JPS6214073B2 - - Google Patents

Info

Publication number
JPS6214073B2
JPS6214073B2 JP53147875A JP14787578A JPS6214073B2 JP S6214073 B2 JPS6214073 B2 JP S6214073B2 JP 53147875 A JP53147875 A JP 53147875A JP 14787578 A JP14787578 A JP 14787578A JP S6214073 B2 JPS6214073 B2 JP S6214073B2
Authority
JP
Japan
Prior art keywords
signal
flow rate
differential pressure
wind speed
operating flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53147875A
Other languages
Japanese (ja)
Other versions
JPS5575151A (en
Inventor
Hiroshige Fukazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14787578A priority Critical patent/JPS5575151A/en
Publication of JPS5575151A publication Critical patent/JPS5575151A/en
Publication of JPS6214073B2 publication Critical patent/JPS6214073B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、試験室などの部屋を冷却する空調機
における冷却コイルの除霜運転制御装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a defrosting operation control device for a cooling coil in an air conditioner that cools a room such as a test room.

〔従来の技術〕[Conventional technology]

従来この種の装置は、特開昭51−36656号公報
に示されているように、タイマーを設置して一定
時間ごとに除霜運転を行うようにしている。ま
た、冷却コイルの空気流入側および流出側に連通
する差圧検出器を設置することも知られている
(実開昭52−166158号公報)。
Conventionally, this type of device has been equipped with a timer to perform defrosting operation at regular intervals, as disclosed in Japanese Patent Laid-Open No. 51-36656. It is also known to install a differential pressure detector communicating with the air inlet and outlet sides of the cooling coil (Japanese Utility Model Publication No. 52-166158).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、空調機の冷却コイルへの着霜状況は、
部屋の温度条件、室内の水分発生量および部屋へ
の水分の侵入状況(外気条件)に左右され、着霜
量は必らずしも一定で増えていかない。そのた
め、前者のものにおいては、着霜がほとんど無い
のに除霜運転されたり、着霜が多いのもかかわら
ず除霜運転されなかつたりする。すなわち適正な
時期に除霜が行なわれず、部屋を使用する上で不
便であつた。
However, the frost formation on the cooling coil of an air conditioner is
The amount of frost is not necessarily constant and does not increase, depending on the temperature conditions of the room, the amount of moisture generated in the room, and the state of moisture intrusion into the room (outside air conditions). Therefore, in the former case, the defrosting operation may be performed even though there is almost no frost formation, or the defrosting operation may not be performed even though there is a lot of frost formation. In other words, defrosting was not carried out at an appropriate time, making it inconvenient to use the room.

後者のものにおいては、着霜すると空気が流れ
難くなるので、冷却コイルの空気流入、流出側間
の差圧が大きくなり、着霜状態を検出できる。
In the latter case, when frost forms, it becomes difficult for air to flow, so the differential pressure between the air inflow and outflow sides of the cooling coil becomes large, and the frost state can be detected.

しかし、着霜量が同じであつても冷却コイルの
循環空気流量が変つた場合には差圧の大きさが変
わるので、流量調節機構を備えたものにおいて
は、循環空気流量が変つたとき適正な時期に除霜
運転を行うことができない問題がある。
However, even if the amount of frost is the same, the magnitude of the differential pressure will change if the flow rate of circulating air in the cooling coil changes. There is a problem that defrosting operation cannot be performed at certain times of the year.

本発明の目的は、冷却コイルの循環流量が可変
のものにおいて適正な時期に除霜運転を行うこと
ができる除霜運転制御装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a defrosting operation control device that can perform defrosting operation at an appropriate time in a device in which the circulation flow rate of a cooling coil is variable.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の特徴は、冷却コイルの空気入口側と空
気出口側との両側に連通している差圧検出器およ
び冷却コイルの空気出口側に設置された風速検出
器の少なくとも何れか一方の検出器と、運転流量
に対応する信号を発生する運転流量信号発生器
と、前記検出器および運転流量信号発生器に電気
的に連結された除霜制御装置を有し、除霜制御装
置は限界差圧信号の形成手段または限界風速信号
の形成手段と、該信号と前記差圧検出器または、
風速検出器の信号とを比較する手段とからなり、
運転流量信号発生器からの信号に基づいて運転流
量に対応する限界差圧を形成し、前記差圧検出器
によつて検出された差圧が、前記運転流量に対応
する限界差圧を上回つた場合または前記運転流量
信号発生器からの信号に基いて、運転流量に対応
する限界風速を形成し、前記風速検出器によつて
検出された風速が、前記運転流量に対応する限界
風速を下回つた場合の少なくとも何れか一方を満
足したときに除霜開始信号を発生するものであ
る。
A feature of the present invention is that at least one of a differential pressure detector communicating with both the air inlet side and the air outlet side of the cooling coil and a wind speed detector installed on the air outlet side of the cooling coil is provided. an operating flow rate signal generator that generates a signal corresponding to the operating flow rate, and a defrost control device electrically coupled to the detector and the operating flow signal generator, the defrost control device having a limit differential pressure. a means for forming a signal or a means for forming a critical wind speed signal, the signal and the differential pressure detector, or
and a means for comparing the signal with the signal of the wind speed detector,
A limit differential pressure corresponding to the operating flow rate is formed based on a signal from an operating flow rate signal generator, and the differential pressure detected by the differential pressure detector exceeds the limit differential pressure corresponding to the operating flow rate. or based on a signal from the operating flow rate signal generator, a critical wind speed corresponding to the operating flow rate is formed, and the wind speed detected by the wind speed detector is lower than the critical wind speed corresponding to the operating flow rate. When at least one of the following conditions is satisfied, a defrosting start signal is generated.

〔作用〕[Effect]

上記のように、運転流量の変化に対応させて除
霜開始信号を発生する限界差圧を変えているの
で、運転流量が変化したときも適正な時期に除霜
運転を行うことができる。
As described above, since the threshold differential pressure for generating the defrosting start signal is changed in response to changes in the operating flow rate, defrosting operation can be performed at an appropriate time even when the operating flow rate changes.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図〜第3図により
説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1図において、1は低温にすべき部屋(以下
低温室という)、2は低温室1と吸入側ダクト1
0および吐出側ダクト11を介して連通された空
調機で、この空調機2は循環空気を冷却するため
の冷却コイル3、モータ5を介して駆動されるフ
アン4および風量調節機構(ベーンダンパ)7を
そなえている。6はモータ5の制御盤、8はベー
ンダンパ7の開度を循環空気の必要量に応じて調
整するアクチユエータ、9ははアクチユエータ8
のポテンシヨメータ、12は空調機2の入口側に
設けられた温度検出器、13は冷却コイル3の両
側に連通された差圧検出器、14と15は低温室
1の吸入側(空調機の吐出側)に設けられた風速
検出器および温度検出器である。
In Figure 1, 1 is a room that should be kept at a low temperature (hereinafter referred to as the cold room), 2 is the cold room 1 and the suction side duct 1
0 and a discharge side duct 11, this air conditioner 2 includes a cooling coil 3 for cooling circulating air, a fan 4 driven via a motor 5, and an air volume adjustment mechanism (vane damper) 7. It is equipped with 6 is a control panel for the motor 5, 8 is an actuator that adjusts the opening degree of the vane damper 7 according to the required amount of circulating air, and 9 is an actuator 8.
12 is a temperature detector installed on the inlet side of the air conditioner 2, 13 is a differential pressure detector connected to both sides of the cooling coil 3, 14 and 15 are the inlet side of the cold room 1 (the air conditioner A wind speed detector and a temperature detector are installed on the discharge side of the pump.

16と17は冷却コイル3に接続された冷却用
冷熱媒の流入路および流出路、18と19は前記
流入路16および流出路17にそれぞれ接続され
たデフロスト用温熱媒の流入路および流出路、2
0,22および21,23は前記流入路16,1
8および流出路17,19にそれぞれ設けられた
開閉弁、24は前記流出路17に設けられた流量
制御弁、25は空調機2のドレン排水管である。
16 and 17 are an inflow path and an outflow path for a cooling cold medium connected to the cooling coil 3; 18 and 19 are an inflow path and an outflow path for a defrosting hot medium connected to the inflow path 16 and outflow path 17, respectively; 2
0, 22 and 21, 23 are the inflow passages 16, 1
8 and an on-off valve provided in each of the outflow passages 17 and 19, 24 a flow control valve provided in the outflow passage 17, and 25 a drain drain pipe of the air conditioner 2.

26は信号変換器27、演算器28、信号発生
器29、記憶装置30および比較器31からなる
公知のマイコンで、その信号変換器27は上述し
たポテンシヨメータ9、温度検出器12、差圧検
出器13、風速検出器14および温度検出器15
に接続されている。一方、信号発信器29は上述
したモータの制御盤6、アクチユエータ8、切替
弁20〜23および流量制御弁24に接続されて
いる。
26 is a known microcomputer consisting of a signal converter 27, an arithmetic unit 28, a signal generator 29, a storage device 30, and a comparator 31; Detector 13, wind speed detector 14 and temperature detector 15
It is connected to the. On the other hand, the signal transmitter 29 is connected to the above-mentioned motor control panel 6, actuator 8, switching valves 20 to 23, and flow rate control valve 24.

次に上記のような構成からなる本実施例の作用
について説明する。
Next, the operation of this embodiment configured as described above will be explained.

ベーンダンパー7の開度θと吐出風量すなわち
吐出ダクト11の吐出口風速vとの関係は第2図
に示す曲線32のとおりである。前記関係は冷却
コイル3の着霜が増加すると、曲線33のように
変化するから、ベーンダンパー7の開度が同一で
あつても風速は低下する。
The relationship between the opening degree θ of the vane damper 7 and the discharge air volume, that is, the discharge outlet wind speed v of the discharge duct 11 is as shown by a curve 32 shown in FIG. As the frost formation on the cooling coil 3 increases, the above relationship changes as shown by the curve 33, so even if the opening degree of the vane damper 7 remains the same, the wind speed decreases.

従つて、曲線33は、除霜を行うべき風速vを
ベーンタンパー7の開度Θ言え換えれば、風量調
節機構の運転流(風)量ごとに表わしたもので、
風速に関する除霜限界曲線と言える。
Therefore, the curve 33 expresses the wind speed v at which defrosting should be performed depending on the opening degree Θ of the vane tamper 7, or in other words, for each operating flow (air) amount of the air volume adjustment mechanism.
It can be said to be a defrost limit curve related to wind speed.

またベーンダンパー7の開度θと冷却コイル3
の前後側の差圧△Pとの関係は第3図に示す曲線
35に示すとおりで、基準温度例えば0℃に換算
した冷却コイル3の前後側の差圧△Poはベーン
開度θと一義的な関係がある。前記関係は着霜量
が増加すると、空気の通過抵抗が増大するから曲
線34のように変化する。
Also, the opening degree θ of the vane damper 7 and the cooling coil 3
The relationship between the front and rear pressure difference △P is as shown in the curve 35 shown in Fig. 3, and the front and rear pressure difference △Po of the cooling coil 3 converted to a reference temperature of 0°C, for example, is uniquely related to the vane opening degree θ. There is a relationship. The above relationship changes as shown by the curve 34 because as the amount of frost increases, the air passage resistance increases.

従つて、曲線34は、除霜を行うべき差圧△
Poをベーンダンパー7の開度Θ言え換えれば、
風量調節機構の運転風量ごとに表わしたもので、
差圧に関する除霜限界曲線と言える。
Therefore, the curve 34 represents the differential pressure △ at which defrosting should be performed.
If Po is rephrased as the opening degree Θ of vane damper 7, then
It is expressed for each operating air volume of the air volume adjustment mechanism.
It can be said to be a defrost limit curve related to differential pressure.

上述した特性を利用し、着霜量が規定値以上に
なつたことを検知して除霜運転を制御する。すな
わちマイコン26の信号変換器27はポテンシヨ
メータ9による開度信号(運転風量信号)と、差
圧検出器13による差圧△Pの信号と、温度検出
器12による温度Tの信号、風速検出器14によ
る出口風速vの信号および温度検出器15による
出口温度Tの信号などを入力して演算器28へ出
力する。この出力と、記憶装置30にあらかじめ
記憶された値、すなわち第2図の曲線33に示す
関係および第3図の曲線34に示す関係は演算器
28に入力して演算される。この演算の結果は比
較器31で記憶装置30の記憶値と比較され、ベ
ーンダンパのある開度θで風速vが曲線33以下
の値であり、しかも冷却コイル前後の差圧△Po
が曲線34以上であると、着霜の検出が信号発生
器29に出力される。この出力を入力した信号発
生器29がデフロスト運転信号をモータ制御盤
6、アクチユエータ8、切替弁20〜23および
流量制御弁24に発信することにより除霜運転が
行われる。
Utilizing the above-mentioned characteristics, the defrosting operation is controlled by detecting that the amount of frosting has exceeded a specified value. That is, the signal converter 27 of the microcomputer 26 receives an opening signal (operating air volume signal) from the potentiometer 9, a differential pressure △P signal from the differential pressure detector 13, a temperature T signal from the temperature detector 12, and wind speed detection. A signal of the exit wind speed v from the device 14 and a signal of the exit temperature T from the temperature detector 15 are inputted and output to the calculator 28 . This output and the values previously stored in the storage device 30, that is, the relationship shown by the curve 33 in FIG. 2 and the relationship shown by the curve 34 in FIG. 3, are input to the calculator 28 and calculated. The result of this calculation is compared with the value stored in the storage device 30 by the comparator 31, and it is determined that at a certain opening θ of the vane damper, the wind speed v is less than or equal to the curve 33, and the differential pressure ΔPo before and after the cooling coil is
is equal to or higher than the curve 34, the detection of frost formation is output to the signal generator 29. The signal generator 29 inputting this output transmits a defrost operation signal to the motor control panel 6, the actuator 8, the switching valves 20 to 23, and the flow rate control valve 24, thereby performing the defrosting operation.

この場合、冷却用冷熱媒側の開閉弁20,21
が閉じられると同時に、デフロスト用温熱媒側の
開閉弁22,23は開かれ、かつ流量制御弁24
はバイパス側が閉じられると同時に冷却コイル側
が開かれる。またモータ制御盤6への停止信号に
よりモータ5は停止されるからフアン4も停止さ
れる。ベーンダンパー7はアクチユエータ8への
閉信号により全閉されて停止する。
In this case, the on-off valves 20, 21 on the side of the cooling refrigerant
At the same time, the on-off valves 22 and 23 on the defrost heating medium side are opened, and the flow control valve 24 is closed.
When the bypass side is closed, the cooling coil side is opened at the same time. Furthermore, since the motor 5 is stopped by a stop signal sent to the motor control panel 6, the fan 4 is also stopped. The vane damper 7 is fully closed and stopped by a close signal to the actuator 8.

上記のような操作が順次に行われ、ある一定時
間経過すれば、冷却コイル3の外表面に付着した
霜は冷却コイル3の内部を流通するデフロスト用
温熱媒により加熱される。このため前記霜は融解
して水(ドレン)となり、このドレンはドレン排
水管25より排出される。このようにして除霜操
作が終了すると、再び冷却運転が開始される。
The above-mentioned operations are performed sequentially, and after a certain period of time has elapsed, the frost adhering to the outer surface of the cooling coil 3 is heated by the defrost heating medium flowing inside the cooling coil 3. Therefore, the frost melts and becomes water (drain), and this drain is discharged from the drain drain pipe 25. When the defrosting operation is completed in this way, the cooling operation is started again.

本実施例では着霜を検知するために第2図の曲
線33および第3図の曲線34を利用したが、こ
れに代り曲線32,35を利用してもよい。
In this embodiment, the curve 33 in FIG. 2 and the curve 34 in FIG. 3 are used to detect frost formation, but the curves 32 and 35 may be used instead.

またベーンダンパーのないフアンではその開度
θは全開と考えればよいので、曲線33における
風速vの値および曲線34における冷却コイル前
後の差圧△Poの値はそれぞれ一つの値を考えれ
ばよい。さらに低温室の温度がほぼ一定値におけ
る運転を対象にした設備では、冷却コイル前後の
差圧は基準温度に換算する必要はなく、そのとき
の前後差圧のままの信号で処理すればよいからシ
ステムが簡単となる。
Furthermore, in the case of a fan without a vane damper, the opening degree θ can be considered to be fully open, so the value of the wind speed v in the curve 33 and the value of the differential pressure ΔPo before and after the cooling coil in the curve 34 can each be considered as one value. Furthermore, in equipment that is intended for operation when the temperature in the cold room is approximately constant, there is no need to convert the differential pressure across the cooling coil to a reference temperature, and it is sufficient to process the signal as the differential pressure across the cooling coil at that time. The system becomes simple.

さらに、風量調節機構としては送風機の回転数
を可変するものを利用できる。
Furthermore, as the air volume adjustment mechanism, one that changes the rotational speed of a blower can be used.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、運転流量が変つ
ても冷却コイルの着霜状況を適確に検出でき、適
正な時期に除霜運転を行うことができる。
As described above, according to the present invention, the frosting state of the cooling coil can be accurately detected even when the operating flow rate changes, and the defrosting operation can be performed at an appropriate time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の除霜運転制御装置の一実施例
を示す系統図、第2図および第3図は本発明に係
わる説明用図である。 2…空調機、3…冷却コイル、5…モータ制御
盤、7…ベーンダンパ、8…アクチユエータ、9
…ポテンシヨメータ、12,15…温度検出器、
13…差圧検出器、14…風速検出器、26…マ
イコン、27…信号変換器、29…信号発生器、
20〜23…開閉弁、24…流量制御弁。
FIG. 1 is a system diagram showing one embodiment of the defrosting operation control device of the present invention, and FIGS. 2 and 3 are explanatory diagrams relating to the present invention. 2... Air conditioner, 3... Cooling coil, 5... Motor control panel, 7... Vane damper, 8... Actuator, 9
...Potentiometer, 12,15...Temperature detector,
13... Differential pressure detector, 14... Wind speed detector, 26... Microcomputer, 27... Signal converter, 29... Signal generator,
20-23...Opening/closing valve, 24...Flow rate control valve.

Claims (1)

【特許請求の範囲】[Claims] 1 部屋に連絡して設けられた空気循環流路と、
この空気循環流路に配置された冷却コイルおよび
冷却コイルを通る空気の運転流量を可変する流量
調節機構を備えたものにおいて、冷却コイルの空
気入口側と空気出口側との両側に連通している差
圧検出器および冷却コイルの空気出口側に設置さ
れた風速検出器の少なくとも何れか一方の検出器
と、前記運転流量に対応する運転流量信号発生器
と、前記検出器および運転流量信号発生器とに電
気的に連結された除霜制御装置を有し、除霜制御
装置は限界差圧信号の形成手段、または限界風速
信号の形成手段と該信号と前記差圧検出器または
風速検出器の信号とを比較する手段とからなり、
前記運転流量信号発生器からの信号に基づいて、
運転流量に対応する限界差圧信号を形成し、前記
差圧検出器によつて検出された差圧が前記運転流
量に対応する限界差圧を上回つた場合または前記
運転流量信号発生器からの信号に基づいて運転流
量に対応する限界風速信号を形成し、前記風速検
出器によつて検出された風速が、前記運転流量に
対応する限界風速を下回つた場合の少くとも、一
方を満足したとき除霜開始信号を発生することを
特徴とする除霜運転制御装置。
1. An air circulation channel connected to the room,
A cooling coil disposed in the air circulation flow path and a flow rate adjustment mechanism for varying the operating flow rate of air passing through the cooling coil, which communicates with both the air inlet side and the air outlet side of the cooling coil. At least one of a differential pressure detector and a wind speed detector installed on the air outlet side of the cooling coil, an operating flow rate signal generator corresponding to the operating flow rate, and the detector and the operating flow rate signal generator. and a defrost control device electrically connected to the differential pressure detector or the wind speed detector, and the defrost controller has a means for forming a limit differential pressure signal or a limit wind speed signal, and a means for forming a limit differential pressure signal or a limit wind speed signal, and and a means for comparing the signal with the
Based on the signal from the operating flow signal generator,
forming a limit differential pressure signal corresponding to the operating flow rate, and generating a signal from the operating flow signal generator when the differential pressure detected by the differential pressure detector exceeds the limit differential pressure corresponding to the operating flow rate; forming a critical wind speed signal corresponding to the operating flow rate based on the signal, and satisfying at least one of the conditions when the wind speed detected by the wind speed detector falls below the critical wind speed corresponding to the operating flow rate; A defrosting operation control device that generates a defrosting start signal when.
JP14787578A 1978-12-01 1978-12-01 Defrosting operation controller Granted JPS5575151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14787578A JPS5575151A (en) 1978-12-01 1978-12-01 Defrosting operation controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14787578A JPS5575151A (en) 1978-12-01 1978-12-01 Defrosting operation controller

Publications (2)

Publication Number Publication Date
JPS5575151A JPS5575151A (en) 1980-06-06
JPS6214073B2 true JPS6214073B2 (en) 1987-03-31

Family

ID=15440195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14787578A Granted JPS5575151A (en) 1978-12-01 1978-12-01 Defrosting operation controller

Country Status (1)

Country Link
JP (1) JPS5575151A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3772703A2 (en) 2019-08-08 2021-02-10 Canon Kabushiki Kaisha Image processing apparatus and image processing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460772C (en) * 2005-11-25 2009-02-11 珠海格力电器股份有限公司 Control method for intelligent defrosting of air conditioner
NO20180682A1 (en) * 2018-05-15 2019-06-11 Romy Clima As Procedure for controlling a ventilation heat pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154849A (en) * 1974-05-10 1975-12-13

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52166158U (en) * 1976-06-10 1977-12-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154849A (en) * 1974-05-10 1975-12-13

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3772703A2 (en) 2019-08-08 2021-02-10 Canon Kabushiki Kaisha Image processing apparatus and image processing method

Also Published As

Publication number Publication date
JPS5575151A (en) 1980-06-06

Similar Documents

Publication Publication Date Title
JPS6354567B2 (en)
JP2000297970A (en) Controller for heat pump
JPS6214073B2 (en)
JP2957781B2 (en) Control method of indoor electric valve in air conditioner
US20210071890A1 (en) Method for control of a ventilation heat pump
JPH0282045A (en) Control device for air conditioner
JP2576349B2 (en) Control method of hot water valve for air conditioner
JPH0361113A (en) Air quantity control device for vehicle air conditioning device
JP3556099B2 (en) Control method of air conditioner
JPS58102046A (en) Air conditioner
JPH0616290Y2 (en) Blower fan controller for water heater
JPH08271016A (en) Air conditioner of multi-room type
JPH0232485Y2 (en)
JP2953769B2 (en) Air conditioner dehumidification control device
JPH06257843A (en) Control device for air conditioner
JPH05113252A (en) Refrigerating cycle
JPH0127347B2 (en)
JPH0627575B2 (en) Blower fan controller for water heater
JPH01164621A (en) Air conditioning control device for vehicle
JPH1047808A (en) Refrigerating device
JPS58221715A (en) Air-conditioner for motor vehicle
JPS59120713A (en) Temperature control device for engine cooling water
JPH04372420A (en) Air conditioning device for vehicle
JPS61129312A (en) Air conditioner for vehicle
JPH02233947A (en) Engine driving air conditioner