JPS63163725A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JPS63163725A JPS63163725A JP61314213A JP31421386A JPS63163725A JP S63163725 A JPS63163725 A JP S63163725A JP 61314213 A JP61314213 A JP 61314213A JP 31421386 A JP31421386 A JP 31421386A JP S63163725 A JPS63163725 A JP S63163725A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- compressor
- output signal
- water
- water temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 138
- 238000004378 air conditioning Methods 0.000 claims description 30
- 238000001514 detection method Methods 0.000 claims description 29
- 239000003507 refrigerant Substances 0.000 claims description 17
- 230000006835 compression Effects 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 3
- 238000007710 freezing Methods 0.000 abstract description 11
- 230000008014 freezing Effects 0.000 abstract description 11
- 239000000725 suspension Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 11
- 230000007423 decrease Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000005856 abnormality Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000005057 refrigeration Methods 0.000 description 3
- 230000002528 anti-freeze Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 229930091051 Arenine Natural products 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/025—Compressor control by controlling speed
- F25B2600/0251—Compressor control by controlling speed with on-off operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2117—Temperatures of an evaporator
- F25B2700/21171—Temperatures of an evaporator of the fluid cooled by the evaporator
- F25B2700/21172—Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2117—Temperatures of an evaporator
- F25B2700/21171—Temperatures of an evaporator of the fluid cooled by the evaporator
- F25B2700/21173—Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、空気調和装置の空調用循環水系の不具合に
よって、循環水が停止しても、循環水全凍結させること
なく圧縮機を停止し熱交換器の破損を未然に防止できる
空気調和装置に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] This invention is capable of stopping a compressor without completely freezing the circulating water even if the circulating water stops due to a malfunction in the air conditioning circulating water system of an air conditioner. The present invention relates to an air conditioner that can prevent damage to a heat exchanger.
従来、木刀式の空気調和装置の空調用循環水の凍結防止
の方法としては、利用側熱交換器の出口水温度を検出し
て、一定の水温以下に低下すれば圧縮機全停止させる方
法が一般に用いられており、第4図、第5図に示すよう
なものとなってい友。Conventionally, the method of preventing freezing of the circulating water for air conditioning in a wooden air conditioner is to detect the outlet water temperature of the user side heat exchanger and completely stop the compressor if the water temperature drops below a certain level. It is commonly used, and has the form shown in Figures 4 and 5.
図において、1は圧縮機、2は冷媒ガスを凝縮する為の
非利用側熱交換器、3は非利用側熱交換器に空気を送る
送風機、4は液冷媒を減圧する絞り装置、5は例えば、
ファンコイルユニット等の空調負荷装置7との間で循環
させる空調用循環水と上記圧縮機1より供給される冷媒
とを熱交換する為の利用側熱交換器で凋知の冷凍サイク
ルを構成している。又、5a及び5bは利用側熱交換器
5の水入口部及び水出口部、60は水出口部5bに取付
けられた凍結防止用温度開閉器、64は水入口部5aに
取付けられた温度調節器、7は空調用循環水配管8によ
り利用側熱交換器5と接続されたファンコイルユニット
である。In the figure, 1 is a compressor, 2 is a heat exchanger on the non-use side for condensing refrigerant gas, 3 is a blower that sends air to the heat exchanger on the non-use side, 4 is a throttle device to reduce the pressure of the liquid refrigerant, and 5 is a for example,
Kochi's refrigeration cycle is comprised of a user-side heat exchanger for exchanging heat between air-conditioning circulating water circulated between an air-conditioning load device 7 such as a fan coil unit, and the refrigerant supplied from the compressor 1. ing. Further, 5a and 5b are the water inlet and water outlet of the heat exchanger 5 on the user side, 60 is a temperature switch for preventing freezing attached to the water outlet 5b, and 64 is a temperature controller attached to the water inlet 5a. A fan coil unit 7 is connected to the user-side heat exchanger 5 by an air conditioning circulating water pipe 8.
60aは下記の回路に電源を投入するための凍結防止用
温度開閉器60の接点、61は運転スイッチ、62は停
止スイッチで、自己保持用リレーコイル63と直列に接
続されており自己保持用リレー63の接点63aは運転
スイッチ61と並列に接続されている。またもう一方の
接点63bは、温度調節器64の接点64a及び圧縮@
1の運転用電磁開閉器コイル65と直列に接続されてい
る。60a is a contact of the antifreeze temperature switch 60 for turning on the power to the following circuit, 61 is an operation switch, and 62 is a stop switch, which is connected in series with the self-holding relay coil 63, and is a self-holding relay. The contact 63a of 63 is connected in parallel with the operation switch 61. The other contact 63b is the contact 64a of the temperature regulator 64 and the compression@
It is connected in series with the operating electromagnetic switch coil 65 of No. 1.
次に動作について説明する。まず電源全投入後、運転ス
イッチ61を入れると停止スィッチ62全通して自己保
持用リレーコイル63が付勢され、接点63a及び63
bが閉じ、接点63aによって運転スイッチ61は短絡
され自己保持用リレーコイル63は自己保持され、また
接点63bによっては温度調節器64の接点64af、
通じて圧縮機運転用電磁開閉器コイル65が付勢されて
圧縮機1及びこれに連動して送風機3が運転を開始する
。圧縮機1で、吐出され九冷媒ガスは非利用側熱交換器
2で、送風機3により冷却され液冷媒となり、絞り装置
4にて減圧され利用側熱交換器5にて水入口部5aより
流入した空調用循環水と熱交換し、冷媒は熱を奪って蒸
発し圧縮機lへ返る。Next, the operation will be explained. First, after the power is fully turned on, when the operation switch 61 is turned on, the stop switch 62 is fully connected and the self-holding relay coil 63 is energized, and the contacts 63a and 63 are turned on.
b is closed, the operation switch 61 is short-circuited by the contact 63a, and the self-holding relay coil 63 is self-held, and the contact 64af of the temperature regulator 64 is closed by the contact 63b.
As a result, the electromagnetic switch coil 65 for operating the compressor is energized, and the compressor 1 and the blower 3 start operating in conjunction with the compressor 1. The refrigerant gas discharged from the compressor 1 is cooled by the blower 3 in the non-use side heat exchanger 2 to become liquid refrigerant, the pressure is reduced by the expansion device 4, and the gas flows into the use side heat exchanger 5 from the water inlet 5a. The refrigerant exchanges heat with the circulating water for air conditioning, removes heat, evaporates, and returns to the compressor l.
又、冷媒と熱交換した空調用循環水は熱を奪われて冷水
となり、水出口Iasbより7アンコイルユニツト7に
入り案内空気を冷却し、温度が上昇した水は再び利用側
熱交換器5に流入し冷却される。In addition, the circulating water for air conditioning that has exchanged heat with the refrigerant is deprived of heat and becomes cold water, which enters the 7 uncoil unit 7 from the water outlet Iasb to cool the guiding air, and the water whose temperature has risen is returned to the user side heat exchanger 5. and is cooled.
以上の冷媒及び水のサイクルをくり返し空気調和を行な
う。しかしてファンコイルユニット7における冷房負荷
が減少した場合には、空調用循環水温度は室内空気から
の採熱量が小さくなるために低下し、その温度が温度調
節器64の設定温度に達すると接点64aが開となるた
め電磁開閉器コイル65が消勢される為、圧縮機1の運
転は停止し、空調用循環水の温度上昇を待機することに
なる。その後、温度調節器64の感温部が設けられであ
る利用側熱交換器5の本人口部5aの入口温度が上昇し
、その温度が温度調節器64の復帰温度に達すると接点
64aが閉じ、電磁開閉器コイル65が付勢され、再び
圧縮機1が運転を開始し、冷却を始める。Air conditioning is performed by repeating the above refrigerant and water cycle. Therefore, when the cooling load on the fan coil unit 7 decreases, the temperature of the air-conditioning circulating water decreases because the amount of heat extracted from the indoor air decreases, and when the temperature reaches the set temperature of the temperature controller 64, the contact point Since the electromagnetic switch coil 64a is opened, the electromagnetic switch coil 65 is deenergized, so the operation of the compressor 1 is stopped and the temperature of the air conditioning circulating water is waited for to rise. Thereafter, the inlet temperature of the main body part 5a of the user-side heat exchanger 5, in which the temperature sensing part of the temperature regulator 64 is provided, rises, and when the temperature reaches the return temperature of the temperature regulator 64, the contact 64a closes. , the electromagnetic switch coil 65 is energized, the compressor 1 starts operating again, and starts cooling.
又、空調用循環水の流量が減少し次場合及び外気温度の
低下により、冷凍サイクルの能力が増大し九場合等には
、利用側熱交換器5の水入口部5aと水出口部5bの水
温差が大きくなり、水入口部5aの水温が温度調節器6
4の設定温度以上であっても、水出口部5bの水温が水
の凍結温度(=O℃)に近くなると、凍結防止用温度開
閉器60が作動し、その接点60aが制御回路の電源を
遮断し、運転用電磁開閉器コイル65が消勢される為、
圧縮機1の運転は停止し、空調用循環水の凍結は防止さ
れる。In addition, when the flow rate of circulating water for air conditioning decreases, or when the capacity of the refrigeration cycle increases due to a drop in outside air temperature, the water inlet 5a and water outlet 5b of the user-side heat exchanger 5 are As the difference in water temperature increases, the water temperature at the water inlet 5a changes to the temperature controller 6.
Even if the temperature is higher than the set temperature in step 4, when the water temperature at the water outlet 5b approaches the freezing temperature of water (=0°C), the antifreeze temperature switch 60 is activated, and its contact 60a turns off the power to the control circuit. Since the operation electromagnetic switch coil 65 is deenergized,
The operation of the compressor 1 is stopped, and the circulating water for air conditioning is prevented from freezing.
従来の空気調和装置は以上のように構成されているので
、上記のように利用側熱交換器の出口水温によって、空
調用循環水の凍結を防止していた几め、空調用循環水配
管のつまりや、ポンプの故障等により、水が全く流れな
くなつ九場合には、水温の低下は、利用側熱交換器内で
のみ進行し、水入口部5a及び水出口部5bの水温は低
下しない九め、温度用調節器64および凍結防止温度開
閉器60による凍結保護はできない。又、上記に加えて
空調用循環水流量を検知するフロースイッチを取付ける
対策もあるがフロースイッチが高価であることと、定期
的にフロースイッチの接水部を洗浄する必要がある等の
問題点があり九。Conventional air conditioners are configured as described above, and as mentioned above, the temperature of the outlet water of the user-side heat exchanger is used to prevent the circulating water for air conditioning from freezing. In the event that water stops flowing at all due to a pump failure, etc., the water temperature will decrease only within the user-side heat exchanger, and the water temperature at the water inlet 5a and water outlet 5b will not decrease. Ninth, freeze protection by the temperature regulator 64 and freeze prevention temperature switch 60 is not possible. In addition to the above, there are also measures to install a flow switch that detects the flow rate of circulating water for air conditioning, but there are problems such as the flow switch is expensive and the water contact part of the flow switch needs to be cleaned regularly. There are nine.
この発明は、上記のような問題点を解消するためになさ
れたもので、フロースイッチのような高価なものは使用
せず、空調用循環水の断水時も凍結保護ができる空気調
和装置を得ることを目的とする。This invention was made to solve the above-mentioned problems, and provides an air conditioner that does not use expensive items such as flow switches and can provide freeze protection even when the circulating water for air conditioning is cut off. The purpose is to
この発明に係る空気調和装置は、冷媒を吸入し圧縮吐出
する圧縮機と、この圧縮機より供給される冷媒と被熱交
換流体とを熱交換させる非利用側熱交換器と、上記圧縮
機より供給される冷媒とファンコイルユニット等の空調
負荷装置との間で循環させる空調用循環水とを熱交換さ
せる利用側熱交換器と、この利用側熱交換器の出口水温
度を検出し、この出口水温度に応じ比出力信号を発生す
るI!1の温度検出器と、上記利用側熱交換器の入口広
温度を検出し、この入口広温度に応じた出力信号を発生
する第2の温度検出器と、;つ第2の温度検出器から発
生する温度検出信号が予め設定され次温度に相当する信
号レベルに達したとき、運転又は停止の出力信号を発生
する圧縮機運転・停止水温判定手段と、この圧縮機運転
・停止水温判定手段から発生する運転出力信号が供給さ
れ九とき、上記第2の温度検出器から発生する温度検出
信号と上記第1の温度検出器から発生する温度検出信号
との信号しくル差を記憶する出入口水温温度差記憶手段
と、上記圧縮機運転・停止水温判定手段から発生する運
転出力信号が供給されたとき、上記圧縮機の運転時間を
計測する圧縮機運転時間計測手段と、この圧縮機運転時
間計測手段によp計測された時間が一定以上になれば、
上記第2の温度検出器から発生する温度検出信号と上記
第Iの温度検出器から発生する温度検出信号との信号レ
ベル差から上記出入口水温温度差記憶手段内の信号レベ
ル差を差引い次位が予め設定された温度差に相当する信
号レベル差に達しないとき、出力信号を発生する出入口
水温温度差判定手段と、上記圧縮機運転・停止水温判定
手段から発生する上記出力信号に基づき上記圧縮機を運
転又は停止すると共に上記出入口水温温度差判定手段か
ら発生する上記出力信号に基づき上記圧縮機を停止させ
る圧縮機運転・停止手段とを備えたものである。The air conditioner according to the present invention includes a compressor that sucks in refrigerant, compresses and discharges it, a non-use side heat exchanger that exchanges heat between the refrigerant supplied from the compressor and a fluid to be heat exchanged, and a A user-side heat exchanger that exchanges heat between the supplied refrigerant and air-conditioning circulating water that is circulated between an air conditioning load device such as a fan coil unit, and detects the outlet water temperature of this user-side heat exchanger. I! which generates a specific output signal according to the outlet water temperature! a second temperature detector that detects a wide temperature at the inlet of the heat exchanger on the user side and generates an output signal according to the wide temperature at the inlet; compressor operation/stop water temperature determination means for generating an output signal for operation or stop when the generated temperature detection signal reaches a preset signal level corresponding to the next temperature; An inlet/outlet water temperature that stores a signal difference between a temperature detection signal generated from the second temperature sensor and a temperature detection signal generated from the first temperature sensor when the generated operating output signal is supplied. a compressor operating time measuring means for measuring the operating time of the compressor when an operating output signal generated from the compressor operating/stopping water temperature determining means is supplied; and the compressor operating time measuring means. If the time measured by p exceeds a certain level,
The signal level difference in the inlet/outlet water temperature temperature difference storage means is subtracted from the signal level difference between the temperature detection signal generated from the second temperature detector and the temperature detection signal generated from the I-th temperature detector. the compressor based on the output signal generated from the inlet/outlet water temperature temperature difference determining means which generates an output signal when a signal level difference corresponding to a preset temperature difference is not reached; and the compressor operation/stop water temperature determining means. and a compressor operation/stop means for operating or stopping the compressor based on the output signal generated from the inlet/outlet water temperature difference determining means.
この発明においては、第2の温度検出器から発生する温
度検出信号が予め設定された温度に相当する信号レベル
に達し九とき、圧縮機運転・停止水温判定手段から発生
する出力信号に基づき圧縮機運転・停止手段が圧縮機を
運転させる。同時に、上記圧縮機運転・停止水温判定手
段から発生する運転出力信号に基づき、出入口水温温度
差記憶手段が上記第2の温度検出器から発生する温度検
出信号と上記第1の温度検出器から発生する温度検出信
号のレベル差を記憶する。一方、上記圧縮機運転・停止
水温判定手段から発生する出力信号が供給されたときか
ら上記圧縮機の運転時間を計測し、一定時間になれば上
記第2の温度検出器から発生する温度検出信号と上記w
c1の温度検出器から発生する温度検出信号との信号レ
ベル差から上記出入口水温温度差記憶手段に記憶され九
レベル差を差引りて補正し比信号レベル差が予め設定さ
れた温度差に相当する信号レベル差に達しないとき、出
入口水温温度差判定手段から発生する出力信号に基き、
上記圧縮機運転・停止手段が上記圧縮機を停止させるよ
うに作用するものである。In this invention, when the temperature detection signal generated from the second temperature detector reaches a signal level corresponding to a preset temperature, the compressor is operated based on the output signal generated from the compressor operation/stop water temperature determining means. The operation/stopping means operates the compressor. At the same time, based on the operation output signal generated from the compressor operation/stop water temperature determination means, the inlet/outlet water temperature temperature difference storage means generates a temperature detection signal generated from the second temperature detector and a temperature detection signal generated from the first temperature detector. The level difference between the temperature detection signals is stored. On the other hand, the operating time of the compressor is measured from the time when the output signal generated from the compressor operation/stop water temperature determination means is supplied, and when a certain time has elapsed, a temperature detection signal is generated from the second temperature detector. and above lol
From the signal level difference with the temperature detection signal generated from the temperature detector c1, the nine level difference stored in the inlet/outlet water temperature temperature difference storage means is corrected, and the ratio signal level difference corresponds to the preset temperature difference. When the signal level difference is not reached, based on the output signal generated from the inlet and outlet water temperature difference determination means,
The compressor operation/stop means acts to stop the compressor.
以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図はこの発明の一実施例を示す空気調和装置の全体
構成図である。この実施例の冷凍サイクル側は従来の実
施例と同様であるが、図から明らかなように、制御の部
分が以下の様に構成されている。9は利用側熱交換器5
の水入口部5aiC設けられて入口広温度を検出し、こ
の入口広温度に応じた出力信号全発生する第2の温度検
出器、lOは上記利用側熱交換器5の水出口部5bに設
けられて出口水温度を検出し、この出口水温度に応じた
出力信号を発生する第1の温度検出器である。FIG. 1 is an overall configuration diagram of an air conditioner showing an embodiment of the present invention. The refrigeration cycle side of this embodiment is the same as that of the conventional embodiment, but as is clear from the figure, the control part is configured as follows. 9 is the user side heat exchanger 5
A second temperature detector, IO, is provided at the water outlet section 5b of the user-side heat exchanger 5, and is provided at the water inlet section 5aiC to detect the inlet wide temperature and generate an output signal according to the inlet wide temperature. This is a first temperature detector that detects the temperature of the outlet water and generates an output signal corresponding to the temperature of the outlet water.
11は圧縮機運転・停止水温判定手段で、上記第2の温
度検出器9から発生する温度検出信号が、予め設定され
t温度に相当する信号レベルに達し九とき、運転又は停
止の出力信号を発生するものである。12は上記圧縮機
運転・停止水温判定手段11から発生する運転出力信号
が供給され念とき、圧縮機1の運転時間の計測を開始し
、一定時間になれば出力信号を発生する圧縮機運転時間
計測手段である。13は圧縮機運転・停止水温判定手段
11から発生する運転出力信号が供給され九とき、第1
の温度検出器10から発生する温度検出信号と、第2の
温度検出器9から発生する温度検出信号のレベル差を記
憶する出入口水温温度差記憶手段、14は第2の温度検
出器9から発生する温度検出信号と第1の温度検出器1
0から発生する温度検出信号とを比較し、且つ出入口水
温温度差記憶手段13に記憶された信号によシ補正され
比信号レベル差が、予め設定された温度差に相当する信
号レベル差に達しないとき、出力信号を発生する出入口
水温温度差判定手段である。15は上記圧縮機運転・停
止水温判定手段11から発生する出力信号に基き上記圧
縮機1全運転又は停止させ且つ出入口水温温度差判定手
段14から発生する出力信号に基づき圧縮機1を停止さ
せる圧縮機運転・停止手段である。Reference numeral 11 denotes compressor operation/stop water temperature determination means, which outputs an output signal for operation or stop when the temperature detection signal generated from the second temperature detector 9 reaches a signal level corresponding to a preset temperature t. It is something that occurs. Reference numeral 12 indicates a compressor operating time which starts measuring the operating time of the compressor 1 when the operating output signal generated from the compressor operating/stopping water temperature determining means 11 is supplied, and generates an output signal when a certain period of time is reached. It is a means of measurement. 13, when the operating output signal generated from the compressor operation/stop water temperature determining means 11 is supplied, the first
Inlet/outlet water temperature temperature difference storage means for storing the level difference between the temperature detection signal generated from the temperature detector 10 and the temperature detection signal generated from the second temperature detector 9; Temperature detection signal and first temperature detector 1
The ratio signal level difference is compared with the temperature detection signal generated from 0 and corrected by the signal stored in the inlet/outlet water temperature temperature difference storage means 13, and the ratio signal level difference reaches a signal level difference corresponding to a preset temperature difference. This is an inlet/outlet water temperature difference determining means that generates an output signal when the output signal is not detected. Reference numeral 15 denotes a compressor for fully operating or stopping the compressor 1 based on the output signal generated from the compressor operation/stop water temperature determining means 11, and stopping the compressor 1 based on the output signal generated from the inlet and outlet water temperature temperature difference determining means 14. It is a means for starting and stopping the machine.
第2図は第1図に示す空気調和装置の電気接続を示す回
路図である。図中、18は制御装置17内のマイクロコ
ンピュータで、CPU(中央処理装置)19.メモリ2
0.入力回路21.出力回路22を写している。23.
24は各温度検出器9.10と各々直列な分圧抵抗、2
5は各温度検出器9.10の検出出力が入力され、アナ
ログ信号をデジタル信号に変換するA/D変換器で、そ
の出力は入力回路21に与えられる。27は運転スイッ
チ29と直列な抵抗、28は圧縮機1の保護装置30と
直列な抵抗で、運転スイッチ29及び保護装置30の状
態信号も上記入力回路21に与えられる。圧縮機運転・
停止手段15は、不図示の圧縮機用電磁開閉器に信号を
出力する補助リレーコイル31及びその接点31a、及
びその端子32t−肩し、コレクタが補助リレーコイル
31を介して電源+Vに接続され、エミッタが接地され
たトランジスタ330ペースは抵抗34を介して出力回
路22に妥続されている。FIG. 2 is a circuit diagram showing electrical connections of the air conditioner shown in FIG. 1. In the figure, 18 is a microcomputer in the control device 17, and a CPU (central processing unit) 19. memory 2
0. Input circuit 21. The output circuit 22 is shown. 23.
24 is a voltage dividing resistor connected in series with each temperature sensor 9 and 10, 2
Reference numeral 5 denotes an A/D converter to which the detection outputs of the temperature detectors 9 and 10 are input, converting the analog signal into a digital signal, and the output thereof is given to the input circuit 21. 27 is a resistor connected in series with the operation switch 29; 28 is a resistor connected in series with the protection device 30 of the compressor 1; status signals of the operation switch 29 and the protection device 30 are also applied to the input circuit 21. Compressor operation/
The stop means 15 includes an auxiliary relay coil 31 that outputs a signal to an electromagnetic switch for a compressor (not shown), its contacts 31a, and its terminals 32t, and the collector is connected to the power supply +V via the auxiliary relay coil 31. , a grounded emitter transistor 330 is connected to the output circuit 22 via a resistor 34.
次に上記実施例の動作を第3図を参照しながら説明する
。第3図はマイクロコンピュータ18のメモリ201C
記憶され九この発明に係る空気調和装置のプログラムを
示すフローチャートである。Next, the operation of the above embodiment will be explained with reference to FIG. Figure 3 shows the memory 201C of the microcomputer 18.
9 is a flowchart showing a stored program of the air conditioner according to the present invention.
まず運転スイッチ29を閉にすると、そのON信号が入
力回路21に入力され、第3図に示すステップ36が実
行され次にステップ37の運転開始可能水温であるか否
かの判定全開始する。この判定は運転スイッチ29を「
開」→開」にして運転を開始し九ときのみ行われるもの
で、第2の温度検出器9が検出することにより圧縮機1
f、停止させる温度を例えば10℃に設定した場合、こ
の設定温度に対して入口広温度が更に例えば3℃以上高
い場合にrYEsJの判定を下すものである。この判定
で検出する空調用循環水の温度は、利用側熱交換器5の
入口広温度を用い、第2の温度検出器9によって検出さ
れ、んの変換器25によりデジタル化されて入力回路2
1に入力される。次に判定され友結釆に基づいて、判定
がrNOJとなった場合は再度、判定が行なわれ、判定
がrYESJ Kなるまで判定をくり返す。rYEsJ
となればステップ38に進み出力回路22より出力が出
てトランジスタ33をオンし、補助リレーコイル31が
励磁されて接点31aが閉じ、端子32より不図示の圧
縮機用電磁開閉器に信号が出力されて圧縮機1及び圧縮
機1に連動した送S、磯3が運転を開始し、出口水温の
低下が始まる。次ステツプ39では圧縮機1の運転と同
時に、圧縮機運転時間の計測がマイクロコンピュータ−
18のCPUI 9にて開始され、メモリ20内に時間
が積算される。ステップ40では、町2及び第1の温反
検出器9.10によ夕圧縮機lの運転と同時に利用側熱
交換器5の水入口部5a及び水出口部5bの検出され友
水温Ti及びToの温度差Tdが計算され、マイクロコ
ンピュータ−18のメモリ20内に記憶される。次に、
ステップ41では、圧縮様lに異常がないかどうかの判
定すなわち保護装置i30が作動していないかどうかの
判定が行なわれ、万一、異常有りの判定が行なわれると
、ステップ51に進み、出力回路22からの出力がなく
なり、補助リレーコイル31が消勢され、その接点31
aが開き、圧縮機1及び、送風機3が停止する。First, when the operation switch 29 is closed, the ON signal is inputted to the input circuit 21, step 36 shown in FIG. 3 is executed, and then step 37 is started to determine whether or not the water temperature is at a temperature that allows operation to start. This judgment is made when the operation switch 29 is
This is done only when the operation is started by switching from "open" to "open", and when the second temperature detector 9 detects the temperature, the compressor 1
f. When the stopping temperature is set to, for example, 10° C., rYEsJ is determined when the inlet wide temperature is higher than the set temperature by, for example, 3° C. or more. The temperature of the air-conditioning circulating water detected in this judgment is detected by the second temperature detector 9 using the inlet wide temperature of the user-side heat exchanger 5, and is digitized by the converter 25 and sent to the input circuit 2.
1 is input. Next, if the determination is rNOJ based on the result of the determination, the determination is made again, and the determination is repeated until the determination becomes rYESJK. rYEsJ
If so, proceed to step 38, where an output is output from the output circuit 22, turning on the transistor 33, energizing the auxiliary relay coil 31, closing the contact 31a, and outputting a signal from the terminal 32 to an electromagnetic switch for the compressor (not shown). Then, the compressor 1, the feeder S connected to the compressor 1, and the rock 3 start operating, and the outlet water temperature starts to decrease. In the next step 39, the microcomputer simultaneously measures the compressor operating time while the compressor 1 is running.
18, and the time is accumulated in the memory 20. In step 40, the water temperature Ti and the water temperature Ti and The temperature difference Td of To is calculated and stored in the memory 20 of the microcomputer-18. next,
In step 41, it is determined whether or not there is any abnormality in the compression mode l, that is, whether or not the protection device i30 is not operating.If it is determined that there is an abnormality, the process proceeds to step 51, where the output There is no output from circuit 22, auxiliary relay coil 31 is deenergized, and its contacts 31
a opens, and the compressor 1 and blower 3 stop.
異常の有無の判定は、保護装置30の信号が入力回路2
1に入力され、CPUI 9にて行なわれる。ステップ
41で異常無しと判定した後に、次いで、ステップ42
では、空調用循環水の凍結の恐れがないか否かが判定さ
れ、利用側熱交換器5の水出口部5bの検出され友水温
Toが水の凍結温度Tfに対し、To > Tfである
か否かが判定され、To) ’l’(でなければ凍結の
恐れがあるtめ、ステップ51に進み、同様に圧縮機1
は、停止される。The presence or absence of an abnormality is determined when the signal from the protection device 30 is input to the input circuit 2.
1 and executed on the CPUI 9. After determining that there is no abnormality in step 41, step 42
Then, it is determined whether or not there is a risk of freezing of the circulating water for air conditioning, and the detected friend water temperature To of the water outlet portion 5b of the user-side heat exchanger 5 satisfies To > Tf with respect to the freezing temperature of water Tf. It is determined whether or not the compressor 1 is
will be stopped.
ステップ42において凍結の恐れがないと判定し元後に
、次いで、ステップ43においては圧縮機運転時間の計
測が行なわれているか否かの判定が行なわれ、行なわれ
ていなければステップ47に進み1行なわれていればス
テップ44に進み計測され九時間’rrnCが予め設定
され九時間Tms (例えば2分)に対し、T′ff1
c≧Tmsか否かが判定され、’I’mc≧’I’ms
でなければステップ47に進む。ステップ47では、圧
縮機運転・停止水温判定動作が行なわれ、検出され九入
口水温T1と設定された水温TsがTi≦うであるか否
かが判定され、Ti≦Tsでなければステップ41に戻
シ、ステップ41〜47をく夕返す。After it is determined in step 42 that there is no risk of freezing, it is then determined in step 43 whether or not the compressor operating time is being measured.If not, the process advances to step 47 and one step is performed. If so, the process proceeds to step 44, where the measurement is performed and 9 hours'rrnC is set in advance, and T'ff1 is set for 9 hours Tms (for example, 2 minutes).
It is determined whether c≧Tms or not, 'I'mc≧'I'ms
If not, proceed to step 47. In step 47, a compressor operation/stop water temperature determination operation is performed, and it is determined whether or not the detected nine inlet water temperature T1 and the set water temperature Ts are Ti≦Ts.If Ti≦Ts, the process proceeds to Step 41. Go back and repeat steps 41-47.
例えば圧縮の運転時間を計測開始してから2分後、ステ
ップ44において、Tmc≧Tmsと判定すればステッ
プ45に進み、出入口水温温度差判定動作が行なわれ、
第2の温度検出器9により検出された入口水温Tiと第
1の温度検出6工0によ夕検出された出口水温5及びメ
モリ20内に記憶され次温度差Tcl用いて、2 <
l Ti −To−T(11であるか否かが判定される
。つtrは、入口水温Tiと出口水温TOの温度差全知
ることによって、温度差が一定値以上ある場合は、圧縮
機工の運転により、空調用循環水が冷却され且つ利用側
熱交換器5内を水が流れることによって、温度差がつい
ていると判定でき、又、記憶され九温度差Tdt−使用
することにより第1の温度検出器10及び第2の温度検
出器9の検出誤差を補正することができる。For example, two minutes after the start of measuring the compression operation time, if it is determined in step 44 that Tmc≧Tms, the process proceeds to step 45, where an operation is performed to determine the difference in inlet and outlet water temperatures.
Using the inlet water temperature Ti detected by the second temperature detector 9, the outlet water temperature 5 detected by the first temperature detector 6, and the temperature difference Tcl stored in the memory 20, 2 <
It is determined whether or not l Ti -To-T (11).Tr is determined by knowing the temperature difference between the inlet water temperature Ti and the outlet water temperature TO, and if the temperature difference is more than a certain value, the compressor engineer During operation, the circulating water for air conditioning is cooled and the water flows through the heat exchanger 5 on the user side, so that it can be determined that there is a temperature difference. Detection errors of the temperature detector 10 and the second temperature detector 9 can be corrected.
温度差が極めて小さい場合は、圧縮機1の運転により利
用側熱交換器5内の水が冷却されてbるが空調用循環水
配管のつまシャポンプの故障等により水が流れていない
為に水入口部5aと水出口部5bの温度に差がついてい
ないと判定できる。If the temperature difference is extremely small, the water in the heat exchanger 5 on the user side is cooled by the operation of the compressor 1, but the water is not flowing due to a failure of the pump in the circulating water piping for air conditioning, etc. It can be determined that there is no difference in temperature between the inlet section 5a and the water outlet section 5b.
万一、2 < I Ti −To−Td Iで々ければ
空調用循環水の断水と判定されステップ51に進み、上
記と同様にして圧縮機1は、停止する。If 2 < I Ti -To-Td I is not satisfied, it is determined that the air-conditioning circulating water has been cut off, and the process proceeds to step 51, where the compressor 1 is stopped in the same manner as described above.
2 < l Ti −To−’i lであればステップ
46において、圧縮機1の運転時間の計測全終了し、メ
モリ20内に積算された時間がリセットされる。If 2<l Ti -To-'i l, in step 46, the measurement of the operating time of the compressor 1 is completely completed, and the accumulated time in the memory 20 is reset.
次いで、ステップ47に進み前述と同様Ti≦TSであ
るか否かの判定が行なわれ、入口水温Tiが設定され次
水温Tsより低ければステップ48に進み、圧縮機1は
、テーモ停止し、その後、ステップ49で空調用循環水
の温度上昇を待機することとなる。Next, the process proceeds to step 47, where it is determined whether Ti≦TS as described above. If the inlet water temperature Ti is set and is lower than the next water temperature Ts, the process proceeds to step 48, where the compressor 1 is stopped, and then In step 49, the system waits for the temperature of the air conditioning circulating water to rise.
次に、ステップ50においてTi)Ts+3でないと判
断すれば、ステップ49に戻り、上記動作を繰返す。ス
テップ50において、圧縮機lの停止後、空調用循環水
の温度上昇によって入口水温Tiが上昇し、入口水温T
iが予め設定され元温度Tsに対し、例えば、3℃以上
上昇すれば、Ti>TS+3 となジ、圧縮機1の運転
と判定し、ステップ38に戻り、圧縮機1及び送風機3
が運転され、以後、上記フローチャートにより、運転・
停止がくり返される。Next, if it is determined in step 50 that Ti)Ts+3 is not established, the process returns to step 49 and the above operation is repeated. In step 50, after the compressor 1 is stopped, the inlet water temperature Ti increases due to the temperature rise of the circulating water for air conditioning, and the inlet water temperature T
If i is set in advance and the original temperature Ts rises by, for example, 3°C or more, then Ti>TS+3, and it is determined that the compressor 1 is in operation, and the process returns to step 38, where the compressor 1 and the blower 3
is operated, and from then on, the operation and
There are repeated stops.
なお、上記実施例では空冷式の冷房専用空気調和装置の
場合について述べ九が、水冷式についても同じであり、
ま友、ヒートポンプ式空気調和装置においても上記実施
例と同様の効果を奏する。In addition, in the above embodiment, the case of an air-cooled cooling-only air conditioner is described, but the same applies to a water-cooled type.
Friend, a heat pump type air conditioner also has the same effect as the above embodiment.
以上のようにこの発明によれば、冷媒を吸入し圧縮吐出
する圧縮機と、この圧縮機より供給される冷媒と被熱交
換流体とを熱交換させる非利用側熱交換器と、上記圧縮
機より供給される冷媒とファンコイルユニット等の空調
負荷装置との間で循環させる空調用循環水と全熱交換さ
せる利用側熱又換器と、この利用側熱交換器の出口水温
度を検出し、この出口水温度に応じた出力信号を発生す
る第1の温度検出器と、上記利用側熱交換器の入口水濃
度を検出し、この入口水濃度に応じた出力信号を発生す
る第2の温度検出器と、上記性2の温度検出器から発生
する温度検出信号が予め設定された温度に相当する信号
レベルに達し九とき、運転又は停止の出力信号を発生す
る圧縮機運転・停止水温判定手段とこの圧縮機運転・停
止水温判定手段から発生する運転出力信号が供給され九
とき、上記第1の温度検出器から発生する温度検出信号
と上記第2の温度検出器から発生する温度検出信号との
信号レベル差を記憶する出入口水温温度差記憶手段と、
上記圧a#機運転・停止水温判定手段から発生する運転
出力信号が供給されたとき、圧縮機?運転時間を計測す
る圧縮機運転時間計測手段と、この圧縮機運転時間計測
手段により計測されt時間が一定以上になれば、上記第
λの温度検出器から発生する温度検出信号と上記第1の
温度検出器から発生する温度検出信号との信号レベル差
から上記出入口水温温度差記憶手段内のレベル差を差引
い比値が予め設定され次温度差に相当する信号レベル差
に達しないとき、出力信号を発生する出入口水温温度差
判定手段と、上記圧縮機運転・停止水温判定手段から発
生する出力信号に基づき上記圧縮機全運転又は停止する
と共に上記出入口水温温度差判定手段から発生する出力
信号に基づき上記圧縮機を停止させる圧縮機運転・停止
手段とを設けたことにより、空気調和装置を構成したの
で、例えば、循環ポンプの故障や配管のつまり等によっ
て空調用循環水が流れなくなっても、利用側熱交換器内
での凍結金子想できる九め、利用側熱交換器内での凍結
の危惧を解消することができ友。As described above, according to the present invention, there is provided a compressor that takes in refrigerant, compresses and discharges it, a non-use side heat exchanger that exchanges heat between the refrigerant supplied from the compressor and a fluid to be heat exchanged, and a A user-side heat exchanger exchanges total heat with the air-conditioning circulating water that circulates between the refrigerant supplied by the fan coil unit and an air-conditioning load device such as a fan coil unit, and the outlet water temperature of this user-side heat exchanger is detected. , a first temperature detector that generates an output signal according to the outlet water temperature, and a second temperature detector that detects the inlet water concentration of the user-side heat exchanger and generates an output signal according to the inlet water concentration. A temperature sensor and a compressor operation/stop water temperature determination system that generates an output signal for operation or stop when the temperature detection signal generated from the temperature sensor of Type 2 reaches a signal level corresponding to a preset temperature. and a temperature detection signal generated from the first temperature detector and a temperature detection signal generated from the second temperature detector when the operation output signal generated from the compressor operation/stop water temperature determination means is supplied. an inlet/outlet water temperature difference storage means for storing a signal level difference between the
When the operation output signal generated from the pressure a# machine operation/stop water temperature determination means is supplied, the compressor? A compressor operating time measuring means for measuring the operating time, and when the time t measured by the compressor operating time measuring means exceeds a certain value, the temperature detection signal generated from the λ-th temperature sensor and the first The level difference in the inlet/outlet water temperature temperature difference storage means is subtracted from the signal level difference between the temperature detection signal generated from the temperature sensor and when the ratio value does not reach the preset signal level difference corresponding to the next temperature difference, the output signal is The compressor is fully operated or stopped based on the output signal generated from the compressor operation/stop water temperature determination means and the output signal generated from the inlet and outlet water temperature difference determination means. Since the air conditioner is constructed by providing a compressor operation/stop means for stopping the compressor, even if the circulating water for air conditioning stops flowing due to, for example, a malfunction of the circulation pump or a blockage in the piping, the system can be used. This eliminates the risk of freezing in the heat exchanger on the user side.
第1図はこの発明の一実施例を示す空気調和装置の全体
構成図、第2図は第1図に示す空気調和装置の電気接続
を示す回路図、第3図はその動作を示すフローチャート
、第4図は従来の空気調和装置の構成図、第5図はその
制御部の′電気回路図である。
1・・・圧縮機、2・・・非利用側熱交換器、5・・・
利用側熱交換器、7・・・ファンコイルユニット等の空
調負荷装置、9・・・第2の温度検出器、10・・・第
1の温度検出器、11・・・圧縮機運転・停止水温判定
手段、12・・・圧縮機運転時間計測手段、13・・・
出入口水温温度差記憶手段、14・・・出入口水温温度
差判定手段、15・・・圧縮機運転・停止手段。
なお、図中同一符号は同一、または相当部分を示す。FIG. 1 is an overall configuration diagram of an air conditioner showing an embodiment of the present invention, FIG. 2 is a circuit diagram showing electrical connections of the air conditioner shown in FIG. 1, and FIG. 3 is a flow chart showing its operation. FIG. 4 is a block diagram of a conventional air conditioner, and FIG. 5 is an electrical circuit diagram of its control section. 1... Compressor, 2... Non-use side heat exchanger, 5...
Utilization side heat exchanger, 7... Air conditioning load device such as fan coil unit, 9... Second temperature detector, 10... First temperature detector, 11... Compressor operation/stop Water temperature determination means, 12... Compressor operating time measurement means, 13...
Inlet/outlet water temperature difference storage means, 14... Inlet/outlet water temperature difference determination means, 15... Compressor operation/stopping means. Note that the same reference numerals in the figures indicate the same or equivalent parts.
Claims (1)
される冷媒と被熱交換流体とを熱交換させる非利用側熱
交換器、上記圧縮機より供給される冷媒を空調負荷装置
との間で循環させる空調用循環水とで熱交換させる利用
側熱交換器、この利用側熱交換器の出口水温度を検出し
、この出口水温度に応じた出力信号を発生する第1の温
度検出器、上記利用側熱交換器の入口水温度を検出し、
この入口水温度に応じた出力信号を発生する第2の温度
検出器、この第2の温度検出器から発生する温度検出信
号が予め設定された温度に相当する信号レベルに達した
とき、上記圧縮機の運転又は停止の出力信号を発生する
圧縮機運転・停止水温判定手段、この圧縮機運転・停止
水温判定手段から発生する運転出力信号が供給されたと
き、上記第2の温度検出器から発生する温度検出信号と
上記第1の温度検出器から発生する温度検出信号との信
号レベル差を記憶する出入口水温温度差記憶手段、上記
圧縮機運転・停止水温判定手段から発生する運転出力信
号が供給されたとき、上記圧縮機の運転時間の計測を開
始する圧縮機運転時間計測手段、この圧縮機運転時間計
測手段により計測された時間が一定値以上になれば上記
第2の温度検出器から発生する温度検出信号と上記第1
の温度検出器から発生する温度検出信号との信号レベル
差から上記出入口水温温度差記憶手段内の信号レベル差
を差引いた値が予め設定された温度差に相当する信号レ
ベル差に達しないとき、出力信号を発生する出入口水温
温度差判定手段、及び上記圧縮機運転・停止水温判定手
段から発生する出力信号に基づき上記圧縮機を運転又は
停止させると共に上記出入口水温温度差判定手段から発
生する出力信号に基づき上記圧縮機を停止させる圧縮機
運転・停止手段を備えた空気調和装置。A compressor that sucks in refrigerant, compresses and discharges it, a non-use side heat exchanger that exchanges heat between the refrigerant supplied by the compressor and the fluid to be heat exchanged, and a heat exchanger that exchanges heat between the refrigerant supplied by the compressor and the air conditioning load device a user-side heat exchanger that exchanges heat with air conditioning circulating water; a first temperature detector that detects the outlet water temperature of the user-side heat exchanger and generates an output signal according to the outlet water temperature; , detect the inlet water temperature of the above-mentioned user-side heat exchanger,
a second temperature sensor that generates an output signal according to the inlet water temperature; when the temperature detection signal generated from the second temperature sensor reaches a signal level corresponding to a preset temperature, the compression A compressor operation/stop water temperature determination means that generates an output signal for operating or stopping the compressor, and when an operation output signal generated from the compressor operation/stop water temperature determination means is supplied, a signal is generated from the second temperature detector. an inlet/outlet water temperature temperature difference storage means for storing a signal level difference between the temperature detection signal generated by the temperature detection signal and the temperature detection signal generated from the first temperature detector; and an operation output signal generated from the compressor operation/stop water temperature determination means. a compressor operating time measuring means that starts measuring the operating time of the compressor when temperature detection signal and the first
When the value obtained by subtracting the signal level difference in the inlet/outlet water temperature temperature difference storage means from the signal level difference with the temperature detection signal generated from the temperature detector does not reach a signal level difference corresponding to a preset temperature difference, An output signal is generated from the inlet/outlet water temperature difference determining means for operating or stopping the compressor based on the output signal generated from the compressor operation/stop water temperature determining means and the inlet/outlet water temperature difference determining means for generating an output signal. An air conditioner comprising a compressor operation/stop means for stopping the compressor based on the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61314213A JPS63163725A (en) | 1986-12-26 | 1986-12-26 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61314213A JPS63163725A (en) | 1986-12-26 | 1986-12-26 | Air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63163725A true JPS63163725A (en) | 1988-07-07 |
Family
ID=18050641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61314213A Pending JPS63163725A (en) | 1986-12-26 | 1986-12-26 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63163725A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02192540A (en) * | 1989-01-18 | 1990-07-30 | Shimizu Corp | Low temperature cold water making device |
JP2003050067A (en) * | 2001-08-03 | 2003-02-21 | Ckd Corp | Cooler and method of judging failure of cooler |
EP2012069A1 (en) * | 2007-06-04 | 2009-01-07 | RHOSS S.p.A. | Method for regulating the delivery temperature of a service fluid in output from a refrigerating machine |
EP2012068A1 (en) * | 2007-06-04 | 2009-01-07 | RHOSS S.p.A. | Method for regulating the delivery temperature of a service fluid in output from a refrigerating machine |
WO2012050087A1 (en) * | 2010-10-15 | 2012-04-19 | 東芝キヤリア株式会社 | Heat source apparatus |
CN113418282A (en) * | 2021-06-07 | 2021-09-21 | 重庆海尔空调器有限公司 | Method and device for controlling air conditioner and multi-split air conditioner |
-
1986
- 1986-12-26 JP JP61314213A patent/JPS63163725A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02192540A (en) * | 1989-01-18 | 1990-07-30 | Shimizu Corp | Low temperature cold water making device |
JPH0477218B2 (en) * | 1989-01-18 | 1992-12-07 | Shimizu Kensetsu Kk | |
JP2003050067A (en) * | 2001-08-03 | 2003-02-21 | Ckd Corp | Cooler and method of judging failure of cooler |
EP2012069A1 (en) * | 2007-06-04 | 2009-01-07 | RHOSS S.p.A. | Method for regulating the delivery temperature of a service fluid in output from a refrigerating machine |
EP2012068A1 (en) * | 2007-06-04 | 2009-01-07 | RHOSS S.p.A. | Method for regulating the delivery temperature of a service fluid in output from a refrigerating machine |
WO2012050087A1 (en) * | 2010-10-15 | 2012-04-19 | 東芝キヤリア株式会社 | Heat source apparatus |
JP5622859B2 (en) * | 2010-10-15 | 2014-11-12 | 東芝キヤリア株式会社 | Heat source equipment |
US9157650B2 (en) | 2010-10-15 | 2015-10-13 | Toshiba Carrier Corporation | Heat source apparatus |
CN113418282A (en) * | 2021-06-07 | 2021-09-21 | 重庆海尔空调器有限公司 | Method and device for controlling air conditioner and multi-split air conditioner |
CN113418282B (en) * | 2021-06-07 | 2022-08-19 | 重庆海尔空调器有限公司 | Method and device for controlling air conditioner and multi-split air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4381549A (en) | Automatic fault diagnostic apparatus for a heat pump air conditioning system | |
US4232530A (en) | Heat pump system compressor start fault detector | |
US3922876A (en) | Energy conservation unit | |
US4301660A (en) | Heat pump system compressor fault detector | |
JPH0674496A (en) | Air-conditioner | |
JPS63163725A (en) | Air conditioner | |
KR0157021B1 (en) | Defrosting method of an airconditioner | |
JP6710312B2 (en) | Air conditioner | |
JPH10197031A (en) | Trouble detector for air conditioner | |
JPS63135743A (en) | Air conditioning apparatus | |
JP2532937B2 (en) | Refrigerator circuit abnormality management system | |
JPH02208437A (en) | Air conditioner | |
JPH05332647A (en) | Air conditioner | |
JPS6321435A (en) | Air conditioning device | |
JPH0754238B2 (en) | Heat storage control method | |
JPH0327830B2 (en) | ||
JPH10170052A (en) | Air conditioner | |
KR19980016168A (en) | DETERMINATION APPARATUS AND METHOD FOR DETERMINING OVERFLOW FAILURE | |
JP2719456B2 (en) | Air conditioner | |
JPH0527019B2 (en) | ||
JP2004198044A (en) | Water heater | |
JPS644067Y2 (en) | ||
JPH05223360A (en) | Air conditioner | |
CA1206557A (en) | Air conditioning heat pump system having an initial frost monitoring control means | |
JPS62106241A (en) | Air-conditioning device |