34588に記載されているように、電子線が対物レンズなどの電子レンズを通過する間は高加速電圧とし、電子線を試料に入射する直前で電子線を減速する光学系が提示されている。
【0003】
図3にその一般的な構成を示す。同図において1は電子源、2は電子銃レンズ、3はコンデンサレンズ、5は対物レンズ、6は試料、8は減速レンズ、12は加速電圧電源、15は対物レンズ電源、16は減速レンズ電源、101は電子線である。
【0004】
レンズの軸ずれに伴う収差を低減するためには、電子線101がレンズ2、3、5の中心を通過するような光軸調整が必要となる。通常の電子顕微鏡の使用条件では対物レンズ5の収差が支配的になるので、対物レンズ5の中心に光軸をあわせることによって高分解能にすることができる。
【0005】
対物レンズ5が磁界レンズで構成されている場合、対物レンズ電源15から供給する励磁電流を周期的に変動させて像が動かないように制御を行う、いわゆる電流中心を求める調整により、対物レンズ5の中心に光軸をあわせることが実現できる。
【0006】
しかし、対物レンズ5だけでなく他のレンズ収差が無視できない場合には、対物レンズ5の中心のみに光軸を合わせるだけでは不十分である。例えば図3に示すように、減速レンズ8に斜めに電子線が入射すると減速レンズ8の収差が大きくなり、試料6上に微細な電子線プローブを形成することが困難になる。
【0007】
ここで、電子源1に印加する加速電圧電源12に供給する電圧を周期的に変動させて像が動かないように制御を行う、いわゆる電圧中心を求める調整でレンズ全体の光軸をあわせることは可能であるが、この調整は減速レンズ8単独に対してだけでなく、他のレンズの光軸との関係にも大きく依存する。したがって、従来の方法では、減速レンズ単独に対して独立に光軸を調整することができないという欠点があった。
【0008】
【発明が解決しようとする課題】
本発明の目的は、対物レンズに対する光軸調整と減速レンズに対する光軸調整をそれぞれ独立に行うことができ、複雑な光軸調整を迅速、かつ正確に行うことを可能とした電子線装置を実現し、特に低加速電圧で高分解能な電子線装置を実現することにある。
【0009】
【課題を解決するための手段】
本発明は、図4に示すように減速レンズ電源16に印加する電圧を変化させる手段を設けることにより、減速レンズ8単独に対する軸調整を行なえるようにするものである。電圧変動に対して像の移動量を小さくするように減速レンズ用アライナ25で偏向される電子線を調整することにより、減速レンズ8に対してまっすぐに電子線を入射させることができる。減速レンズ用アライナ25の配置は対物レンズ5と減速レンズ8の間にあれば、減速レンズ用アライナ25により対物レンズ5の電流中心を変動させることがなく、減速レンズ8に対する調整を独立に行うことができる。
【0010】
本発明の電子線装置によれば、対物レンズ5に対する光軸調整と減速レンズ8に対する光軸調整をそれぞれ独立に行うことができ、複雑な光軸調整を迅速かつ正確に行うことが可能となる。
【0011】
【発明の実施の形態】
以下、本発明の第1の実施例を図1により説明する。図1は電子光学系を横からみた図である。電子源1から放出された一次電子線101は、電子銃レンズ2、コンデンサレンズ3、対物レンズ5により集束レンズ作用をうけたのち、減速レンズ8で減速されて試料6上を集束照射する。一次電子線101の照射により試料6から反射した反射電子あるいは試料内で二次的に発生した二次電子102は減速レンズ8の電界により加速された後、検出器9で検出される。検出された信号は増幅されて表示装置31に供給され、輝度変調信号となる。
【0012】
電子線の偏向走査は制御部32により、偏向増幅器14を介して送られる走査信号を走査偏向器4に供給することによって電子線を制御することによって行われる。同時に表示装置31には電子線走査と同期した偏向信号が供給され、試料走査像が表示装置31に表示される。以上が電子光学系の基本構成である。
【0013】
次に、本発明による電子線の光軸調整について説明する。光軸調整では、電子源1、コンデンサレンズ3および可動アパーチャ10を機械的に動かすことができる。また、電子銃レンズ2とコンデンサレンズ3の間に配置された第1アライナ 21、コンデンサレンズ3と対物レンズ5の間に配置された第2アライナ23 、および対物レンズ5と減速レンズ7の間に配置された減速レンズ用アライナ25により電気的な電子線の調整が可能である。各アライナは電磁型あるいは静電型どちらでもよく、互いに90°回転して配置された2組の2極、4極あるいはそれ以上の電磁極による構成で電子線を任意の方向に偏向させる機能をもつ。
【0014】
最初に、対物レンズ5の中心に一次電子線101の光軸を合わせる調整を行う。まず、対物レンズ5と電子銃レンズ2を駆動させて、試料6上に一次電子線101を集束させる。次に、対物レンズ5に供給する励磁電流を周期的に変動させて、電子源1の位置あるいは第1アライナ21に供給する量を調整することによって像の動きが最小になるように調整を行う。
【0015】
次にコンデンサレンズ3を所定の励磁に設定して、再度対物レンズ5に供給する励磁電流を周期的に変動させて、コンデンサレンズ3の位置あるいは第1アライナ21および第2アライナ23を調整することによって像の動きが最小になるように調整を行う。最後に、光軸上に可動アパーチャ10を挿入して、再度、対物レンズ5に供給する励磁電流を周期的に変動させて、可動アパーチャ10の位置を調整することによって像の動きが最小になるように調整を行う。以上が、対物レンズ5に対する電流中心を求める調整である。
【0016】
次に、減速レンズ8に対する光軸調整を行う。減速レンズ8は試料6および試料6に対向して配置された対向電極7により構成されている。試料電位は対向電極の電位より負電位に設定されている。例えば加速電源12により10keVに加速された一次電子線101は、アース電位に設定された対向電極7と−9.5 kVに設定された試料6との間で形成させる減速電界により減速され、試料6には0.5keVのエネルギーで照射される。ここで一次電子線101がこの減速電界に対して垂直に入射すれば、減速電界が変動しても一次電子線101の軌道は変化しないが、減速電界に対して斜めに入射すれば減速電界の変動に対して一次電子線101の軌道が変化して、試料上の別地点を照射することになる。
【0017】
したがって、減速レンズ電源16から減速レンズ8に供給する電圧を変動させれば、減速レンズ8に電子線が斜めに入射すると、電圧変動により像は大きく移動するが、減速レンズ用アライナ25を調整することによって、電圧を変動させても像が同じ位置でぼけるようになれば、減速レンズ8に一次電子線101が垂直入射する条件となり、減速レンズ8の収差が最小になる。
【0018】
減速レンズ電源16に供給する変動電圧信号は変動幅が一定であれば、鋸歯状波信号、正弦波信号あるいはそれらに類似した信号の何れでもよい。減速レンズ用アライナ25の配置は減速レンズ用アライナ25が対物レンズ5上か対物レンズ5と減速レンズ8の間にあれば、対物レンズ5の電流中心を変化させることなく、独立に減速レンズ8に対する光軸調整をすることができる。
【0019】
次に、本発明の第2の実施例を図2に示す。減速レンズ用アライナ25は走査偏向器4とともに対物レンズ5のレンズ主面近傍に配置されている。この場合、走査偏向器4および減速レンズ用アライナ25は電子線を偏向させるという同一の機能を持つので、単一の走査偏向器4で代用してもよい。
【0020】
すなわち、走査偏向器4には偏向増幅器14を介した走査信号と減速レンズ用アライナ電源26を介した偏向信号が供給される構成となる。また、本実施例では検出系にE×B偏向器17を設けている。電子光学系に一次電子線を減速させる減速レンズ8を設けると、二次電子や反射電子102も減速レンズ8で加速されるため、E×B偏向器17で二次電子や反射電子102を検出器方向に偏向させて検出効率を向上させている。
【0021】
このような構成では、減速レンズ用アライナ25はE×B偏向器17と対物レンズ5の間にあれば、効率よく二次電子を検出することができる。すなわち、二次電子や反射電子102は減速レンズ用アライナ25を通過することなく検出器9で検出されるので、二次電子や反射電子102の軌道に全く影響を与えることなく、減速レンズ用アライナ25を調整して、光軸を合わせることができる。
【0022】
なお、上記の実施例では対物レンズ5は磁界レンズで構成されていたが、対物レンズが静電レンズで構成されている場合にも、対物レンズ5の電極に印加する電圧を変動させて対物レンズの光軸を合わせる調整とは独立に、対物レンズ5と減速レンズ8の間に配置された減速レンズ用アライナ25を用いて減速レンズに対する光軸調整を行うことができ、本発明の目的を達成することができる。
【0023】
また、上記の実施例では試料6は負電位に設定されていたが、試料6を接地した場合でも試料と他の電極との相対電位を本実施例と同じように設定すれば、本発明の目的を達成することができる。
【0024】
また、上記の実施例は試料6と対向電極7の間で減速レンズ8を形成していたが、試料6と対向電極7との間に試料6と同電位の電極を設け、試料6と同電位の電極と対向電極7との間で主に減速レンズ作用を形成する構成としても、本発明の目的を達成することができる。
【0025】
さらに、上記の実施例は検出器9あるいは検出器9およびE×B偏向器17が対物レンズ5より試料2側にある場合について説明したが、検出器9あるいは検出器9およびE×B偏向器17が対物レンズ5より電子源1側に配置されている場合にも、試料2への一次電子線101の照射エネルギーが小さく、減速レンズ用アライナ25が減速レンズ8と対物レンズ5の間にあれば、本発明の目的を達成することができる。
【0026】
すなわち、減速レンズ8による一次電子線101の減速率が大きく試料照射エネルギーが小さくなる条件では、減速レンズ8により二次電子や反射電子102が一次電子線101のエネルギー近くまで加速されるので、二次電子や反射電子102が減速レンズ用アライナ25により偏向される割合は一次電子線101より多少大きくなるだけであり、対物レンズ5より電子源1側に配置されている検出器9に効率よく二次電子や反射電子102を検出させることが可能となる。
【0027】
【発明の効果】
以上説明したように、本発明の電子線装置では対物レンズに対する光軸調整と減速レンズに対する光軸調整をそれぞれ独立に行うことができ、複雑な光軸調整を迅速、かつ正確に行うことが可能となる。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す電子線装置の構成図。
【図2】本発明の第2実施例を示す電子線装置の構成図。
【図3】従来例の電子線装置の構成図。
【図4】本発明の原理を示す電子線装置要部の構成図。
【符号の説明】
1…電子源、2…電子銃レンズ、3…コンデンサレンズ、4…走査偏向器4…対物レンズ、6…試料、7…対向電極、8…減速レンズ、9…検出器、10… 可動絞り、11…引出し電源、12…加速電圧電源、13…コンデンサレンズ電源、14…偏向増幅器、15…対物レンズ電源、16…減速レンズ電源、17…E×B偏向器、19…増幅器、21…第1アライナ 、22…第1アライナ電源、23…第2アライナ 、24…第2アライナ電源、25…減速レンズ用アライナ 、26…減速レンズ用アライナ電源 、31…表示装置 、32…制御部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electron beam apparatus, and more particularly to an electron beam apparatus capable of obtaining high resolution at a low acceleration voltage.
[0002]
[Prior art]
As described in Japanese Examined Patent Publication No. 63-34588, as an electron beam apparatus capable of obtaining high resolution at a low acceleration voltage, a high acceleration voltage is applied while the electron beam passes through an electron lens such as an objective lens. There has been proposed an optical system that decelerates an electron beam immediately before entering a sample.
[0003]
FIG. 3 shows the general configuration. In the figure, 1 is an electron source, 2 is an electron gun lens, 3 is a condenser lens, 5 is an objective lens, 6 is a sample, 8 is a deceleration lens, 12 is an acceleration voltage power supply, 15 is an objective lens power supply, 16 is a deceleration lens power supply , 101 is an electron beam.
[0004]
In order to reduce the aberration caused by the lens axis deviation, it is necessary to adjust the optical axis so that the electron beam 101 passes through the centers of the lenses 2, 3, and 5. Since the aberration of the objective lens 5 is dominant under the use conditions of a normal electron microscope, high resolution can be achieved by aligning the optical axis with the center of the objective lens 5.
[0005]
When the objective lens 5 is composed of a magnetic lens, the objective lens 5 is controlled by adjusting the excitation current supplied from the objective lens power supply 15 to periodically move the image so that the image does not move. The optical axis can be aligned with the center of the screen.
[0006]
However, when not only the objective lens 5 but also other lens aberrations cannot be ignored, it is not sufficient to align the optical axis only with the center of the objective lens 5. For example, as shown in FIG. 3, when an electron beam is incident on the deceleration lens 8 obliquely, the aberration of the deceleration lens 8 increases, and it becomes difficult to form a fine electron beam probe on the sample 6.
[0007]
Here, the voltage supplied to the accelerating voltage power supply 12 applied to the electron source 1 is controlled so that the image does not move by periodically changing the voltage. Although it is possible, this adjustment largely depends not only on the deceleration lens 8 alone but also on the relationship with the optical axes of other lenses. Therefore, the conventional method has a drawback that the optical axis cannot be adjusted independently of the deceleration lens alone.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to realize an electron beam apparatus that can perform optical axis adjustment for an objective lens and optical axis adjustment for a deceleration lens independently, and can perform complex optical axis adjustment quickly and accurately. In particular, an electron beam apparatus with a low acceleration voltage and high resolution is realized.
[0009]
[Means for Solving the Problems]
In the present invention, as shown in FIG. 4, a means for changing the voltage applied to the deceleration lens power supply 16 is provided, so that the axis of the deceleration lens 8 alone can be adjusted. By adjusting the electron beam deflected by the decelerating lens aligner 25 so as to reduce the moving amount of the image with respect to the voltage fluctuation, the electron beam can be made to enter the decelerating lens 8 straightly. If the arrangement of the decelerating lens aligner 25 is between the objective lens 5 and the decelerating lens 8, the decelerating lens aligner 25 does not change the current center of the objective lens 5, and the adjustment to the decelerating lens 8 is performed independently. Can do.
[0010]
According to the electron beam apparatus of the present invention, the optical axis adjustment with respect to the objective lens 5 and the optical axis adjustment with respect to the decelerating lens 8 can be performed independently, and complex optical axis adjustment can be performed quickly and accurately. .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a side view of the electron optical system. The primary electron beam 101 emitted from the electron source 1 is subjected to a focusing lens action by the electron gun lens 2, the condenser lens 3, and the objective lens 5, and then is decelerated by the deceleration lens 8 and focused on the sample 6. Reflected electrons reflected from the sample 6 by irradiation of the primary electron beam 101 or secondary electrons 102 generated secondarily in the sample are accelerated by the electric field of the deceleration lens 8 and then detected by the detector 9. The detected signal is amplified and supplied to the display device 31, and becomes a luminance modulation signal.
[0012]
Electron beam deflection scanning is performed by controlling the electron beam by the control unit 32 by supplying a scanning signal sent via the deflection amplifier 14 to the scanning deflector 4. At the same time, a deflection signal synchronized with the electron beam scanning is supplied to the display device 31, and a sample scan image is displayed on the display device 31. The above is the basic configuration of the electron optical system.
[0013]
Next, the adjustment of the optical axis of the electron beam according to the present invention will be described. In the optical axis adjustment, the electron source 1, the condenser lens 3, and the movable aperture 10 can be mechanically moved. Further, a first aligner 21 disposed between the electron gun lens 2 and the condenser lens 3, a second aligner 23 disposed between the condenser lens 3 and the objective lens 5, and between the objective lens 5 and the decelerating lens 7. Adjustment of the electric electron beam is possible by the aligner 25 for the deceleration lens arranged. Each aligner can be either an electromagnetic type or an electrostatic type, and has a function of deflecting an electron beam in an arbitrary direction with a configuration of two sets of two poles, four poles, or more arranged at 90 ° with respect to each other. Have.
[0014]
First, adjustment is performed to align the optical axis of the primary electron beam 101 with the center of the objective lens 5. First, the objective lens 5 and the electron gun lens 2 are driven to focus the primary electron beam 101 on the sample 6. Next, the excitation current supplied to the objective lens 5 is periodically changed to adjust the position of the electron source 1 or the amount supplied to the first aligner 21 so that the image movement is minimized. .
[0015]
Next, the condenser lens 3 is set to a predetermined excitation, and the excitation current supplied to the objective lens 5 is periodically changed to adjust the position of the condenser lens 3 or the first aligner 21 and the second aligner 23. To adjust the image movement to a minimum. Finally, the movable aperture 10 is inserted on the optical axis, and the excitation current supplied to the objective lens 5 is periodically changed again to adjust the position of the movable aperture 10 to minimize the image movement. Make adjustments as follows. The above is the adjustment for obtaining the current center with respect to the objective lens 5.
[0016]
Next, optical axis adjustment for the deceleration lens 8 is performed. The decelerating lens 8 includes a sample 6 and a counter electrode 7 disposed so as to face the sample 6. The sample potential is set to be more negative than the potential of the counter electrode. For example, the primary electron beam 101 accelerated to 10 keV by the acceleration power source 12 is decelerated by a deceleration electric field formed between the counter electrode 7 set to the ground potential and the sample 6 set to −9.5 kV, and is applied to the sample 6. Is irradiated with an energy of 0.5 keV. Here, if the primary electron beam 101 is incident perpendicular to the deceleration electric field, the trajectory of the primary electron beam 101 does not change even if the deceleration electric field fluctuates. The trajectory of the primary electron beam 101 changes in response to the change, and another point on the sample is irradiated.
[0017]
Therefore, if the voltage supplied from the deceleration lens power supply 16 to the deceleration lens 8 is varied, the electron beam is obliquely incident on the deceleration lens 8 and the image moves greatly due to the voltage variation, but the deceleration lens aligner 25 is adjusted. Thus, if the image is blurred at the same position even if the voltage is varied, the condition is such that the primary electron beam 101 is perpendicularly incident on the deceleration lens 8, and the aberration of the deceleration lens 8 is minimized.
[0018]
The fluctuation voltage signal supplied to the deceleration lens power supply 16 may be a sawtooth wave signal, a sine wave signal, or a signal similar to them as long as the fluctuation width is constant. The arrangement of the decelerating lens aligner 25 is independent of the decelerating lens 8 without changing the current center of the objective lens 5 if the decelerating lens aligner 25 is on the objective lens 5 or between the objective lens 5 and the decelerating lens 8. The optical axis can be adjusted.
[0019]
Next, a second embodiment of the present invention is shown in FIG. The decelerating lens aligner 25 is disposed in the vicinity of the lens principal surface of the objective lens 5 together with the scanning deflector 4. In this case, since the scanning deflector 4 and the deceleration lens aligner 25 have the same function of deflecting the electron beam, the single scanning deflector 4 may be used instead.
[0020]
That is, the scanning deflector 4 is supplied with a scanning signal via the deflection amplifier 14 and a deflection signal via the deceleration lens aligner power supply 26. In this embodiment, an E × B deflector 17 is provided in the detection system. When the decelerating lens 8 for decelerating the primary electron beam is provided in the electron optical system, the secondary electrons and the reflected electrons 102 are also accelerated by the decelerating lens 8, so that the secondary electrons and the reflected electrons 102 are detected by the E × B deflector 17. The detection efficiency is improved by deflecting in the direction of the vessel.
[0021]
With such a configuration, if the decelerating lens aligner 25 is between the E × B deflector 17 and the objective lens 5, it is possible to detect secondary electrons efficiently. That is, since the secondary electrons and the reflected electrons 102 are detected by the detector 9 without passing through the deceleration lens aligner 25, the deceleration lens aligner is not affected at all by the trajectory of the secondary electrons and the reflected electrons 102. You can adjust 25 to adjust the optical axis.
[0022]
In the above embodiment, the objective lens 5 is configured by a magnetic lens. However, even when the objective lens is configured by an electrostatic lens, the voltage applied to the electrode of the objective lens 5 is varied to change the objective lens. Independently of the adjustment of aligning the optical axis, the optical axis adjustment for the deceleration lens can be performed using the deceleration lens aligner 25 arranged between the objective lens 5 and the deceleration lens 8, and the object of the present invention is achieved. can do.
[0023]
Further, in the above embodiment, the sample 6 was set to a negative potential, but even when the sample 6 is grounded, if the relative potential between the sample and the other electrode is set in the same manner as in this embodiment, Aim can be achieved.
[0024]
In the above embodiment, the decelerating lens 8 is formed between the sample 6 and the counter electrode 7. However, an electrode having the same potential as that of the sample 6 is provided between the sample 6 and the counter electrode 7. The object of the present invention can also be achieved by a configuration in which a deceleration lens action is mainly formed between the potential electrode and the counter electrode 7.
[0025]
Further, in the above embodiment, the case where the detector 9 or the detector 9 and the E × B deflector 17 are on the sample 2 side from the objective lens 5 has been described. However, the detector 9 or the detector 9 and the E × B deflector is described. Even when 17 is arranged closer to the electron source 1 than the objective lens 5, the irradiation energy of the primary electron beam 101 to the sample 2 is small, and the deceleration lens aligner 25 is placed between the deceleration lens 8 and the objective lens 5. Thus, the object of the present invention can be achieved.
[0026]
That is, under the condition that the deceleration rate of the primary electron beam 101 by the deceleration lens 8 is large and the sample irradiation energy is small, the secondary electrons and the reflected electrons 102 are accelerated to near the energy of the primary electron beam 101 by the deceleration lens 8. The rate at which the secondary electrons and reflected electrons 102 are deflected by the decelerating lens aligner 25 is only slightly larger than that of the primary electron beam 101, and the second electron and the reflected electrons 102 are efficiently applied to the detector 9 disposed on the electron source 1 side from the objective lens 5. Secondary electrons and reflected electrons 102 can be detected.
[0027]
【The invention's effect】
As described above, in the electron beam apparatus of the present invention, the optical axis adjustment with respect to the objective lens and the optical axis adjustment with respect to the decelerating lens can be performed independently, and complex optical axis adjustment can be performed quickly and accurately. It becomes.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an electron beam apparatus according to a first embodiment of the present invention.
FIG. 2 is a configuration diagram of an electron beam apparatus showing a second embodiment of the present invention.
FIG. 3 is a configuration diagram of a conventional electron beam apparatus.
FIG. 4 is a configuration diagram of a main part of an electron beam apparatus showing the principle of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electron source, 2 ... Electron gun lens, 3 ... Condenser lens, 4 ... Scanning deflector 4 ... Objective lens, 6 ... Sample, 7 ... Counter electrode, 8 ... Deceleration lens, 9 ... Detector, 10 ... Movable diaphragm, 11 ... Drawer power supply, 12 ... Acceleration voltage power supply, 13 ... Condenser lens power supply, 14 ... Deflection amplifier, 15 ... Objective lens power supply, 16 ... Deceleration lens power supply, 17 ... E × B deflector, 19 ... Amplifier, 21 ... First Aligner 22 ... first aligner power source 23 ... second aligner 24 ... second aligner power source 25 ... decelerator lens aligner 26 ... decelerator lens aligner power source 31 ... display device 32 ... control unit.

Claims (4)

電子源から放出された電子線を試料上に走査する手段と、
前記電子線を試料上へ集束させるための対物レンズと、
前記電子線走査によって発生した二次電子あるいは反射電子を検出するための検出手段と、
前記対物レンズと試料との間に電子線を減速するための減速電界を形成するための減速電界形成手段と、
前記減速電界に入射する電子線の光軸調整を行なうためのアライナとを備え、
該アライナは前記対物レンズと減速電界形成手段との間に配置されたことを特徴とする電子線装置。
Means for scanning the sample with an electron beam emitted from an electron source;
An objective lens for focusing the electron beam on the sample;
Detection means for detecting secondary electrons or reflected electrons generated by the electron beam scanning;
A decelerating electric field forming means for forming a decelerating electric field for decelerating an electron beam between the objective lens and the sample;
An aligner for adjusting the optical axis of the electron beam incident on the deceleration electric field ,
The electron beam apparatus according to claim 1, wherein the aligner is disposed between the objective lens and the deceleration electric field forming means.
請求項1記載の電子線装置において、
前記減速電界形成手段は、前記試料と対物レンズとの間に配置された減速レンズであることを特徴とする電子線装置。
The electron beam apparatus according to claim 1,
2. The electron beam apparatus according to claim 1, wherein the decelerating electric field forming means is a decelerating lens disposed between the sample and the objective lens.
請求項1記載の電子線装置において、
前記検出手段と前記試料との間に配置されたEXB偏向器を備えることを特徴とする電子線装置。
The electron beam apparatus according to claim 1,
An electron beam apparatus comprising: an EXB deflector disposed between the detection means and the sample.
請求項1に記載の電子線装置において、
前記対物レンズと試料との間に配置された対向電極と、
該対向電極と前記試料間に電位差を供給するための可変電圧源を備えたことを特徴とする電子線装置。
The electron beam apparatus according to claim 1,
A counter electrode disposed between the objective lens and the sample;
An electron beam apparatus comprising a variable voltage source for supplying a potential difference between the counter electrode and the sample.
JP34254998A 1998-12-02 1998-12-02 Electron beam equipment Expired - Fee Related JP3649008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34254998A JP3649008B2 (en) 1998-12-02 1998-12-02 Electron beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34254998A JP3649008B2 (en) 1998-12-02 1998-12-02 Electron beam equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005002008A Division JP3915812B2 (en) 2005-01-07 2005-01-07 Electron beam equipment

Publications (2)

Publication Number Publication Date
JP2000173519A JP2000173519A (en) 2000-06-23
JP3649008B2 true JP3649008B2 (en) 2005-05-18

Family

ID=18354618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34254998A Expired - Fee Related JP3649008B2 (en) 1998-12-02 1998-12-02 Electron beam equipment

Country Status (1)

Country Link
JP (1) JP3649008B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5155224B2 (en) * 2009-03-17 2013-03-06 株式会社日立ハイテクノロジーズ Charged particle beam equipment
CZ2013115A3 (en) * 2010-08-18 2013-04-03 Hitachi High - Technologies Corporation Electron beam apparatus
JP5348152B2 (en) * 2011-02-14 2013-11-20 株式会社日立製作所 Charged particle beam adjustment method and charged particle beam apparatus
JP2017010608A (en) * 2013-10-03 2017-01-12 株式会社日立ハイテクノロジーズ Inclination correction method for charged particle beam, and charged particle beam device
US11764028B2 (en) 2018-05-22 2023-09-19 Hitachi High-Tech Corporation Charged particle beam device and axis adjustment method thereof

Also Published As

Publication number Publication date
JP2000173519A (en) 2000-06-23

Similar Documents

Publication Publication Date Title
US11239053B2 (en) Charged particle beam system and method
US11562880B2 (en) Particle beam system for adjusting the current of individual particle beams
TWI650550B (en) Multi-beam device for high throughput ebi
US5894124A (en) Scanning electron microscope and its analogous device
JP3932894B2 (en) Electron beam equipment
JP2810797B2 (en) Reflection electron microscope
US5670782A (en) Scanning electron microscope and speciman observation method thereby
EP0762468B1 (en) Scanning electron microscope
US7135677B2 (en) Beam guiding arrangement, imaging method, electron microscopy system and electron lithography system
US3717761A (en) Scanning electron microscope
US8421028B2 (en) Device for deflecting or guiding in a particle beam
JP2008198471A (en) Charged particle beam device
JP3649008B2 (en) Electron beam equipment
GB2345574A (en) Apparatus and method for monitoring and tuning an ion beam in an ion implantation apparatus
JPH01220352A (en) Scanning electron microscope and its analogous device
JP3915812B2 (en) Electron beam equipment
US10665423B2 (en) Analyzing energy of charged particles
JPH0227648A (en) Charged beam device
JP3790646B2 (en) Low energy reflection electron microscope
KR100711198B1 (en) Scanning electron microscope
JPS63216256A (en) Charged particle beam device
US20220172920A1 (en) Beam Deflection Device, Aberration Corrector, Monochromator, and Charged Particle Beam Device
JPH0973871A (en) Scanning electron microscope
JP3174307B2 (en) Secondary charged particle analyzer and sample analysis method using the same
JPH1186770A (en) Scanning electron microscope

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees