JPH05118670A - Controlling method for room motor-driven valve in air conditioner - Google Patents

Controlling method for room motor-driven valve in air conditioner

Info

Publication number
JPH05118670A
JPH05118670A JP30824991A JP30824991A JPH05118670A JP H05118670 A JPH05118670 A JP H05118670A JP 30824991 A JP30824991 A JP 30824991A JP 30824991 A JP30824991 A JP 30824991A JP H05118670 A JPH05118670 A JP H05118670A
Authority
JP
Japan
Prior art keywords
refrigerant
indoor
valve
lower limit
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30824991A
Other languages
Japanese (ja)
Other versions
JP2957781B2 (en
Inventor
Sadayasu Nakano
定康 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP30824991A priority Critical patent/JP2957781B2/en
Publication of JPH05118670A publication Critical patent/JPH05118670A/en
Application granted granted Critical
Publication of JP2957781B2 publication Critical patent/JP2957781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent damage of a compressor due to liquid return by making a lower limit value of value travel variable within a predetermined range when the valve travel of a room motor-driven valve is in a lower limit range. CONSTITUTION:The valve travel of a room motor-driven valve 6 is controlled by a stepping motor 60, the valve travel for starting to feed refrigerant is set to about 100 steps of the motor 60, and the valve travel for obtaining a maximum flow rate is set to 500 steps. At the time of room cooling, a controller 50 controls the valve travel of the valve 6 according to a temperature of inflowing refrigerant to a room heat exchanger 7 to be detected by temperature detecting means 51 and a temperature of discharging refrigerant to be detected by temperature detecting means 52. When the valve travel of the valve 6 is in a lower limit range, a temperature of the air to be fed to the exchanger 7 to be detected by temperature detecting means 54 and the temperature of the inflowing refrigerant are compared with a temperature of discharging refrigerant to detect whether the refrigerant flows in the exchanger 7 or not. If it does not flow, lower limit value of the valve travel of the valve 6 is increased by a predetermined one to allow the refrigerant to flow. If it flows and the superheat degree of the refrigerant is a predetermined value or less, its lower limit value is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気調和機における室
内電動弁の制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling an indoor electric valve in an air conditioner.

【0002】[0002]

【従来の技術】従来から、圧縮機、四方弁、室外熱交換
器、室外電動弁、レシーバタンク、室内電動弁、室内熱
交換器、アキュームレータなどを順次連結して形成され
る空気調和機が冷暖房運転や給湯加熱などに汎用されて
いる。
2. Description of the Related Art Conventionally, an air conditioner formed by sequentially connecting a compressor, a four-way valve, an outdoor heat exchanger, an outdoor electric valve, a receiver tank, an indoor electric valve, an indoor heat exchanger, an accumulator, etc. It is commonly used for driving and heating hot water.

【0003】上記空気調和機における室内電動弁は、例
えば特開昭3−84369号公報に提案されているよう
に、冷媒負荷の大きさに対応して全閉と全開との間の適
宜の開度に調整され、これによって冷媒流量が制御さ
れ、冷暖房能力の調整が行われている。
The indoor motor-operated valve in the air conditioner is appropriately opened between fully closed and fully opened depending on the magnitude of the refrigerant load, as proposed in Japanese Patent Laid-Open No. 3-84369. The flow rate of the refrigerant is controlled by this, and the cooling / heating capacity is adjusted.

【0004】[0004]

【発明が解決しようとする課題】通常、室内電動弁の開
度は制御装置から出力される制御信号に基づいてステッ
プモータなどにより調整されている。そして、室内電動
弁を全閉にする際の制御信号、例えばステップ値は一般
に固定されている。しかし、流量は弁によってばらつき
があるので、110ステップでも冷媒が流れ過ぎる室内
電動弁もあれば、逆に115ステップにしても冷媒が全
く流れない室内電動弁もあり、最悪の場合には液戻りが
生じて圧縮機を破損すると云った問題を起こすことがあ
る。また、ばらつきを考慮し、全閉にするステップ値を
弁ごとに現地調整してセットしても、長期間使用してい
る内に室内電動弁自体の経時変化と、圧縮機、室内熱交
換器など他機器の経時変化によって、冷媒流量を確実に
制御することができなくなると云った問題点があり、こ
の点の解決が課題とされていた。
Normally, the opening degree of the indoor electric valve is adjusted by a step motor or the like based on a control signal output from the control device. A control signal for fully closing the indoor motor-operated valve, for example, a step value is generally fixed. However, since the flow rate varies depending on the valve, there are some indoor electrically operated valves in which the refrigerant flows too much even in 110 steps, and conversely, there are some indoor electrically operated valves in which the refrigerant does not flow even in 115 steps. May occur, causing damage to the compressor. In addition, even if the step value for fully closing is adjusted and set on site for each valve in consideration of variations, the indoor motor-operated valve itself will change over time, and the compressor and indoor heat exchanger will change over time. There is a problem that the refrigerant flow rate cannot be reliably controlled due to changes over time in other devices, and it has been a problem to solve this problem.

【0005】[0005]

【課題を解決するための手段】本発明は上記従来技術の
課題を解決するための具体的手段として、圧縮機、四方
弁、室外熱交換器、室外電動弁、レシーバタンク、室内
電動弁、室内熱交換器、アキュームレータなどを冷媒管
を介して順次連結し、冷/暖房回路が形成される空気調
和機の冷房運転時、室内熱交換器を流れる冷媒の出入口
温度差を測定し、この出入口温度差が所定範囲内にある
とき室内電動弁開度を減少させ、前記出入口温度差が前
記所定範囲を超えたとき室内電動弁開度を増加させる室
内電動弁の制御方法において、室内電動弁開度が下限域
にあるとき、開度下限値を一定の範囲内で変更可能とし
たことを特徴とする空気調和機における室内電動弁の制
御方法と、圧縮機、四方弁、室外熱交換器、室外電動
弁、レシーバタンク、室内電動弁、室内熱交換器、アキ
ュームレータなどを冷媒管を介して順次連結し、冷/暖
房回路が形成される空気調和機の冷房運転時、室内熱交
換器を流れる冷媒の出入口温度差を測定し、この出入口
温度差が所定範囲内にあるとき室内電動弁開度を減少さ
せ、前記出入口温度差が前記所定範囲を超えたとき室内
電動弁開度を増加させる室内電動弁の制御方法におい
て、室内熱交換器の空気吸込口に温度検出手段を設け、
圧縮機の冷媒入口に温度検出手段と圧力検出手段とを設
け、室内電動弁開度が下限域にあり、且つ空気吸込口の
温度から室内熱交換器の入口または出口の冷媒温度を減
じた温度差が設定値a以下であるとき、前記室内電動弁
の開度下限値を規定値だけ増加させ、前記温度差が前記
設定値aを超え、且つ圧縮機入口側の冷媒温度と冷媒圧
力から求める過熱度が所定値b以下であるとき、前記室
内電動弁の開度下限値を規定値だけ減少させることを特
徴とする空気調和機における室内電動弁の制御方法を提
供することにより、前記した従来技術の課題を解決する
ものである。
Means for Solving the Problems As a concrete means for solving the above-mentioned problems of the prior art, a compressor, a four-way valve, an outdoor heat exchanger, an outdoor electric valve, a receiver tank, an indoor electric valve, an indoor Heat exchangers, accumulators, etc. are connected in sequence via refrigerant pipes, and during air-conditioning operation of an air conditioner in which a cooling / heating circuit is formed, the inlet / outlet temperature difference of the refrigerant flowing through the indoor heat exchanger is measured, and the inlet / outlet temperature is measured. When the difference is within a predetermined range, the indoor electric valve opening is decreased, and when the inlet / outlet temperature difference exceeds the predetermined range, the indoor electric valve opening is increased. Is in the lower limit region, the lower limit value of the opening can be changed within a certain range, the method for controlling the indoor electric valve in the air conditioner, the compressor, the four-way valve, the outdoor heat exchanger, the outdoor Motorized valve, receiver tank Indoor air-operated valve, indoor heat exchanger, accumulator, etc. are sequentially connected through a refrigerant pipe to measure the temperature difference between the inlet and outlet of the refrigerant flowing through the indoor heat exchanger during the cooling operation of the air conditioner that forms the cooling / heating circuit. Then, in the control method of the indoor motor-operated valve, when the inlet / outlet temperature difference is within a predetermined range, the indoor electrically operated valve opening is decreased, and when the inlet / outlet temperature difference exceeds the predetermined range, the indoor electrically operated valve opening is increased. A temperature detecting means is provided at the air inlet of the indoor heat exchanger,
Temperature detection means and pressure detection means are provided at the refrigerant inlet of the compressor, the indoor motor-operated valve opening is in the lower limit region, and the temperature obtained by subtracting the refrigerant temperature at the inlet or outlet of the indoor heat exchanger from the temperature at the air inlet. When the difference is less than or equal to the set value a, the lower limit value of the opening degree of the indoor motor-operated valve is increased by a specified value, the temperature difference exceeds the set value a, and is calculated from the refrigerant temperature and the refrigerant pressure at the compressor inlet side. By providing a method for controlling an indoor electric valve in an air conditioner, the lower limit of the opening degree of the indoor electric valve is reduced by a specified value when the degree of superheat is a predetermined value b or less. It solves technical problems.

【0006】[0006]

【作用】冷房運転中、室内電動弁の開度が下限域にあっ
て、熱交換のために室内熱交換器に取り入れる空気の温
度から室内熱交換器に出入する冷媒温度を減じた温度差
が設定値a以下で、室内熱交換器に冷媒が流れていない
ことが分かると室内電動弁の開度下限値を規定値だけ増
加して冷媒流量が増加する。また、前記温度差が前記設
定値aを超え、室内熱交換器に冷媒が流れていると確認
され、さらに圧縮機入口側の冷媒温度と冷媒圧力から求
める冷媒の過熱度が所定値b以下であるとき、室内電動
弁の開度下限値を規定値だけ減じて冷媒流量を減少さ
せ、冷媒の過熱を緩和する。
[Function] During the cooling operation, the opening degree of the indoor motor-operated valve is in the lower limit region, and there is a temperature difference obtained by subtracting the refrigerant temperature entering and exiting the indoor heat exchanger from the temperature of the air taken into the indoor heat exchanger for heat exchange. If it is found that the refrigerant is not flowing through the indoor heat exchanger at the set value a or less, the lower limit value of the opening degree of the indoor motor-operated valve is increased by a specified value and the refrigerant flow rate is increased. Further, it is confirmed that the temperature difference exceeds the set value a and the refrigerant is flowing into the indoor heat exchanger, and further, the degree of superheat of the refrigerant obtained from the refrigerant temperature and the refrigerant pressure at the compressor inlet side is equal to or less than the predetermined value b. At some time, the lower limit value of the opening degree of the indoor motor-operated valve is reduced by a specified value to reduce the flow rate of the refrigerant and alleviate overheating of the refrigerant.

【0007】[0007]

【実施例】図1は、本発明になる室内電動弁の制御方法
を採用した空気調和機のシステム図の一例である。図中
1は圧縮機、2は四方弁、3は室外熱交換器、4は室外
電動弁(膨張弁)、5はレシーバタンク、6は室内電動
弁、7は室内熱交換器、8はアキュームレータであり、
冷媒管10を介して順次連結され、実線で示した冷房回
路Aと破線で示した暖房回路Bとが構成され、冷媒温度
を測定するために温度検出手段51、52、53が室内
熱交換器7の出入口と圧縮機1の入口側に設置され、気
温を測定するために温度検出手段54が室内熱交換器7
の空気取り入れ口に設置され、冷媒圧力を測定するため
に圧力検出手段55が圧縮機1の冷媒入口側に設置さ
れ、これら測定手段が測定するデータを処理して室内電
動弁6を開閉するための制御装置50と接続されてい
る。なお、符号Cは室外ユニットの構成範囲を示し、符
号Dは室内ユニットの構成範囲を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an example of a system diagram of an air conditioner adopting a method for controlling an indoor electric valve according to the present invention. In the figure, 1 is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, 4 is an outdoor electric valve (expansion valve), 5 is a receiver tank, 6 is an indoor electric valve, 7 is an indoor heat exchanger, and 8 is an accumulator. And
A cooling circuit A shown by a solid line and a heating circuit B shown by a broken line are sequentially connected via a refrigerant pipe 10, and temperature detecting means 51, 52, 53 are used to measure the refrigerant temperature. 7 are installed at the inlet and outlet of the compressor 1 and the inlet side of the compressor 1, and the temperature detecting means 54 is provided to measure the air temperature.
Is installed at the air intake of the compressor, and the pressure detecting means 55 is installed at the refrigerant inlet side of the compressor 1 to measure the refrigerant pressure, and processes the data measured by these measuring means to open and close the indoor motor-operated valve 6. Is connected to the control device 50. It should be noted that reference symbol C indicates the configuration range of the outdoor unit, and reference symbol D indicates the configuration range of the indoor unit.

【0008】上記システムにおいて、室内電動弁6は例
えばステップモータ60によって開度が制御されるもの
であり、冷媒の流れ始める開度が100ステップ前後
(約95〜105ステップ)に、且つ、最大流量の得ら
れる開度が500ステップに設定されている。流れ易い
弁であっても100ステップまで閉じられると冷媒が流
れ過ぎることはなく、流れ難い弁であっても110ステ
ップまで開けられると冷媒流量が少な過ぎると云うこと
はない。
In the above system, the opening degree of the indoor motor-operated valve 6 is controlled by, for example, the step motor 60, and the opening degree at which the refrigerant starts flowing is around 100 steps (about 95 to 105 steps) and the maximum flow rate. The obtained opening is set to 500 steps. Even if the valve is easy to flow, the refrigerant does not flow too much when it is closed up to 100 steps, and even if the valve is hard to flow, it cannot be said that the flow rate of the refrigerant is too small if it is opened up to 110 steps.

【0009】冷房運転時、前記室内電動弁6は温度検出
手段51が測定する室内熱交換器7への流入冷媒温度T
1と、温度検出手段52が測定する室内熱交換器7から
の流出冷媒温度T2とに基づいて、制御装置50の制御
信号によりステップモータ60が駆動され、次のように
制御されている。 T2−T1〈所定値 のとき開度減少 T2−T1=所定値 のとき開度変更なし T2−T1〉所定値 のとき開度増加
During the cooling operation, the indoor motor-operated valve 6 measures the temperature T of the refrigerant flowing into the indoor heat exchanger 7 measured by the temperature detecting means 51.
1 and the temperature T2 of the refrigerant flowing out of the indoor heat exchanger 7 measured by the temperature detecting means 52, the step motor 60 is driven by the control signal of the control device 50, and is controlled as follows. T2-T1 <Opening amount decreases when the value is a predetermined value. T2-T1 = No opening amount is changed when the value is T2-T1> The opening amount is increased when the value is a predetermined value.

【0010】そして、室内電動弁6の開度が下限域(こ
の場合、100〜110ステップ)にあるとき、温度検
出手段54が測定する室内熱交換器7への流入空気温度
T4と前記冷媒温度T1(または、T2)とを比較し、
冷媒が室内熱交換器7を流れているか否かを判断する。
すなわち、T4−T1の値が設定値a以下であり、冷媒
が室内熱交換器7に流れていないと判断されたときに
は、室内電動弁6の開度下限値をある規定値だけ増加さ
せて冷媒が室内熱交換器7を流れるようにし、T4−T
1の値が前記設定値aを超え、冷媒が室内熱交換器7で
空気と熱交換して室内熱交換器7を流れていると判断さ
れ、且つ、圧力検出手段55が測定する圧縮機1への冷
媒流入圧力P1と、温度検出手段53が測定する圧縮機
1への流入冷媒温度T3とに基づいて求めた冷媒の過熱
度が、所定値b以下であるとき室内電動弁6の開度下限
値をある規定値だけ減少させ、室内熱交換器7を流れる
冷媒流量を減じて冷媒の過熱度を減少させる。
When the opening degree of the indoor electric valve 6 is in the lower limit range (in this case, 100 to 110 steps), the temperature T4 of the air flowing into the indoor heat exchanger 7 measured by the temperature detecting means 54 and the refrigerant temperature. Compare with T1 (or T2),
It is determined whether the refrigerant is flowing through the indoor heat exchanger 7.
That is, when the value of T4-T1 is equal to or less than the set value a and it is determined that the refrigerant does not flow to the indoor heat exchanger 7, the lower limit of the opening degree of the indoor electric valve 6 is increased by a certain specified value. To flow through the indoor heat exchanger 7, T4-T
The value of 1 exceeds the set value a, it is determined that the refrigerant exchanges heat with the air in the indoor heat exchanger 7 and flows through the indoor heat exchanger 7, and the compressor 1 measured by the pressure detecting means 55. When the degree of superheat of the refrigerant obtained based on the refrigerant inflow pressure P1 into the compressor 1 and the refrigerant temperature T3 into the compressor 1 measured by the temperature detecting means 53 is equal to or less than the predetermined value b, the opening degree of the indoor electric valve 6 The lower limit value is decreased by a certain specified value, the flow rate of the refrigerant flowing through the indoor heat exchanger 7 is decreased, and the superheat degree of the refrigerant is decreased.

【0011】この制御を図2のフローチャートに基づい
て説明すると、室内電動弁6の開度が下限域(100〜
110ステップ)にあって、T4−T1(またはT2)
が所定値a(例えば、10℃)以下であるとき、開度下
限値を例えば1ステップだけ増加させて冷媒流量を増加
させ、この値を次回下限値変更制御における新しい下限
値とする。また、T4−T1(またはT2)が所定値a
を超えているときには、冷媒流入圧力P1に基づいて算
出される冷媒の飽和温度T5と、流入冷媒温度T3から
演算される冷媒過熱度SH=T3−T5の大きさを所定
値b(例えば、10℃)と比較し、この冷媒過熱度SH
が所定値b以下であるとき、開度下限値を1ステップだ
け減少させて冷媒の流量を減じ過熱を防止させる。そし
て、この値を次回下限値変更制御における下限値とす
る。なお、冷媒圧力P1から飽和温度T5を求める基礎
データと演算式は、制御装置50に記憶されている。
This control will be described with reference to the flowchart of FIG. 2. The opening degree of the indoor electric valve 6 is in the lower limit range (100 to 100).
110 step), T4-T1 (or T2)
Is a predetermined value a (for example, 10 ° C.) or less, the opening lower limit value is increased by, for example, one step to increase the refrigerant flow rate, and this value is set as a new lower limit value in the next lower limit value change control. Further, T4-T1 (or T2) is a predetermined value a
If it exceeds the predetermined value b (for example, 10) ℃) compared with this refrigerant superheat degree SH
Is less than or equal to the predetermined value b, the opening lower limit value is decreased by one step to reduce the flow rate of the refrigerant and prevent overheating. Then, this value is set as the lower limit value in the next lower limit value changing control. The basic data and the arithmetic expression for obtaining the saturation temperature T5 from the refrigerant pressure P1 are stored in the control device 50.

【0012】具体的な制御例を示せば、室内電動弁6の
開度が下限域、例えば105ステップにあって、流入空
気温度T4=30℃、流入冷媒温度T1=25℃と測定
されると、T4−T1=5℃となるので、これは所定値
a=10℃以下の範囲内に納まっており、冷媒が室内熱
交換器7を流れていないことが分かる。したがって、開
度下限値を1ステップだけ増加し、106ステップを次
回下限値変更制御時の新しい下限値とし、冷媒が流入空
気と熱交換して室内熱交換器7を流れるようにする。
As a specific control example, if the opening degree of the indoor motor-operated valve 6 is in the lower limit region, for example, 105 steps, and the inflow air temperature T4 = 30 ° C. and the inflow refrigerant temperature T1 = 25 ° C. are measured. , T4−T1 = 5 ° C., this is within the range of the predetermined value a = 10 ° C. or less, and it can be seen that the refrigerant is not flowing through the indoor heat exchanger 7. Therefore, the lower limit value of the opening is increased by one step, and 106 step is set as a new lower limit value for the next lower limit value change control so that the refrigerant exchanges heat with the inflowing air and flows through the indoor heat exchanger 7.

【0013】また、室内電動弁6の開度が下限域105
ステップにあって、例えば流入空気温度T4=30℃、
流入冷媒温度T1=5℃であると、T4−T1=25℃
となり、所定値a=10℃以下の範囲から外れるため、
冷媒は流入空気と熱交換して室内熱交換器7を流れてい
ることが分かり、この場合は開度下限値を増加させる方
向への変更は行わない。
Further, the opening degree of the indoor electric valve 6 is in the lower limit region 105.
In the step, for example, inflow air temperature T4 = 30 ° C.,
When the inflow refrigerant temperature T1 = 5 ° C., T4−T1 = 25 ° C.
Since the value is out of the range of the predetermined value a = 10 ° C. or less,
It can be seen that the refrigerant exchanges heat with the inflowing air and flows through the indoor heat exchanger 7, and in this case, the opening lower limit value is not changed.

【0014】そして、例えば圧縮機1への冷媒流入温度
T3=9.0℃、冷媒圧力P1=4Kgf/cm2 であると、
飽和温度T5=−0.3℃と求められるので、過熱度S
H=T3−T5=9.0−(−0.3)=9.3℃とな
り、所定値b=10℃以下の範囲に入っているので、開
度下限値を1ステップだけ減らし、冷媒の過熱が緩和す
るように99ステップを次回下限値変更制御時の新しい
下限値とする。
Then, for example, if the refrigerant inflow temperature T3 into the compressor 1 is 9.0 ° C. and the refrigerant pressure P1 is 4 Kgf / cm 2 ,
Since the saturation temperature T5 = −0.3 ° C., the superheat S
Since H = T3−T5 = 9.0 − (− 0.3) = 9.3 ° C., which is within the range of the predetermined value b = 10 ° C. or less, the opening lower limit value is decreased by one step and the refrigerant 99 steps are set as a new lower limit value for the next lower limit value change control so that overheating is alleviated.

【0015】また、冷媒流入温度T3=15.0で、冷
媒圧力P1=4Kgf/cm2 であると、このときの飽和温度
T5は−0.3℃であるので、過熱度SH=T3−T5
=15.0−(−0.3)=15.3℃となり、所定値
b=10℃以下の範囲から外れる。このため、次回制御
時においても100ステップの開度下限値の変更は行わ
ない。
When the refrigerant inflow temperature T3 = 15.0 and the refrigerant pressure P1 = 4 Kgf / cm 2 , the saturation temperature T5 at this time is −0.3 ° C., so the superheat degree SH = T3−T5.
= 15.0-(-0.3) = 15.3 ° C, which is out of the range of the predetermined value b = 10 ° C or less. Therefore, the opening lower limit value of 100 steps is not changed even in the next control.

【0016】なお、本発明は上記実施例に限定されるも
のではないので、前記設定値a、bなどは空気調和機の
能力・特性などに合わせてその都度適宜選定されれば良
い。また、上記実施例においては室内熱交換器7が1台
設置された空気調和機として説明したが、複数の室内熱
交換器を備えたシステム構成とすることもできる。
Since the present invention is not limited to the above-mentioned embodiment, the set values a, b, etc. may be appropriately selected each time in accordance with the capacity and characteristics of the air conditioner. Further, in the above embodiment, an air conditioner in which one indoor heat exchanger 7 is installed has been described, but a system configuration including a plurality of indoor heat exchangers may be used.

【0017】[0017]

【発明の効果】以上説明したように本発明は、冷媒温度
などを測定することによって冷房運転時に冷媒の流れを
監視し、これによって室内膨張弁の開度下限値を調整す
るので、液戻りが生じて圧縮機を損傷すると云った懸念
がない。また、経時変化の影響を受けることがないの
で、長期に渡って正常な運転が行えるなど顕著な効果を
奏するものである。
As described above, according to the present invention, the refrigerant flow is monitored during the cooling operation by measuring the refrigerant temperature and the like, and the lower limit value of the opening of the indoor expansion valve is adjusted by this, so that the liquid return is prevented. There is no concern that it will occur and damage the compressor. Further, since it is not affected by the change over time, it has a remarkable effect such as normal operation over a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】装置の構成例を示す説明図である。FIG. 1 is an explanatory diagram showing a configuration example of a device.

【図2】制御例を示す説明図である。FIG. 2 is an explanatory diagram showing a control example.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室外熱交換器 4 室外電動弁(膨張弁) 5 レシーバタンク 6 室内電動弁 7 室内熱交換器 8 アキュームレータ 50 制御装置 51 温度検出手段 52 温度検出手段 53 温度検出手段 54 温度検出手段 55 圧力検出手段 A 冷房回路 B 暖房回路 C 室外ユニット D 室内ユニット 1 compressor 2 four-way valve 3 outdoor heat exchanger 4 outdoor electric valve (expansion valve) 5 receiver tank 6 indoor electric valve 7 indoor heat exchanger 8 accumulator 50 controller 51 temperature detecting means 52 temperature detecting means 53 temperature detecting means 54 temperature Detecting means 55 Pressure detecting means A Cooling circuit B Heating circuit C Outdoor unit D Indoor unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方弁、室外熱交換器、室外電
動弁、レシーバタンク、室内電動弁、室内熱交換器、ア
キュームレータなどを冷媒管を介して順次連結し、冷/
暖房回路が形成される空気調和機の冷房運転時、室内熱
交換器を流れる冷媒の出入口温度差を測定し、この出入
口温度差が所定範囲内にあるとき室内電動弁開度を減少
させ、前記出入口温度差が前記所定範囲を超えたとき室
内電動弁開度を増加させる室内電動弁の制御方法におい
て、室内電動弁開度が下限域にあるとき、開度下限値を
一定の範囲内で変更可能としたことを特徴とする空気調
和機における室内電動弁の制御方法。
1. A compressor, a four-way valve, an outdoor heat exchanger, an outdoor motor-operated valve, a receiver tank, an indoor motor-operated valve, an indoor heat exchanger, an accumulator, etc. are sequentially connected via a refrigerant pipe to cool / cool.
During the cooling operation of the air conditioner in which the heating circuit is formed, the inlet / outlet temperature difference of the refrigerant flowing through the indoor heat exchanger is measured, and when the inlet / outlet temperature difference is within a predetermined range, the indoor electric valve opening is decreased, In a method of controlling an indoor motor-operated valve that increases the indoor motor-operated valve opening when the inlet / outlet temperature difference exceeds the predetermined range, when the indoor motor-operated valve opening is in the lower limit range, the lower limit opening value is changed within a certain range. A method for controlling an indoor motor-operated valve in an air conditioner, which is characterized in that it is possible.
【請求項2】 圧縮機、四方弁、室外熱交換器、室外電
動弁、レシーバタンク、室内電動弁、室内熱交換器、ア
キュームレータなどを冷媒管を介して順次連結し、冷/
暖房回路が形成される空気調和機の冷房運転時、室内熱
交換器を流れる冷媒の出入口温度差を測定し、この出入
口温度差が所定範囲内にあるとき室内電動弁開度を減少
させ、前記出入口温度差が前記所定範囲を超えたとき室
内電動弁開度を増加させる室内電動弁の制御方法におい
て、室内熱交換器の空気吸込口に温度検出手段を設け、
圧縮機の冷媒入口に温度検出手段と圧力検出手段とを設
け、室内電動弁開度が下限域にあり、且つ空気吸込口の
温度から室内熱交換器の入口または出口の冷媒温度を減
じた温度差が設定値a以下であるとき、前記室内電動弁
の開度下限値を規定値だけ増加させ、前記温度差が前記
設定値aを超え、且つ圧縮機入口側の冷媒温度と冷媒圧
力から求める過熱度が所定値b以下であるとき、前記室
内電動弁の開度下限値を規定値だけ減少させることを特
徴とする空気調和機における室内電動弁の制御方法。
2. A compressor, a four-way valve, an outdoor heat exchanger, an outdoor motor-operated valve, a receiver tank, an indoor motor-operated valve, an indoor heat exchanger, an accumulator, and the like are sequentially connected via a refrigerant pipe to cool / cool.
During the cooling operation of the air conditioner in which the heating circuit is formed, the inlet / outlet temperature difference of the refrigerant flowing through the indoor heat exchanger is measured, and when the inlet / outlet temperature difference is within a predetermined range, the indoor electric valve opening is decreased, In a method for controlling an indoor electric valve that increases the indoor electric valve opening when the inlet / outlet temperature difference exceeds the predetermined range, a temperature detecting means is provided at an air inlet of the indoor heat exchanger,
Temperature detection means and pressure detection means are provided at the refrigerant inlet of the compressor, the indoor motor-operated valve opening is in the lower limit region, and the temperature obtained by subtracting the refrigerant temperature at the inlet or outlet of the indoor heat exchanger from the temperature at the air inlet. When the difference is less than or equal to the set value a, the lower limit value of the opening degree of the indoor motor-operated valve is increased by a specified value, the temperature difference exceeds the set value a, and is calculated from the refrigerant temperature and the refrigerant pressure at the compressor inlet side. A method for controlling an indoor motor-operated valve in an air conditioner, comprising: decreasing a lower limit value of the opening degree of the indoor motor-operated valve by a specified value when the degree of superheat is a predetermined value b or less.
JP30824991A 1991-10-29 1991-10-29 Control method of indoor electric valve in air conditioner Expired - Fee Related JP2957781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30824991A JP2957781B2 (en) 1991-10-29 1991-10-29 Control method of indoor electric valve in air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30824991A JP2957781B2 (en) 1991-10-29 1991-10-29 Control method of indoor electric valve in air conditioner

Publications (2)

Publication Number Publication Date
JPH05118670A true JPH05118670A (en) 1993-05-14
JP2957781B2 JP2957781B2 (en) 1999-10-06

Family

ID=17978738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30824991A Expired - Fee Related JP2957781B2 (en) 1991-10-29 1991-10-29 Control method of indoor electric valve in air conditioner

Country Status (1)

Country Link
JP (1) JP2957781B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121361A (en) * 2003-10-17 2005-05-12 Lg Electronics Inc Controller and method for controlling degree of superheat in heat pump system
JP2009068744A (en) * 2007-09-12 2009-04-02 Mitsubishi Heavy Ind Ltd Valve opening pulse setting method for electric expansion valve and multiple air conditioner
WO2009069258A1 (en) * 2007-11-30 2009-06-04 Daikin Industries, Ltd. Refrigeration device
WO2009069257A1 (en) * 2007-11-30 2009-06-04 Daikin Industries, Ltd. Freezing device
WO2009069256A1 (en) * 2007-11-30 2009-06-04 Daikin Industries, Ltd. Freezer
WO2013062242A1 (en) * 2011-10-25 2013-05-02 엘지전자 주식회사 Air conditioner and method of operating same
JP2016014512A (en) * 2014-07-03 2016-01-28 ダイキン工業株式会社 Freezer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121361A (en) * 2003-10-17 2005-05-12 Lg Electronics Inc Controller and method for controlling degree of superheat in heat pump system
JP2009068744A (en) * 2007-09-12 2009-04-02 Mitsubishi Heavy Ind Ltd Valve opening pulse setting method for electric expansion valve and multiple air conditioner
EP2226593A4 (en) * 2007-11-30 2010-09-08 Daikin Ind Ltd Freezer
WO2009069257A1 (en) * 2007-11-30 2009-06-04 Daikin Industries, Ltd. Freezing device
WO2009069256A1 (en) * 2007-11-30 2009-06-04 Daikin Industries, Ltd. Freezer
JP2009133572A (en) * 2007-11-30 2009-06-18 Daikin Ind Ltd Refrigerating device
WO2009069258A1 (en) * 2007-11-30 2009-06-04 Daikin Industries, Ltd. Refrigeration device
EP2226593A1 (en) * 2007-11-30 2010-09-08 Daikin Industries, Ltd. Freezer
WO2013062242A1 (en) * 2011-10-25 2013-05-02 엘지전자 주식회사 Air conditioner and method of operating same
CN103890506A (en) * 2011-10-25 2014-06-25 Lg电子株式会社 Air conditioner and method of operating same
US9109817B2 (en) 2011-10-25 2015-08-18 Lg Electronics Inc. Air conditioner and method of operating an air conditioner
US9958188B2 (en) 2011-10-25 2018-05-01 Lg Electronics Inc. Air conditioner and method of operating an air conditioner
JP2016014512A (en) * 2014-07-03 2016-01-28 ダイキン工業株式会社 Freezer

Also Published As

Publication number Publication date
JP2957781B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
JPH0621749B2 (en) How to fill the heat pump device
JPH05118670A (en) Controlling method for room motor-driven valve in air conditioner
JP4959297B2 (en) Multi-type air conditioner
JPH09178247A (en) Controller for multi-room air conditioning equipment
JP2951043B2 (en) Air conditioner
US11598549B2 (en) Thermal cycling system and control method of the thermal cycling system
JP3708245B2 (en) Motorized valve controller for multi-function heat pump system
JPH0282045A (en) Control device for air conditioner
JPH08285393A (en) Air conditioner for multi-room
JPS6159163A (en) Controller for quantity of refrigerant circulated in refrigerant heating type air conditioner
JP2757900B2 (en) Air conditioner
JPS62190359A (en) Defrostation controller
JPH09138024A (en) Air conditioner
JP2719456B2 (en) Air conditioner
JPH03213971A (en) Control device for air conditioner
KR100812780B1 (en) Heat-pump having inverter-type compressor for preventing heating overload and control method of the same
JP3605085B2 (en) Air conditioner
JPH0460349A (en) Air conditioner with multiple indoor unit
JPH0650589A (en) Operation control in air conditioner
JPS6214073B2 (en)
JP3819463B2 (en) Air conditioner
JPH0755232A (en) Method for controlling operation of air conditioner
JP3363461B2 (en) Freezing prevention control method for engine driven heat pump
JPH04217755A (en) Multiroom type air-conditioner
JPH02263065A (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080723

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees