JPS62106241A - Air-conditioning device - Google Patents

Air-conditioning device

Info

Publication number
JPS62106241A
JPS62106241A JP60247368A JP24736885A JPS62106241A JP S62106241 A JPS62106241 A JP S62106241A JP 60247368 A JP60247368 A JP 60247368A JP 24736885 A JP24736885 A JP 24736885A JP S62106241 A JPS62106241 A JP S62106241A
Authority
JP
Japan
Prior art keywords
compressor
temperature
water temperature
stop
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60247368A
Other languages
Japanese (ja)
Other versions
JPH0332702B2 (en
Inventor
Junichi Kita
北 純一
Takashi Shiga
隆司 志賀
Koji Ishikawa
石川 孝治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60247368A priority Critical patent/JPS62106241A/en
Publication of JPS62106241A publication Critical patent/JPS62106241A/en
Publication of JPH0332702B2 publication Critical patent/JPH0332702B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Abstract

PURPOSE:To control the outlet water temperature of an utilizing side heat exchanger within a predetermined temperature range and prevent freezing in the heat exchanger by a method wherein a compressor operating and stopping means, operating or stopping a compressor on an operating signal or a stopping signal generated from an operating stopping compressor selecting means, is provided in the title device. CONSTITUTION:When a temperature detecting signal, generated from a temperature detector 10, has arrived at a signal level corresponding to a preset temperature, an operating or stopping compressor selecting means 15 selects a compressor 2a or the compressor 2b to be stopped on the basis of an output signal generated from a compressor stopping water temperature judging means 11, and a selected compressor operating and stopping means 3a for A series or the same means 13b for B series stops the operation of the compressor. On the other hand, when the output signal generated from the compressor stopping water temperature judging means 11 is supplied, the temperature detecting signal generated from the temperature detector 9 is memorized. When a signal level difference between the temperature detecting signal and the other temperature detecting signal, generated from the temperature detector 9 later, has arrived at the signal level difference corresponding to a preset temperature difference, the compressor 2a or the same 2b which is to be operated is selected by the operating and stopping compressor selecting means 15 on an output signal generated from an inlet water temperature changing amount judging means 14, whereby the compressor operating and stopping means 13a or the same means 13b starts said compressor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、複数の圧縮機を有する空気調和装置の能力
及び空調用循環水の流量が変化しても、空気調和装置の
運転に支障なく、上記循環水温度を所定の温度範囲に容
量制御できる空気調和装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention enables the operation of an air conditioner having a plurality of compressors without any problem even if the capacity of the air conditioner and the flow rate of circulating water for air conditioning change. , relates to an air conditioner capable of capacity-controlling the temperature of the circulating water within a predetermined temperature range.

〔従来の技術〕[Conventional technology]

従来、複数の圧縮機を有する空気調和装置の空調用循環
水の温度制御及び容量制御の方法としては、利用側熱交
換器の入口水温で行なうものが一般に用いられていた。
Conventionally, as a method for controlling the temperature and capacity of circulating water for air conditioning in an air conditioner having a plurality of compressors, a method using the inlet water temperature of a heat exchanger on the user side has generally been used.

第6図において、(1)は互いに独立する2台の圧縮機
(2a)、(2b) 、非利用側熱交換器(aa)、(
8b) 、絞り装置(4a)、(4b)及び利用側熱交
換器(5a)、(5b) +こより構成された互いに独
立した冷凍サイクル^3を有する空気調和装置であり、
非利用側熱交換器(8a)、(21b) lこは送風機
(50a)、(50b)により空気が取り入れられる。
In Fig. 6, (1) indicates two mutually independent compressors (2a), (2b), an unused side heat exchanger (aa), (
8b) An air conditioner having a mutually independent refrigeration cycle ^3 composed of a throttle device (4a), (4b) and a user-side heat exchanger (5a), (5b),
Air is taken into the non-use side heat exchangers (8a), (21b) by blowers (50a), (50b).

また利用側熱交換器(5a)、(5b)には空調用循環
水の流入・流出を行うtこめの流入管(6)および流出
管(7)が並列Iこ接続されており、各利用側熱交換器
(5a)。
In addition, an inflow pipe (6) and an outflow pipe (7) for inflowing and outflowing circulating water for air conditioning are connected in parallel to the heat exchangers (5a) and (5b) on the user side. Side heat exchanger (5a).

(5b)に空調用循環水が取り入れられる。(8)は流
入管(6)の段重流部に感温部(8a)が設けられた容
量制御を行うrコめの温度検出装置である。図中実線矢
印は冷媒の流れ方向を、破線矢印は空調用循環水の流れ
方向を示す。
Circulating water for air conditioning is taken in (5b). (8) is a second temperature detection device for capacity control, which is provided with a temperature sensing section (8a) in the multi-stage flow section of the inflow pipe (6). In the figure, solid line arrows indicate the flow direction of the refrigerant, and dashed line arrows indicate the flow direction of the air conditioning circulating water.

かかる構成にある空気調和装置(1)の作用1こついて
説明する。圧縮機(2a)、(2b)より吐出されtコ
高圧ガス冷媒は、非利用側熱交換器(la)、(8b)
に導かれ送風機(50a)、(50b)により取り入れ
られた空気に放熱して凝縮し、絞り装置(4a)、(4
b)にて減圧され、利用側熱交換器(5a)、(5b)
に導かれ蒸発するとともに、利用側熱交換器(5a)、
(5b)を流通する空調用循環水c以下冷水という)を
冷却し、圧縮機(2a)、(2b)に戻るという周知の
冷凍サイクルを構成している。また、冷水の流入口(6
)および流出口(7)には冷水循環ポンプおよび室内フ
ァンコイルユニットが水配管〔以上図示せず〕Iこよっ
て接続されており、利用側熱交換器(5a)、(5b)
により供給される冷水によって室内の冷房を行う。また
、冷水流入管(6)に感温部(8a)を設けである温度
検出装置(8)は冷水入口温度つまり、室内ファンコイ
ルユニット通過後の冷水温度に応じて圧縮機(2a)、
(2b)の発停を制御し、常時負荷に見合った冷水を供
給する1こめのものである。第6図は、前記温度検出袋
@(8)の作動温度特性及び空気調和装置(1)の運転
状態を示すものであり、温度検出装置(8)は互いに独
立する2個の接点を有する2ステツプ形サーモとしてい
る。つまり、その設定温度を例えば高温側切濡度を10
,5℃、高温何人温度を13.5℃、低温側切温度9℃
、低温何人温度を12℃としており、圧縮機(2a)は
高温側接点により。
One function of the air conditioner (1) having such a configuration will be explained. The high pressure gas refrigerant discharged from the compressors (2a) and (2b) is transferred to the non-use side heat exchangers (la) and (8b).
The air is guided by the blowers (50a) and (50b) and condensed by radiating heat to the air, which is then drawn into the expansion devices (4a) and (4).
The pressure is reduced in b), and the user side heat exchanger (5a), (5b)
At the same time, the heat exchanger on the user side (5a),
It constitutes a well-known refrigeration cycle in which air-conditioning circulating water (hereinafter referred to as cold water) flowing through (5b) is cooled and returned to the compressors (2a) and (2b). In addition, the cold water inlet (6
) and the outlet (7) are connected to a cold water circulation pump and an indoor fan coil unit through water piping (not shown), and the user side heat exchangers (5a), (5b)
The room is cooled by the cold water supplied by the system. In addition, the temperature detection device (8), which is provided with a temperature sensing part (8a) in the cold water inflow pipe (6), detects the temperature of the compressor (2a) according to the cold water inlet temperature, that is, the temperature of the cold water after passing through the indoor fan coil unit.
This is a one-time system that controls the start and stop of (2b) and constantly supplies cold water commensurate with the load. FIG. 6 shows the operating temperature characteristics of the temperature detection bag @ (8) and the operating state of the air conditioner (1). It is a step type thermostat. In other words, the set temperature, for example, the high temperature side cutting wetness, is 10
,5℃, high temperature 13.5℃, low temperature 9℃
, the low-temperature temperature is 12°C, and the compressor (2a) is operated by the high-temperature side contact.

圧縮機(2b〕は低温側接点により発停が制御されてい
る。従って、室内ファンコイルユニット側における冷房
負荷が減少した場合には、冷水入口温度は室内からの採
熱量が小さくなるために低下し、その温度が高温側切温
度の10.5℃〔こ達すると圧縮機(2a)の運転は停
止し、冷房負荷は圧縮機(2b)のみの運転fこよって
補われる。更に、冷房負荷が減少した場合には、冷水入
口温度が更(こ低下し、低温側切温度9℃に達すると圧
縮機(2b)の運転も停止し、空気調和袋@(1)の運
転は完全シこ停止し、冷房負荷の増大を待機することに
なる。その後冷房負荷が増大すると、温度検出装置(8
)の感温部を設けである冷水流入口(6)における冷水
入口温度は上昇し、その温度が低温何人温度の12℃−
こ達すると圧縮機(2b)が起動し空調用循環水を冷却
し始める。
The compressor (2b) is controlled to start and stop by the low-temperature side contact. Therefore, when the cooling load on the indoor fan coil unit side decreases, the chilled water inlet temperature decreases because the amount of heat extracted from the room decreases. However, when the temperature reaches the high-temperature side cutting temperature of 10.5°C, the operation of the compressor (2a) is stopped, and the cooling load is compensated for by the operation of only the compressor (2b). When the temperature decreases, the cold water inlet temperature further decreases, and when the low temperature side cut temperature reaches 9℃, the operation of the compressor (2b) also stops, and the operation of the air conditioning bag @ (1) is completely shut down. The system will stop and wait for the cooling load to increase.When the cooling load increases thereafter, the temperature detection device (8
) The cold water inlet temperature at the cold water inlet (6), which is provided with a temperature sensing part, rises, and the temperature reaches a temperature of 12℃ -
When this is achieved, the compressor (2b) is activated and begins to cool the circulating water for air conditioning.

更に冷房負荷が増大すると冷水入口温度が上昇し。Furthermore, as the cooling load increases, the cold water inlet temperature rises.

冷水入口温度が高温何人温度の18.5℃Eこ達すると
圧縮機(2a)も起動し、空気調和装置(1)は100
%負荷(ごて運転する。
When the cold water inlet temperature reaches the high temperature of 18.5℃E, the compressor (2a) also starts, and the air conditioner (1) reaches 100℃.
% load (operate with a trowel.

なお、前述は説明を簡略化するために冷房負荷が減少ま
1こは増大の一方向に変化する場合(こついて述べたが
、途中で随時方向が変わる場合でも2台の圧縮機(2a
)、(2b)は温度検出装置(8)により制御されるこ
とは説明するまでもない。
In order to simplify the explanation, the above description is based on the case where the cooling load changes in one direction, either decreasing or increasing.
), (2b) are of course controlled by the temperature detection device (8).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の空気調和装置は上記のようfこ利用側熱交換器の
入口水温シこまって圧縮機の運転を容量制御してい1こ
ため、空気調和装置の能力に変化が生じた場合入口水温
が一定であっても出口水温が変動するTこめ出口水温の
変動幅が大きくなる。また空調用循環水の流量変化によ
っても同様に変動するtこめ、ポンプの能力低下や配管
のつまり等によって上記循環水流量が低下した場合に出
口水温が必要以七に低下し、最悪の場合に至っては利用
側熱交換器内部で水が凍結するおそれがある等の問題が
あった。また入口水温で容量制御する1こめ高温側圧縮
機(2a)が停止する温度は低温側切温度より高く設定
する必要がある。低温側切温度は水の凍結を防止するた
め、通常、利用側熱交換器の出入口温度差を5 deg
以とをとって、水の凍結可能性のある出口水温4℃+5
 degで9℃以上を低温側切温度とする。よって高温
側圧縮機は通常10.5℃程度が最低となり、例えば出
口水温5℃を設定したくても10.5−5 degコ5
.5℃で5℃番こはならなく、また通常は子桁をとるた
めさらに高い温度となる。
As mentioned above, in conventional air conditioners, the operation of the compressor is controlled by the capacity of the inlet water temperature of the heat exchanger on the user side, so even if the capacity of the air conditioner changes, the inlet water temperature remains constant. Even if the outlet water temperature fluctuates, the range of variation in the outlet water temperature becomes large. In addition, the flow rate of circulating water for air conditioning also fluctuates due to changes in the flow rate of circulating water, and if the flow rate of circulating water decreases due to a decrease in pump capacity or clogged pipes, the outlet water temperature will drop more than necessary, and in the worst case Furthermore, there were problems such as the risk of water freezing inside the heat exchanger on the user side. Further, the temperature at which the first high-temperature side compressor (2a), whose capacity is controlled by the inlet water temperature, stops needs to be set higher than the low-temperature side cut-off temperature. In order to prevent water from freezing, the low-temperature side cut temperature is usually set at a temperature difference of 5 degrees at the entrance and exit of the heat exchanger on the user side.
Considering the above, the outlet water temperature where there is a possibility of water freezing is 4℃ + 5
A temperature of 9 degrees Celsius or higher is defined as a low temperature side cutting temperature. Therefore, the minimum temperature for the high temperature side compressor is usually around 10.5℃, for example, even if you want to set the outlet water temperature to 5℃, the temperature is 10.5-5 deg.
.. 5 degrees Celsius does not correspond to 5 degrees Celsius, and the temperature is usually higher because a child beam is taken.

この発明は上記のような問題点を解消するためになされ
たもので空気調和装置の能力や空調用循環水の流量に変
化が生じても、その循環水流量に応じた一定の水温範囲
で圧縮機の容量制御を行ない水温を制御できる空気調和
装置を得ろことを目的とするものである。
This invention was made to solve the above-mentioned problems, and even if the capacity of the air conditioner or the flow rate of circulating water for air conditioning changes, the water can be compressed within a constant water temperature range according to the circulating water flow rate. The purpose is to obtain an air conditioner that can control the capacity of the machine and control the water temperature.

〔問題点を解決するための手段) この発明1こ係る空気調和装置は、冷媒を吸入し圧縮吐
出する冷媒圧縮機と、この圧縮機より供給される冷媒と
被熱交換流体とを熱交換させろ非利用側熱交換器と、上
記圧縮機より供給される冷媒とファンコイルユニット等
の空調負荷装置に循環させる空調用循環水とを熱交換さ
せる利用側熱交換器と、この利用側熱交換器の出口水温
度を検出し、この出口水温度多こ応じた出力信号を発生
する第1の温度検出器と、上記利用側熱交換器の入口水
温度を検出し、この入口水温度に応じ1こ出力信号を発
生する第2の温度検出器と、上記第1の温度検出器から
発生する温度検出信号が予め設定された温度に相当する
信号レベルに達したとき、出力信号を発生する圧縮機停
止水温判定手段と、この圧縮機停止水温判定手段から発
生する出力信号が供給されtことき、上記第2の温度検
出器から発生する温度検出信号を記憶する入口水温記憶
手段と、上記第2の温度検出器から発生する温度検出信
号と上記入口水温記憶手段に記憶された上記温度検出信
号との信号レベル差が予め設定された温度差に相当する
信号レベル差に達し1ことき、出力信号を発生する入口
水温度変化量判定手段と、上記圧縮機停止水温判定手段
から発生する上記出力信号および上記入口水温度変化量
判定手段から発生する上記出力信号に基づき、上記複数
の圧縮機の中から運転または停止させる圧縮機を選択す
ると共に選択された圧縮機の運転または停止信号を発生
させる運転停止圧縮機選択手段と上記運転停止圧縮機選
択手段から発生する運転ま1こは停止信号に基づき1記
圧縮機を運転または停止させる複数の圧縮機運転停止手
段とを設けることにより上記空気調和装置を構成して上
記目的を達成するものである。
[Means for Solving Problems] Invention 1 This air conditioner includes a refrigerant compressor that takes in refrigerant, compresses it and discharges it, and a refrigerant supplied from this compressor and a fluid to be heat exchanged. A non-use side heat exchanger, a use side heat exchanger that exchanges heat between the refrigerant supplied from the compressor and air conditioning circulating water that is circulated to an air conditioning load device such as a fan coil unit, and this use side heat exchanger. A first temperature detector detects the outlet water temperature of the heat exchanger and generates an output signal corresponding to the outlet water temperature; a second temperature sensor that generates an output signal; and a compressor that generates an output signal when the temperature detection signal generated from the first temperature sensor reaches a signal level corresponding to a preset temperature. a stop water temperature determining means, an inlet water temperature storing means for storing a temperature detection signal generated from the second temperature detector when the output signal generated from the compressor stop water temperature determining means is supplied; When the signal level difference between the temperature detection signal generated from the temperature detector and the temperature detection signal stored in the inlet water temperature storage means reaches a signal level difference corresponding to a preset temperature difference, an output signal is generated. Based on the output signal generated from the inlet water temperature change amount determining means, the compressor stop water temperature determining means, and the output signal generated from the inlet water temperature change amount determining means, An operation stop compressor selection means for selecting a compressor to be operated or stopped from among the compressors and generating an operation or stop signal for the selected compressor; and an operation or stop signal generated from the operation stop compressor selection means. The above object is achieved by configuring the above air conditioner by providing a plurality of compressor operation/stop means for operating or stopping the compressor (1).

(作用〕 この発明においては、第1の温度検出器から発生する温
度検出信号が予め設定された温度に相当する信号レベル
に達し1ことき、圧縮機停止水温判定手段から発生する
出力信号に基づき運転停止圧縮機選択手段が停止させる
圧縮機を選択し、選択しtコ方の圧縮機運転停止手段が
圧縮機の運転を停止させる。一方上記圧縮機停止水温判
定手段から発生する出力信号が供給されたとき、そのと
きの上記第2の温度検出器から発生する温度検出信号を
記憶し、この記憶された温度検出信号とその後上記第2
の温度検出器から発生する温度検出信号との信号レベル
差が予め設定された温度差に相当する信号レベル差に達
しtコとき、入口水温度変化量判定手段から発生する出
力信号に基き、運転停止圧縮機選択手段により運転する
圧縮機が選択され上記圧縮機運転停止手段が上記圧縮機
を起動させるように作用するものである。
(Operation) In the present invention, when the temperature detection signal generated from the first temperature sensor reaches a signal level corresponding to a preset temperature, the temperature detection signal generated from the first temperature detector is based on the output signal generated from the compressor stop water temperature determining means. The operation stop compressor selection means selects the compressor to be stopped, and the selected compressor operation stop means stops the operation of the compressor.Meanwhile, an output signal generated from the compressor stop water temperature determination means is supplied. , the temperature detection signal generated from the second temperature sensor at that time is stored, and this stored temperature detection signal and the second
When the signal level difference with the temperature detection signal generated from the temperature sensor reaches a signal level difference corresponding to a preset temperature difference, the operation is started based on the output signal generated from the inlet water temperature change amount determining means. The compressor to be operated is selected by the stop compressor selection means, and the compressor operation stop means operates to start the compressor.

〔実施例) 第1図はこの発明の一実施例を示す空気調和装置の全体
構成図である。この実施例の冷凍サイクル側は従来の実
施例と同様であるが、図から明らかなように、制御の部
分が以下の様Iこ構成されている。(9)は利用側熱交
換器(5a)、(5b)の流入管(6)に設けられて入
口水温度を検出し、この入口水温度に応じた出力信号を
発生する第2の温度検出器、α1は上記利用側熱交換器
(5a)、(5b)の流出管(7)に設けられて出口水
温度を検出し、この出口水温度に応じtこ出カイg@を
発生する第1の温度検出器、αυは圧縮機停止水温判定
手段であり、上記第1の温度検出器αQから発生する温
度検出信号が、予め設定された温度に相当する信号レベ
ルに達したとき、出力信号を発生するものである。■は
上記圧縮機停止水温判定手段回から発生する出力信号が
供給されtことき、このときの上記第2の温度検出器(
9)から発生する温度検出信号を記憶する入口水温記憶
手段、α4は上記第2の温度検出器(9)から発生する
温度検出信号と上記入口水温記憶手段@に記憶された上
記温度検出信号との信号レベル差が。
[Embodiment] FIG. 1 is an overall configuration diagram of an air conditioner showing an embodiment of the present invention. The refrigeration cycle side of this embodiment is the same as that of the conventional embodiment, but as is clear from the figure, the control section is configured as follows. (9) is a second temperature detection device installed in the inlet pipe (6) of the user-side heat exchanger (5a), (5b) to detect the inlet water temperature and generate an output signal according to this inlet water temperature. α1 is installed in the outflow pipes (7) of the user-side heat exchangers (5a) and (5b), and detects the outlet water temperature, and generates the output power according to this outlet water temperature. Temperature detector 1, αυ, is a compressor stop water temperature determination means, and when the temperature detection signal generated from the first temperature detector αQ reaches a signal level corresponding to a preset temperature, an output signal is generated. is generated. In (2), the output signal generated from the compressor stop water temperature determining means is supplied, and at this time the second temperature detector (
9), α4 is a temperature detection signal generated from the second temperature detector (9) and the temperature detection signal stored in the inlet water temperature storage means @; signal level difference.

予め設定された温度差fこ相当する信号レベル差に達し
たとき、出力信号を発生する入口水温度変化量判定手段
である。(laa)、(18b)はと記圧縮機停止水温
判定手段東から発生する出力信号に基き上記圧縮機(2
a)、(2b)を停止すると共に1記入口水温度変化量
判定手段α4から発生する出力信号に基づき。
The inlet water temperature change amount determination means generates an output signal when a signal level difference corresponding to a preset temperature difference f is reached. (laa) and (18b) are based on the output signal generated from the compressor stop water temperature determination means east.
Based on the output signal generated from the first inlet water temperature change amount determination means α4 while stopping the steps a) and (2b).

上記圧縮機(2a)、(2b)を起動させる圧縮機運転
停止手段である。C1Gは上記圧縮機停止水温判定手段
叩から発生する出力信号に基づき、圧縮機(2a)。
This is a compressor operation stop means for starting the compressors (2a) and (2b). C1G is the compressor (2a) based on the output signal generated from the compressor stop water temperature determining means.

(2b)共に運転中であればAの冷凍サイクルを、圧g
i(2b)1台のみの運転中であればBの冷凍サイクル
を選択しそれぞれの圧縮6運転・停止手段(こ圧縮機停
止水温判定手段aUの出力信号を出力すると共に、上記
入口水温度変化量判定手段σ4から発生する出力信号に
基づき、圧縮機(2a)、(2b)共に停止中であれば
Bの冷凍サイクルを、圧縮機(2a)1台のみの停止中
であればAの冷凍サイクルを選択し、それぞれの圧縮機
運転・停止手段に入口水温度変化量判定手段aくの出力
信号を出力する運転・停止圧縮機選択手段である。
(2b) If both are in operation, set the refrigeration cycle of A to the pressure g
i (2b) If only one unit is in operation, select the B refrigeration cycle and output the output signal of the compressor stop water temperature determination means aU of each compressor 6 operation/stop means (compressor stop water temperature determination means aU), and check the above-mentioned inlet water temperature change. Based on the output signal generated from the quantity determining means σ4, if both compressors (2a) and (2b) are stopped, the refrigeration cycle of B is started, and if only one compressor (2a) is stopped, the refrigeration cycle of A is started. The operating/stopping compressor selecting means selects a cycle and outputs an output signal of the inlet water temperature change amount determining means to each compressor operating/stopping means.

第2図は第1図εこ示す空気調和装置の電気接続を示す
回路図である。図中、明は制御装置αη内のマイクロコ
ンピュータでありCPU 01 、メモリ(1)1入力
回路(2)、出力回路(資)を万している。曽、(至)
は各温度検出器(9) 、 QOと直列な抵抗、CIB
は各温度検出器(9)、αQの検出出力が入力され、デ
ジタルに変換するA/D変換器であり、その出力は入力
回路同に与えられる。効は運転スイッチ翰と直列な抵抗
FIG. 2 is a circuit diagram showing the electrical connections of the air conditioner shown in FIG. 1. In the figure, a microcomputer in the control device αη includes a CPU 01 , a memory (1), an input circuit (2), and an output circuit (material). Zeng (to)
is each temperature sensor (9), a resistor in series with QO, CIB
is an A/D converter to which the detection outputs of each temperature detector (9) and αQ are inputted and converted into digital data, and the output thereof is given to the same input circuit. The effect is a resistor in series with the operation switch.

■は圧縮機(2a)、(2b)の保護装置■と直列な抵
抗であり、運転スイッチ四及び保護装置(7)の状態信
号もと記入力回路四に与えられる。圧縮機運転・停止手
段(18a)−(18b)は、A−B各冷凍サイクルの
圧縮機用電磁開閉器(図示せず)に信号を出力する補助
リレー(ala)、(81b)及び接点(81a−a)
(2) is a resistor connected in series with the protection device (2) of the compressors (2a) and (2b), and the state signal of the operation switch (4) and the protection device (7) is also applied to the input circuit (4). Compressor operation/stop means (18a)-(18b) includes auxiliary relays (ala), (81b) and contacts ( 81a-a)
.

(81b−a)及び端子(82a ) 、 (a2b)
を有し、トランジスタ(88a)、(88b)は抵抗(
84a)、(84b)を介して出力回路(イ)に接続さ
れている。
(81b-a) and terminal (82a), (a2b)
The transistors (88a) and (88b) have resistors (
It is connected to the output circuit (a) via 84a) and (84b).

次に上記実施例の動作を第3図、第4図を参照しながら
説明する。第8図はマイクロコンピュータ(ト)のメモ
リ(ホ)に記憶された空気調和機のプログラムを示すフ
ローチャート、第4図は本発明Gこよろ空気調和装置の
運転特性線図である。
Next, the operation of the above embodiment will be explained with reference to FIGS. 3 and 4. FIG. 8 is a flowchart showing the air conditioner program stored in the memory (e) of the microcomputer (g), and FIG. 4 is an operating characteristic diagram of the Koyokoro air conditioner according to the present invention.

まず運転スイッチ四を閉にすると、そのON信号が入力
回路−に入力され、第8図に示すステップ(7)が実行
され次にステップ弼の運転開始可能水温であるかどうか
の判定を開始する。この判定は第1図1こ示す制御手段
とは別の制御にて行なわれ運転スイッチ四を「開」→「
閉」にして運転を開始しtこときのみ行われるもので、
第1の温度検出器QOが出口水温を検出することにより
圧縮機(2a)。
First, when the operation switch 4 is closed, the ON signal is input to the input circuit -, step (7) shown in Fig. 8 is executed, and then step 2 starts to determine whether the water temperature is at a temperature that allows operation to start. . This determination is made by a control separate from the control means shown in FIG.
This is only done when the engine is closed and the engine is started.
compressor (2a) by the first temperature detector QO detecting the outlet water temperature.

(2b)を停止させる温度を例えば8℃番こ設定した場
合、この設定温度に対して入口水温度が更に例えば8℃
以上高い場合にr YES Jの判定を下すものである
。この判定で検出する空調用循環水の温度は、利用側熱
交換器(5)の入口水温度を用い、第2の温度検出器(
9)によって検出され、A/D変換器に)によりデジタ
ル化されて入力回路(財)に入力される。
If the temperature at which (2b) is to be stopped is set to, for example, 8°C, the inlet water temperature is further increased to, for example, 8°C with respect to this set temperature.
If the value is higher than that, a determination of r YES J is made. The temperature of the air-conditioning circulating water detected in this judgment uses the inlet water temperature of the user-side heat exchanger (5), and the second temperature detector (
9), is digitized by an A/D converter), and is input to an input circuit.

次に判定さ牡た結果に基づいて、判定がr No Jと
なった場合は再度判定が行なわれ5判定がrYESJに
なるまで判定をくり返す。r YES Jとなればステ
ップ(至)に進み出力回路(財)より出力が出てトラン
ジスタ(88a)、(88b)をオンし補助リレー(l
la)。
Next, based on the result of the determination, if the determination is r No J, the determination is performed again and the determination is repeated until the 5 determination becomes rYESJ. r If YES J, proceed to step (to) and output from the output circuit, turn on transistors (88a) and (88b), and turn on the auxiliary relay (l).
la).

(81b)が励磁されて接点(81a−a)、 (81
b−a)が閉じ。
(81b) is excited and contacts (81a-a), (81
b-a) is closed.

端子(82a)、(82b)よりA、B各系統の圧縮機
用電磁開閉器(図示せず)に信号が出力されて圧縮機(
2a)、(2b)及び圧縮機(2a)、(2b)に連動
しtこ送風機(50a)、(50b)が運転を開始し、
第4図rAJ点で示されるように、出口水温の低下が始
まる。
A signal is output from the terminals (82a) and (82b) to the compressor electromagnetic switches (not shown) of each system A and B, and the compressor (
The blowers (50a) and (50b) start operating in conjunction with 2a) and (2b) and the compressors (2a) and (2b),
As shown at point rAJ in FIG. 4, the outlet water temperature begins to decrease.

次に、ステップ(至)では、圧縮機(2a)、(2b)
 jc 異常がないかどうかの判定が行なわれ、万一異
常の判定が行なわれるとステップに)に進み、出力回路
−よりの出力がなくなり補助リレー(lla)、(81
b)が消勢され、圧縮機(2a)、(2b)及び送風機
(50a)。
Next, in step (to), the compressors (2a) and (2b)
jc It is determined whether there is any abnormality or not, and if it is determined that there is an abnormality, the process proceeds to step), where the output from the output circuit disappears and the auxiliary relay (lla), (81
b) is deenergized, compressors (2a), (2b) and blower (50a).

(50b)が停止する。異常有無の判定は、異常検出器
(1)の信号が入力回路同に入力され、 CPUq値に
て行なわれる。次いでステップ葡〜(財)においては圧
縮機停止水温判定動作及び入口水温記憶動作が行なわn
、検出された出口水温Toと、設定されTこ水温Tsカ
To≦Ts  であるかどうかが判定され、 To≦T
s  でなければステップ(財)に進み、ステップ(6
)(転)錫は実行されない。第4図A点からB点の間が
To>T8  の領域であり、この間圧縮機(2a)、
(2b)は運転を継続し、空調用循環水の温度を低下せ
しめている。
(50b) stops. The presence or absence of an abnormality is determined by inputting the signal from the abnormality detector (1) to the same input circuit and using the CPUq value. Next, in step 葡~(Foundation), compressor stop water temperature determination operation and inlet water temperature storage operation are performed.
, it is determined whether the detected outlet water temperature To and the set water temperature Ts satisfy To≦Ts, and To≦Ts.
If not, proceed to step (goods) and step (6
) (trans) tin is not executed. The area between point A and point B in Fig. 4 is the area of To>T8, and during this period the compressor (2a),
(2b) continues to operate and lowers the temperature of the air conditioning circulating water.

ある時間後、 To≦Tslこなれば、まずステップ(
6)においてA系統の圧縮機が運転中であるかどうかの
判定が行なわれ、運転中であれば(A、8両系統共に運
転している)ステップ(42−a)に進7喚。出力回路
@よりA系統側0〕出力がなくなり、圧縮機(2a)及
び送風機(50a)は停止する。まr、=、A系統圧縮
機(2a)の停止直後マイクロコンピュータ側のメモリ
■に入口水温Ti1aが記憶される。第4図B点はA系
統圧縮機(2a)が停止し1こ点であり、出口水温が8
℃に達しtこことにより停止し7たものである。次にス
テップ(ロ)μsにおいては、ステップに)(ロ)で行
なう水温判定を圧縮機が停止中の冷凍サイクルにのみ実
行するために圧縮機(2a)、(2b) カ運転中か停
止中かを判定するものであり、ステップ(財)ではB系
統の判定が行なわれ、B系統の圧縮機(2b)は運転中
であるtこめステップに)に進み、A系統の判定が行な
われ、停止中であるためステップ(46a) lこ進む
。ここでは入口水温Ti2と記憶さnたA系統圧縮機停
止時の入口水温Ti1aとを比較し、入口水温Ti2が
記憶されtコ入ロ水温Ti1aに対し予め設定された温
度差例几ば2 deg ’C以上上昇すればTi2 >
 Ti1a+ 2となり、圧縮機(2a)運転と判定す
る。しかし1.ファンコイルユニット等の負荷装置の空
調負荷が小さい場合は、B系統の冷凍サイクルが運転を
継続しCいろT:め冷水温度は低下し続けTi2 >T
i la + 2  は成立せずrNOJとなりステッ
プ(至)に戻り実行しr YES Jであわば再びステ
ップ(4)1が実行される、ここ、でB系統の冷凍サイ
クルのみで水温が低下しTO≦Tsが成立すればステッ
プ卿に進み、A系統の圧縮機が運転中か判定さ才する。
After a certain time, if To≦Tsl, step (
In step 6), it is determined whether or not the compressor of system A is in operation, and if it is in operation (both systems A and 8 are in operation), the process advances to step (42-a). Output circuit @A side 0] Output is lost, and the compressor (2a) and blower (50a) stop. Immediately after the A system compressor (2a) is stopped, the inlet water temperature Ti1a is stored in the memory (2) on the microcomputer side. Point B in Figure 4 is the point where the A system compressor (2a) has stopped, and the outlet water temperature is 8.
℃ and stopped due to this. Next, in step (b) μs, in order to perform the water temperature determination performed in step (b) only in the refrigeration cycle when the compressor is stopped, the compressors (2a) and (2b) are either running or stopped. In step (goods), the B system is determined, and the process advances to step (t) where the B system compressor (2b) is in operation, where the A system is determined, Since it is stopped, the process advances to step (46a). Here, the inlet water temperature Ti2 is compared with the stored inlet water temperature Ti1a when the A system compressor is stopped. If it rises more than 'C, Ti2>
Ti1a+2, and it is determined that the compressor (2a) is in operation. But 1. When the air conditioning load of a load device such as a fan coil unit is small, the refrigeration cycle of the B system continues to operate, and the chilled water temperature continues to decrease Ti2 > T
i la + 2 does not hold and becomes rNOJ, which returns to step (to) and executes r YES If ≦Ts is established, the process proceeds to step S1 where it is determined whether the A system compressor is in operation.

この場合既にA系統の圧縮機(2a)は停止しでいる1
こめ「NO」となり、ステップ(42b)に進み、出力
回路□□□よりB系統側の出力がなくなり圧縮@(2b
)及び送風機(50b)は停止する。その直後マイクロ
コンピュータ(ト)のメモリ■に入口水温Ti1bが記
憶される。第4図C点がB系統の圧縮機(2b)が停止
しfこ点である。次にステップ(ロ)に進みB系統の圧
縮機(2b)は停止中であろtこめrNOJとなりステ
ップ(46b)に進む。ステップ(46b)において圧
縮機(2b〕が停止後、冷水の温度L:昇;こよってD
点に向い徐々に水温が上昇し、入口水温Ti2と記憶さ
れt:B系統圧縮機停止時の人口水温Ti1b とを比
較し、入口水温Ti2が記憶されf、:入口水温Ti1
b fこ対し予め設定されTこ温ftf差例んば2de
g℃以[二上昇1゛ればTi2>Filb+2  とf
(すfE縮機運転と判定し5、ステップ(,47b)に
進す、B系統の圧縮機(2b)及び送風機(50b)が
運転され、B系統冷凍サイクルは冷水温度を低下させる
べく作動を開始する。次に再びステップ(至)番こ戻り
、保護装置の作動がないか判定し、なければステップI
に進む。ステップc−においては検出された出口水温T
oと、設定された水温TsがTO≦Tsであるかどうか
が判定される。この場合は例えば空訣負荷が増大し、B
系統冷凍サイクルのみでは冷水温度が低下せず、逆に上
昇しtことすると、 To≦Tsが成立せずr No 
Jとなりステップ■へ進み、B系統圧縮機(2b月よ運
転中である1こめステップ(四へ、A系統圧1191(
2a )は停止中でするでこめステップ(46a、)へ
と進ム、、ステップ(46a) !こおいて冷水の温度
が上昇17人口水温Ti2と、記憶さtlJ:A系統圧
hl tl停止時の人口水温Tima  とを比較し入
口水qTi2が、記1λ・\れ1こ入[コ水温Ttia
fこ対し予め設定へ才1、す一温度差例えば2 deg
 ℃以1ニヒ昇す;nばf”i2>Ti1a+2となり
、圧a礪運転と判定し、ステップ(47a)舊ζ、rA
系統の圧−ii GA (、2a ) 、% 、7送J
[Xl(5すa)が運転され、以後上記フローチャート
により各冷凍サイクルの運転・停止がくり返される。第
4図E点が圧縮機(至)が再び運転を始めた点である。
In this case, the compressor (2a) of system A has already stopped.
The result is "NO", and the process proceeds to step (42b), where the output from the B system side disappears from the output circuit □□□, and compression @ (2b
) and the blower (50b) are stopped. Immediately after that, the inlet water temperature Ti1b is stored in the memory (2) of the microcomputer (g). Point C in FIG. 4 is point f when the compressor (2b) of system B stops. Next, the process proceeds to step (b), and the compressor (2b) of the B system is stopped and becomes NOJ, and the process proceeds to step (46b). After the compressor (2b) is stopped in step (46b), the temperature L of the cold water increases;
The water temperature gradually rises toward the point, and is stored as inlet water temperature Ti2. t: The artificial water temperature Ti1b when the B system compressor is stopped is compared, and the inlet water temperature Ti2 is stored. f: Inlet water temperature Ti1
For example, 2de is the pre-set temperature difference between b and f.
If the temperature rises from g℃ to 1, then Ti2>Filb+2 and f
(S fE compressor operation is determined and the process proceeds to Step 5, step (47b). The B system compressor (2b) and blower (50b) are operated, and the B system refrigeration cycle is activated to lower the chilled water temperature. Next, go back to step (to) again and determine if the protective device has been activated, and if not, go to step I.
Proceed to. In step c-, the detected outlet water temperature T
It is determined whether or not o and the set water temperature Ts satisfy TO≦Ts. In this case, for example, the air load increases and B
If the chilled water temperature does not decrease in the system refrigeration cycle alone, but increases instead, To≦Ts does not hold and r No
J, proceed to step ■, and check the B system compressor (2b month).
2a) is stopped and advances to step (46a,), step (46a)! Here, the temperature of the cold water rises 17 The artificial water temperature Ti2 is compared with the stored artificial water temperature Tima when the A system pressure hl is stopped, and the inlet water qTi2 is found to be
Preset the temperature difference between 1 and 2 degrees, for example, 2 degrees.
℃ rises by 1 nihi; if nf"i2>Ti1a+2, it is determined that the pressure a is in operation, and step (47a) 舊ζ, rA
System pressure-ii GA (, 2a), %, 7 feed J
[Xl (5s a) is operated, and thereafter the operation and stop of each refrigeration cycle are repeated according to the above flowchart. Point E in FIG. 4 is the point at which the compressor (to) starts operating again.

なお、上記実施例では空冷式の冷房専用空気調和装置の
場合について述べたが、水冷式についても同じであり、
またヒートポンプ式空気調和装置においても冷房時はも
ちろん、暖房時においては設定水温及び水温の変化方向
を逆にすれば、上記実施例と同様の効果を奏する。
In addition, although the above embodiment describes the case of an air-cooled cooling-only air conditioner, the same applies to a water-cooled type.
Further, in a heat pump type air conditioner as well, the same effects as in the above embodiment can be obtained by reversing the set water temperature and the direction of water temperature change during heating as well as during cooling.

〔発明の効果〕〔Effect of the invention〕

以上のようfここの発明によれば、冷媒を吸入し圧縮吐
出する冷媒圧縮機と、この圧縮機より供給される冷媒と
被熱交換流体とを熱交換させる非利用側熱交換器と、上
記圧縮機より供給される冷媒とファンコイルユニット等
の空調負荷装置との間で循環させる空調用循環水とを熱
交換させる利用側熱交換器とからなる互いに独立した複
数の冷凍サイクル、この利用側熱交換器の出口水温度を
検出し、この出口水温度に応じた出力信号を発生する第
1の温度検出器と、上記利用側熱交換器の入口水温度を
検出し、この入口水温度1こ応じ1こ出力信号を発生す
る第2の温度検出器と、上記第1の温度検出器から発生
する温度検出信号が予め設定された温度に相当する信号
レベルに達したとき、出力信号を発生する圧縮機停止水
温判定手段と、この圧縮機停止水温判定手段から発生す
る出力信号が供給されたとき、上記第2の温度検出器か
ら発生する温度検出信号を記憶する入口水温記憶手段と
、上記第2の温度検出器から発生する温度検出信号と上
記入口水温記憶手段に記憶された上記温度検出信号との
信号レベル差が予め設定された温度差1こ相当する信号
レベル差に達したとき、出力信号を発生する入口水温度
変化量判定手段、及び上記圧縮機停止水温判定手段から
発生する出力信号及び上記入口水温度変化量判定手段か
ら発生する出力信号1こ基づき上記複数の圧縮機の中か
ら運転又は停止させる圧縮機を選択すると共に選択され
た圧縮機の運転または停止信号を発生する運転停止圧縮
機選択手段と上記運転停止圧縮機選択手段から発生する
運転ま1こは停止信号に基づき上記圧縮機を運転ま1こ
は停止させろ圧縮機運転停止手段を設けたことにより5
空気調和装置を構成したので1例えば、循環ポンプの能
力低下や配管のつまり等によって空調用循環水の流量を
変化しても。
As described above, according to the present invention, there is provided a refrigerant compressor that takes in, compresses and discharges refrigerant, a non-use side heat exchanger that exchanges heat between the refrigerant supplied from the compressor and the fluid to be heat exchanged; A plurality of mutually independent refrigeration cycles each consisting of a user-side heat exchanger that exchanges heat between refrigerant supplied from a compressor and air-conditioning circulating water that is circulated between an air-conditioning load device such as a fan coil unit; a first temperature detector that detects the outlet water temperature of the heat exchanger and generates an output signal according to the outlet water temperature; a second temperature sensor that generates an output signal in response to the above, and generates an output signal when the temperature detection signal generated from the first temperature sensor reaches a signal level corresponding to a preset temperature; an inlet water temperature storage means for storing a temperature detection signal generated from the second temperature detector when the output signal generated from the compressor stop water temperature determination means is supplied; When the signal level difference between the temperature detection signal generated from the second temperature detector and the temperature detection signal stored in the inlet water temperature storage means reaches a signal level difference corresponding to a preset temperature difference of 1, Based on the inlet water temperature change determination means for generating an output signal, the output signal generated from the compressor stop water temperature determination means, and the output signal 1 generated from the inlet water temperature change determination means, An operation stop compressor selection means for selecting a compressor to be operated or stopped from among the compressors and generating an operation or stop signal for the selected compressor; and an operation or stop signal generated from the operation stop compressor selection means. Due to the provision of a means to stop the compressor operation,
Since the air conditioner is configured, 1. For example, even if the flow rate of the air conditioning circulating water is changed due to a decrease in the capacity of the circulation pump or a blockage in the piping, etc.

利用側熱交換器の出口水温度を所定の温度範囲に容量制
御することができ、利用側熱交換器内での凍結の危惧を
解消することができた。また空気調和装置の能力に変化
が生じた場合においても、従来装置におけるように、出
口水温度が大幅に変動したり、低い出口水温が得られな
いという問題を解消することができた。
The outlet water temperature of the user-side heat exchanger could be capacity-controlled within a predetermined temperature range, and the fear of freezing inside the user-side heat exchanger could be eliminated. Furthermore, even when the capacity of the air conditioner changes, it is possible to solve the problem of the outlet water temperature fluctuating significantly or being unable to obtain a low outlet water temperature, which is the case with conventional devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す空気調和装置の全体
構成図、第2図は第1図に示す空気調和装置の電気接続
を示す回路図、第8図はその動作を示すフローチャート
、第4図は第1図に示す空気調和機の運転特性線図、第
5図は従来の空気調和装置の構成図、第6図は第5図に
示す空気調和機の運転特性線図である。 図において(2a)(2b)は圧縮機、 (8,a)(
8b)は非利用側熱交換器、 (5a)(5b)は利用
側熱交換器、(9)は万2の温度検出器、αQは第1の
温度検出器、具は圧縮機停止水温判定手段、a3は入口
水温記憶手段。 (18a)(18b)は圧縮機運転・停止手段、 Q4
1は入口水温度変化量判定手段、(イ)は運転・停止圧
縮機選択手段でJ)る。r(お、各図中同一符号は同一
まfこは相当部分を示す。
FIG. 1 is an overall configuration diagram of an air conditioner showing an embodiment of the present invention, FIG. 2 is a circuit diagram showing electrical connections of the air conditioner shown in FIG. 1, and FIG. 8 is a flow chart showing its operation. Fig. 4 is an operating characteristic diagram of the air conditioner shown in Fig. 1, Fig. 5 is a configuration diagram of a conventional air conditioner, and Fig. 6 is an operating characteristic diagram of the air conditioner shown in Fig. 5. . In the figure, (2a) (2b) are compressors, (8, a) (
8b) is the heat exchanger on the non-use side, (5a) and (5b) are the heat exchangers on the use side, (9) is the temperature detector of 12, αQ is the first temperature detector, and the tool is the compressor stop water temperature determination The means and a3 are inlet water temperature storage means. (18a) and (18b) are compressor operation/stop means, Q4
1 is an inlet water temperature change amount determination means, and (A) is an operation/stop compressor selection means. r (The same reference numerals in each figure indicate corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 冷媒を吸入し圧縮吐出する冷媒圧縮機、この圧縮機より
供給される冷媒と被熱交換流体とを熱交換させる非利用
側熱交換器及び上記圧縮機より供給される冷媒とファン
コイルユニット等の空調負荷装置に循環させる空調用循
環水とを熱交換させる利用側熱交換器からなる互いに独
立した複数の冷凍サイクル、この利用側熱交換器の空調
用循環水出口温度を検出し、この出口水温度に応じた出
力信号を発生する第1の温度検出器、上記利用側熱交換
器の空調用循環水入口温度を検出し、この入口水温度に
応じた出力信号を発生する第2の温度検出器、上記第1
の温度検出器から発生する温度検出信号が予め設定され
た温度に相当する信号レベルに達したとき、出力信号を
発生する圧縮機停止水温判定手段、この圧縮機停止水温
判定手段から発生する出力信号が供給されたとき、上記
第2の温度検出器から発生する温度検出信号を記憶する
入口水温記憶手段、上記第2の温度検出器から発生する
温度検出信号と上記入口水温記憶手段に記録された上記
温度検出信号との信号レベル差が予め設定された温度差
に相当する信号レベル差に達したとき、出力信号を発生
する入口水温度変化量判定手段、及び上記圧縮機停止水
温判定手段から発生する出力信号及び上記入口水温変化
量判定手段から発生する出力信号に基づき上記複数の圧
縮機の中から運転又は停止させる圧縮機を選択すると共
に選択された圧縮機の運転または停止信号を発生する運
転停止圧縮機選択手段と上記運転停止圧縮機選択手段か
ら発生する運転または停止信号に基づき上記圧縮機を運
転または停止させる圧縮機運転停止手段を備えた空気調
和装置。
A refrigerant compressor that sucks in refrigerant and compresses and discharges it, a non-use side heat exchanger that exchanges heat between the refrigerant supplied from this compressor and a fluid to be heat exchanged, and a fan coil unit that connects the refrigerant supplied from the compressor with a fan coil unit, etc. A plurality of mutually independent refrigeration cycles each consisting of a user-side heat exchanger that exchanges heat with the air-conditioning circulating water that is circulated to the air-conditioning load equipment, detects the outlet temperature of the air-conditioning circulating water of the user-side heat exchanger, and a first temperature detector that generates an output signal according to the temperature; a second temperature detector that detects the temperature of the air-conditioning circulating water inlet of the user-side heat exchanger and generates an output signal according to the inlet water temperature; vessel, above 1st
compressor stop water temperature determining means for generating an output signal when the temperature detection signal generated from the temperature detector reaches a signal level corresponding to a preset temperature; an output signal generated from the compressor stop water temperature determining means; is supplied, an inlet water temperature storage means for storing a temperature detection signal generated from the second temperature detector, and a temperature detection signal generated from the second temperature sensor and recorded in the inlet water temperature storage means. Generated from the inlet water temperature change amount determination means and the compressor stop water temperature determination means that generate an output signal when the signal level difference with the temperature detection signal reaches a signal level difference corresponding to a preset temperature difference. Selecting a compressor to operate or stop from among the plurality of compressors based on the output signal generated from the inlet water temperature change amount determination means and the output signal generated from the inlet water temperature change amount determining means, and generating an operation or stop signal for the selected compressor. An air conditioner comprising a compressor to be stopped selection means and a compressor operation stop means for operating or stopping the compressor based on an operation or stop signal generated from the operation or stop compressor selection means.
JP60247368A 1985-11-05 1985-11-05 Air-conditioning device Granted JPS62106241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60247368A JPS62106241A (en) 1985-11-05 1985-11-05 Air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60247368A JPS62106241A (en) 1985-11-05 1985-11-05 Air-conditioning device

Publications (2)

Publication Number Publication Date
JPS62106241A true JPS62106241A (en) 1987-05-16
JPH0332702B2 JPH0332702B2 (en) 1991-05-14

Family

ID=17162383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60247368A Granted JPS62106241A (en) 1985-11-05 1985-11-05 Air-conditioning device

Country Status (1)

Country Link
JP (1) JPS62106241A (en)

Also Published As

Publication number Publication date
JPH0332702B2 (en) 1991-05-14

Similar Documents

Publication Publication Date Title
KR0150812B1 (en) Airconditioner with outdoor air temperature calculating function
KR900001878B1 (en) Refrigeration unit compressor control
KR900005721B1 (en) Control apparatus for airconditioner
KR20030097179A (en) Heat-Pump Air Conditioner's Operating Method
US20060207273A1 (en) Method of controlling over-load cooling operation of air conditioner
JPH06101910A (en) Temperature regulator of refrigerator
JPS62162834A (en) Air conditioner
KR100626425B1 (en) Method for control operating delay of air conditioner
JP3320631B2 (en) Cooling and heating equipment
JPH09184662A (en) Air conditioner
JPS62106241A (en) Air-conditioning device
JPS63163725A (en) Air conditioner
JPH05118670A (en) Controlling method for room motor-driven valve in air conditioner
EP3995753A1 (en) Hot water supply system
JPS6321435A (en) Air conditioning device
JP3149932B2 (en) Air conditioner operation control method
JPH05240493A (en) Air conditioner
JP3708245B2 (en) Motorized valve controller for multi-function heat pump system
JPH0875275A (en) Method for controlling operation of refrigerator provided with a plurality of compressors
JP2597011B2 (en) Air conditioner
JPH0721345B2 (en) Control device for air conditioner
JPS6332269A (en) Heat pump system
JPH0442665Y2 (en)
JPH0327830B2 (en)
JPS62190359A (en) Defrostation controller

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees