JPS62103381A - Electrolytic corrosion preventive device - Google Patents

Electrolytic corrosion preventive device

Info

Publication number
JPS62103381A
JPS62103381A JP60242713A JP24271385A JPS62103381A JP S62103381 A JPS62103381 A JP S62103381A JP 60242713 A JP60242713 A JP 60242713A JP 24271385 A JP24271385 A JP 24271385A JP S62103381 A JPS62103381 A JP S62103381A
Authority
JP
Japan
Prior art keywords
anode
current
solar cell
protected
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60242713A
Other languages
Japanese (ja)
Inventor
Yoshimasa Imakita
今喜多 美方
Ikuo Yamamoto
山本 郁雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAGAWA BOSHOKU KOGYO KK
Nakagawa Corrosion Protecting Co Ltd
Original Assignee
NAKAGAWA BOSHOKU KOGYO KK
Nakagawa Corrosion Protecting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAGAWA BOSHOKU KOGYO KK, Nakagawa Corrosion Protecting Co Ltd filed Critical NAKAGAWA BOSHOKU KOGYO KK
Priority to JP60242713A priority Critical patent/JPS62103381A/en
Publication of JPS62103381A publication Critical patent/JPS62103381A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To electrolytically protect a body to be protected day and night for a long period of time by respectively electrically connecting the anode of a solar battery and the cathode of a reverse blocking type semiconductor element to a galvanic anode and the cathode and anode thereof to the body to be protected. CONSTITUTION:An electrolytic corrosion preventive device is constituted by electrically connecting the anode of the solar battery 1 and the cathode of a diode 2 as the reverse blocking type semiconductor element provided in paral lel therewith to the galvanic anode 3 embedded in the ground 4 and electrically connecting the cathode of the solar battery 1 and the anode of the diode 2 to a steel pipe 5 which is the body to be protected and is embedded in the ground 4. The corrosion preventive current generated by the solar battery 1 in the day time flows out into the ground 4 then into the steel pipe 5 from which the current returns to the solar battery 1. On the other hand the current generated by the electromotive force based on the potential difference in the night time flows in the route of the anode 3 the ground 4 the steel pipe 5 the diode 2 the anode 3. The steel pipe 5 is thereby electrolytically protected efficiently day and night.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、太陽電池を電源とする?if気防食装置に
関し、特に太陽電池と漬電陽極の併用シこよる電気防食
装置に関する。
[Detailed Description of the Invention] [Industrial Application Fields] Does this invention use solar cells as a power source? The present invention relates to an electrolytic corrosion protection device, and particularly to an electrolytic corrosion protection device that uses a solar cell and a submerged anode in combination.

[従来の技術] 従来、この種の電気防食装置としては、太陽M池のアノ
ードを直接不溶性電極に接続し、カソードを被防食体に
接続した装着が開示されている。(例えは実公昭47−
39450号公!F3)また、太陽電池のアノードをバ
ッテリーのプラス端子を介し・て不溶性電極に接続し、
カソードを前記バッテリーのマイナス端子を介して被防
食体に接続した装置が開示されている。
[Prior Art] Conventionally, this type of cathodic protection device has been disclosed in which the anode of a solar M pond is directly connected to an insoluble electrode, and the cathode is connected to an object to be protected. (For example, in 1977-
Public No. 39450! F3) Also, connect the anode of the solar cell to the insoluble electrode via the positive terminal of the battery,
A device is disclosed in which the cathode is connected to the object to be protected from corrosion via the negative terminal of the battery.

すなわち、太陽電池の起電力による電流は一司ハッチζ
ノーに蓄えられ、このバッテリーの出力電流が防食電流
とし・て不溶性電極を介して被防食体に流入して防食が
達せられろ。(例えは、実開昭57−125771号公
報) 〔発明が昭決しようとする問題q] 上記した従来の太陽電、1セを電7I9とする雷気防食
茹tυζこおいて、前者(1)HRは・雨や曇りの日に
1句切な防食電流のQ生が得られない恐れがあり、特に
夜間には電流の発生がないという致命的な問題があるた
めに、実用化されていないのが現状である。
In other words, the current due to the electromotive force of the solar cell is Kazushi hatch ζ
Corrosion protection is achieved by storing the output current of this battery in the form of corrosion protection current that flows into the object to be protected through the insoluble electrode. (An example is Utility Model Application Publication No. 57-125771.) [Problem q that the invention attempts to solve] Considering the above-mentioned conventional solar power, the lightning corrosion protection boiling tυζ where 1st cell is 7I9, the former (1 ) HR has not been put into practical use because there is a risk that it may not be possible to obtain a sufficient Q-value of anti-corrosion current on rainy or cloudy days, and there is a fatal problem that no current is generated especially at night. is the current situation.

これに対して後者の装置は、太陽電池の発生f4流を一
日バッテリーに蓄えてから防食電流として利用するため
夜間なとの太陽電池の発生電流が舞い場合でも防食電流
を供給できるという利点はあるものの、このようなバッ
テリーを使用する方法では、バッテリーの寿命が数年以
下と短いため電気防食装置のように長期間の涌雷を行う
場合には、バッテリーの寿命が霜きる毎に新品と交換し
なければならず、交換に要する費用は莫大なものとなる
On the other hand, the latter device stores the f4 current generated by the solar cell in the battery for one day and then uses it as the anti-corrosion current, so it has the advantage of being able to supply the anti-corrosion current even when the current generated by the solar cell fluctuates at night. However, with this method of using batteries, the life of the battery is short, less than a few years, so if you use long-term lightning strikes like cathodic protection equipment, you will need to replace the battery with a new one every time the battery's life runs out. It would have to be replaced, and the cost of replacement would be enormous.

また、バッテリーを良好な状態に保持するために少くと
も】年に数回程度以上の保守点検を必要とするなと経済
的にも技術的にも、種々問題があった。
In addition, in order to maintain the battery in good condition, maintenance and inspections are required at least several times a year, which poses various problems both economically and technically.

この発明は、従来の太陽電池を電源とした電気防食装置
のもつh記のような問題点を解消させ、長期間に亘って
金属の腐食を防1ヒすることのできる電気防食装置を提
供することを目的とするつ[問題点を解決するための手
段] この目的を達成させるためにこの発明は次のよろな構成
と1−・τいる。
The present invention provides a cathodic protection device that can eliminate the problems listed in item H of conventional cathodic protection devices using solar cells as a power source and can prevent metal corrosion over a long period of time. [Means for solving the problem] In order to achieve this object, the present invention has the following various configurations and 1-.τ.

すなわち、この第1の発明に係るM気防食H贅は、太陽
電池の7ノード、とこの太陽電池と並列に設置された逆
目1ヒ傅半導体素子のカソードを流N陽極に接続し、前
記太陽電池のカソードと前記逆明止型半導体素子のアノ
ードを被防食体に接続して構成される。
That is, the M corrosion protection H according to the first invention connects the seven nodes of a solar cell and the cathode of a reverse mesh semiconductor element installed in parallel with the solar cell to the N anode. It is constructed by connecting the cathode of the solar cell and the anode of the reverse protection type semiconductor element to an object to be protected from corrosion.

また、第2の発明に係る電気防食装置は、太陽電池のア
ノードを流電陽極に接続し、カソードを被防食体に接続
すると共に前記太陽電池の発生電流によって駆動される
ように接続された電磁リレーのb接点(電磁リレーのコ
イルに電流が流れるとき開き、電流が治れないとき閉じ
るような接点)を前記太g、電池と並列に接続して構成
されている。
Further, the cathodic protection device according to the second invention includes an electromagnetic device that connects the anode of the solar cell to a galvanic anode, connects the cathode to the object to be protected, and is connected to be driven by the current generated by the solar cell. It is constructed by connecting the relay's b contact (a contact that opens when current flows through the electromagnetic relay coil and closes when the current does not flow) in parallel with the battery.

[作 用] 上記のような構成とすると、先ず、太陽電池のアノード
に流電陽極が接続され、カソードに被防食体が接続され
ているから、太陽光の照射が得られる昼間には太陽電池
の起電力による電流が流電陽極から電解液を介して被防
食体の表面に流入してこの被防食体を防食する。
[Function] With the above configuration, first, the galvanic anode is connected to the anode of the solar cell, and the object to be protected is connected to the cathode. A current generated by the electromotive force flows from the current anode through the electrolyte to the surface of the object to be protected from corrosion, thereby protecting the object from corrosion.

次に・太陽光照射の得られない夜間には、流電陽極と被
防食体間の電位差による起電力によって電流が流れ、被
防食体の表面に流人してこの被防食体を防食することに
なる。
Next, at night when sunlight cannot be irradiated, a current flows due to the electromotive force caused by the potential difference between the galvanic anode and the object to be protected, flows onto the surface of the object to be protected, and protects the object from corrosion. become.

ところで、太陽電池と流電陽極とが被防食体に直列に接
続されて電気防食回路が構成された場合は、太陽電池の
内部抵抗がかなり大きいので太陽電池が電流を発生しな
い夜間には流電陽極と被防食体との間の起電力だけては
、電流はほとんど流れず、従って防食を達成することは
むずかしいのである。
By the way, if a solar cell and a galvanic anode are connected in series to the object to be protected to form a cathodic protection circuit, the internal resistance of the solar cell is quite large, so the galvanic anode will not generate current at night when the solar cell does not generate current. Almost no current flows due to the electromotive force between the anode and the object to be protected, and therefore it is difficult to achieve corrosion protection.

しかし、第一の発明では逆阻1.I:型半導体素子が、
また第2の発明では前記太陽電池のR,流によって9動
されるリレーのbta占が、前記太陽電池に対してバイ
パスとなるように並列に接続されているから、防食電流
は主として電気抵抗の小さい逆fu11. lF型半導
体素子、あるいは電磁リレーのb接点を経由する回路を
流れることになり、流電陽極と被防食体との間の比較的
小さな電位差でもこの被防食体を防食するのに十分な電
流を流すことができろ。
However, in the first invention, reverse blocking 1. I: type semiconductor element is
In addition, in the second invention, since the relay BTA which is operated by the R current of the solar cell is connected in parallel to the solar cell so as to act as a bypass, the anti-corrosion current is mainly caused by the electric resistance. Small reverse fu11. The current flows through the circuit via the IF type semiconductor element or the b contact of the electromagnetic relay, and even a relatively small potential difference between the galvanic anode and the object to be protected generates enough current to protect the object from corrosion. Be able to flow.

一方・上記の逆阻止型半導体素子、あるいは電磁リレー
のb接点を含む太陽電池との並列回路は、太陽電池に対
して短絡回路を形成する形となっているが、逆阻止型半
導体素子は、逆方向に対しては11Jする。::とがな
く太陽電池の短絡電流をと旧トするのて枦絡電冶が流れ
ることはない。
On the other hand, the above-mentioned reverse-blocking semiconductor element or the parallel circuit with the solar cell including the b contact of the electromagnetic relay forms a short circuit to the solar cell, but the reverse-blocking semiconductor element For the opposite direction, it is 11J. :: If the short-circuit current of the solar cell is ignored, the short-circuit current will not flow.

また、太陽電池が電流を発生している間は、電磁リレー
のコイルに太陽電池からの電流が流れて、b接点は問い
ているから太陽電池の短絡1漬が流れることはない。
Furthermore, while the solar cell is generating current, the current from the solar cell flows through the coil of the electromagnetic relay and the B contact is open, so a short circuit in the solar cell will not occur.

[実施例] 以下、この発明を図面に示す実施例に基づいて説明する
[Example] The present invention will be described below based on an example shown in the drawings.

第1図および第2図は、逆阻止型半導体素子を用いた場
合のv、1の発明の実施例を示す説明図である。
FIG. 1 and FIG. 2 are explanatory diagrams showing an embodiment of the invention of v.1 when a reverse blocking type semiconductor element is used.

第1図において、(1)は太lJ!電池、(2)はダイ
オード、(3)は流電陽極、(4)は大地であり、(5
)は被防食体としての鋼管である。
In Figure 1, (1) is thick lJ! battery, (2) is the diode, (3) is the galvanic anode, (4) is the earth, (5)
) is a steel pipe as the object to be protected against corrosion.

太陽電池(1)のアノードは流電間F!+(3)に、カ
ソードは(4)の大地に埋設された鋼管(5)に、電気
的に接続されている。
The anode of the solar cell (1) is between current F! +(3), the cathode is electrically connected to the steel pipe (5) buried in the ground (4).

また、ダイオード(2)のアノードは前記鋼管(5)に
、カソードは流TL陽極(3)に電気的に接続されてお
り、前記の太陽電池に対して並列回路となっている。
Further, the anode of the diode (2) is electrically connected to the steel pipe (5), and the cathode is electrically connected to the flow TL anode (3), forming a parallel circuit with respect to the solar cell.

電気防食回路をこのように構成す名と、昼間太陽電油(
I)が雷治を発生している間は、防食電流は(+)の太
陽電池の7ノードから流電陽極(3)を経て大地(4)
に流出し、被防食体である鋼管(5)に流入して太陽電
池(1)のカソードに遷るような電気回路をンをれて前
記鋼管(5)を防食する。
The name of configuring the cathodic protection circuit in this way and the daytime solar electric oil (
While I) is generating lightning, the anti-corrosion current flows from the 7 nodes of the (+) solar cell through the galvanic anode (3) to the earth (4).
The water flows out into the steel pipe (5), which is the object to be protected from corrosion, and passes through the electrical circuit to the cathode of the solar cell (1), thereby protecting the steel pipe (5) from corrosion.

また、太陽電池が電流を発生しない夜間には、被防食体
としての鋼管(5)と流電陽極(3)との間の電位差に
基づく起電力によって発生した電流は、流電陽極から大
地(4)に流出して鋼管(5)に流入し、ダイオード(
2)を経由して流電陽極(3)に還るように電気回路を
漬れて鋼管(5)を防食する。
In addition, at night when the solar cell does not generate current, the current generated by the electromotive force based on the potential difference between the steel pipe (5) as the object to be protected and the galvanic anode (3) flows from the galvanic anode to the earth ( 4), flows into the steel pipe (5), and flows into the diode (
2) to prevent corrosion of the steel pipe (5) by immersing the electric circuit so that the current returns to the anode (3) via the galvanic current anode (3).

第2図は、逆阻止型半導体素子として逆阻止3端子サイ
リスタ(6)を用いた場合の実施例である。
FIG. 2 shows an embodiment in which a reverse blocking three-terminal thyristor (6) is used as the reverse blocking semiconductor element.

第2図において、逆阻止3端子サイリスタ(6)、およ
びこの逆明止3端子サイリスタのゲート回路に挿入され
た抵抗(7a)以外は第1図と同一の符号で示されてい
る。
In FIG. 2, components other than the reverse blocking three-terminal thyristor (6) and the resistor (7a) inserted in the gate circuit of this reverse blocking three-terminal thyristor are designated by the same symbols as in FIG. 1.

第2図において、太r4電池(1)が電池を発生してい
る間の防食電流の流れは第1図の場合と同様である。
In FIG. 2, the flow of anti-corrosion current while the thick R4 battery (1) is generating electricity is the same as in FIG.

太陽電池(1)が電流を発生しないときは、流電陽極(
3)と鋼管(5)との間の起電力による直流電圧によっ
て、逆阻IF、3端子サイリスタのゲート回路に抵抗(
7a)を経由して、ゲートトリカー電流が滞れてこの逆
阻止3端子サイリスタを導通させて電気防食回路が形成
される。
When the solar cell (1) does not generate current, the galvanic anode (
3) and the steel pipe (5) due to the electromotive force, a resistance (
7a), the gate trigger current stagnates and makes this reverse blocking three-terminal thyristor conductive, thereby forming a sacrificial protection circuit.

二の場合の防食電流は、流電陽極(3)から大地(4)
を介し、て鋼管(5)に流入し、逆阻止3端子サイリス
タを経由して、流電陽極ζこ還るように電気回路を流れ
て鋼管(5)を防食する。
The anticorrosion current in case 2 is from galvanic anode (3) to earth (4)
It flows into the steel pipe (5) via the reverse blocking three-terminal thyristor, flows through the electric circuit to return to the galvanic anode, and protects the steel pipe (5) from corrosion.

また、この発明に使用する逆阻止3端子半導体素子とし
ては、−ヒ記サイリスタのほか、ゲートターンオフサイ
リスダ、あるいは静電誘導サイリスタを用いることがで
きる。
Further, as the reverse blocking three-terminal semiconductor device used in the present invention, in addition to the thyristor described in -H, a gate turn-off thyristor or an electrostatic induction thyristor can be used.

第3図は、第2の発明の実施例を示す説明図である。FIG. 3 is an explanatory diagram showing an embodiment of the second invention.

第3図において、抵抗(7b)、電磁リレー(8)、お
よびこの電磁リレーに含まれるコイル(8a)と、この
コイルにMt流が流れるとき開き、電流が流れないとき
閉じるように作動するb接点(Rh)L:/外は、7A
I図と同一の符号で示されている。
In Fig. 3, a resistor (7b), an electromagnetic relay (8), and a coil (8a) included in this electromagnetic relay, and a b that operates to open when Mt current flows through this coil and close when no current flows. Contact (Rh) L: / outside, 7A
It is indicated by the same reference numerals as in Figure I.

太陽電池(+)のアノードは流電陽極(3)に、カソー
ドは(4)の大地に埋設されたAll管(5)に電気的
に接続されている。
The anode of the solar cell (+) is electrically connected to the galvanic anode (3), and the cathode is electrically connected to the All tube (5) buried in the ground (4).

また、電磁リレー(8)のコイル(8a)は、抵抗(7
b)を介して(1)の太陽電池と(3)の流電陽極とを
接続する電線と並列になるように、接続されている。
Further, the coil (8a) of the electromagnetic relay (8) has a resistance (7
b) is connected in parallel with the electric wire connecting the solar cell (1) and the galvanic anode (3).

このように構成すると、太陽電池(+)が電流を発生し
ている間は、防食電流は(+)の太陽電池のアノードか
ら流電陽極(3)を経て大地(4)に流出し、被防食体
であるtJA管(5)に流入してこの鋼管を防食し、太
r4電池(1〉のカソードに還る。
With this configuration, while the solar cell (+) is generating current, the anti-corrosion current flows from the anode of the (+) solar cell through the galvanic anode (3) to the ground (4), and is covered with It flows into the tJA pipe (5) which is a corrosion protector, protects this steel pipe, and returns to the cathode of the thick R4 battery (1>).

このとき、電磁リレー(8)のb接点(8h)は問いて
いるから、太陽電池(1,)の短絡電流がb接点を通っ
て流れることはない。
At this time, since the b contact (8h) of the electromagnetic relay (8) is open, the short circuit current of the solar cell (1,) does not flow through the b contact.

また、太陽電池がW流を発生していないときは、電磁リ
レー(8)のb接点(8b)が閉しられ、流電陽極(3
)と鋼管(5)との間の雷イΩ差に基づく起電力によっ
て発生した電流が、大地(4)を介して、鋼管(5)に
流入して、この鋼管を防食し、電磁リレー(8)のb接
点(8h)を通って流電陽極(3〉に還るように流れる
In addition, when the solar cell is not generating W current, the b contact (8b) of the electromagnetic relay (8) is closed, and the current anode (3
) and the steel pipe (5) A current generated by an electromotive force based on the difference in ohms flows into the steel pipe (5) via the earth (4), protects the steel pipe from corrosion, and activates the electromagnetic relay ( The current flows through the b contact (8h) of 8) and returns to the galvanic anode (3>).

また、電磁リレー(8)は、b接点の接触抵抗を小さく
するたダ)に、複数個を並列に接続して用いることがで
きる。
Furthermore, a plurality of electromagnetic relays (8) can be connected in parallel to reduce the contact resistance of the b contact.

この発明で使用する流電陽極には、マグネシウム合金陽
極、アルミニウム合金陽極および亜鉛合金陽極などがあ
るが、これらの流電陽極は、寿命を延長したり、発生電
流を大きくするために形状を大きくしたり、あるいは、
同し形状のものを複数個並列に接続して用いることがで
きる。
The galvanic anodes used in this invention include magnesium alloy anodes, aluminum alloy anodes, and zinc alloy anodes. Or, or
Multiple pieces of the same shape can be connected in parallel.

[発明の効果コ 以上説明したように、この発明は、被防食体に流電陽極
が太陽電池を介して接続されており、この太陽電池と苗
列に逆用+l−七半導体素子あるいは前記太陽電池の発
生電流によって駆動されろ電磁リレーのb接点が接続さ
れているから、太陽電池が光の照射を受けて電流を発生
している間は、この太陽電池の発生電流が流電陽極を介
して被防食体表面に流入して被防食体を防食することが
でき、また、光の照射がなく太gl!池がilf流を発
生しないとき流電陽極からの電流は、電気抵抗の大きい
前記太陽電池を経由することなく、この太陽電池と並列
に電気抵抗の小さい逆阻止型半導体素子、あるいは電磁
リレーのb接点を経由して流れるから、流電陽極と被防
食体との間の比較的小さな電位差でも防食に要する十分
な電ン奇をl令すことができる。
[Effects of the Invention] As explained above, in this invention, a galvanic anode is connected to the object to be protected via a solar cell, and the solar cell and the seedling row are connected to the +l-7 semiconductor element or the solar cell. Since the B contact of the electromagnetic relay is connected to the contact B of the electromagnetic relay, which is driven by the current generated by the battery, while the solar cell is irradiated with light and generates current, the current generated by the solar cell is passed through the current anode. It is possible to prevent corrosion by flowing into the surface of the object to be protected, and there is no need for light irradiation. When the pond does not generate an ILF current, the current from the current anode does not pass through the solar cell, which has a large electrical resistance, but is connected to a reverse blocking semiconductor element with a small electrical resistance or an electromagnetic relay in parallel with the solar cell. Since the current flows through the contacts, even a relatively small potential difference between the galvanic anode and the object to be protected can provide sufficient electrical current required for corrosion protection.

しかも、太陽電池に対して並列に設けられた逆ド旧ト型
半導体素子は、一方向導通性であり、また、太lI@電
池に対して並列に設けられた電磁リレーのb接点は、太
陽電池が電流を発生している間は接占が開いているから
、太陽電池に対して短絡回路が形成されず、短絡電流が
流れることはない。
Moreover, the inverted double gate type semiconductor element installed in parallel to the solar cell has unidirectional conductivity, and the b contact of the electromagnetic relay installed in parallel to the solar cell is unidirectionally conductive. Since the circuit is open while the battery is generating current, no short circuit is formed to the solar cell and no short circuit current flows.

流電陽極は、設置した後はそのままで所定の電流を発生
し続けるから、特別な保守管理を必要とせず、長間間に
亘って唄tオを腐食から慄護することができろ。
Since the galvanic anode continues to generate a predetermined current after being installed, it does not require any special maintenance and can protect the battery from corrosion over a long period of time.

以上のようにこの発明によれば、太陽電池が光線の開削
の得られる昼間は太陽電池からの電流により被防食体を
防食し、光線の照射が得られない夜前には、流電陽極と
被防食体との間の電fff差によって発生するWl流に
よって被防食体を十分に防食するから、商用電源のない
場所でも被防食体を長間間に亘って防食することができ
る。
As described above, according to the present invention, during the daytime when the solar cell can receive light beams, the current from the solar cell protects the object to be corroded, and before night when light beams cannot be irradiated, the galvanic anode protects the object. Since the object to be corroded is sufficiently protected from corrosion by the Wl flow generated by the electric fff difference between the object and the object to be corroded, the object to be corroded can be protected from corrosion for a long period of time even in a place where there is no commercial power supply.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、第1の発明の実施例を示す説明
図である。 第1図は、逆阻市型半導体素子としてブイオートを用い
た場合の説明図であり、第2図は、逆阻止型半導体素子
として3端子サイリスタを用いた場合のこの発明の詳細
な説明図である。 第3図は、第2のこの発明の実施例を示す説明図である
FIG. 1 and FIG. 2 are explanatory diagrams showing an embodiment of the first invention. FIG. 1 is an explanatory diagram of the case where a V-auto is used as the reverse blocking type semiconductor element, and FIG. 2 is a detailed explanatory diagram of the present invention when a three-terminal thyristor is used as the reverse blocking type semiconductor element. be. FIG. 3 is an explanatory diagram showing a second embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、太陽電池のアノードと、この太陽電池と並列に設け
られた逆阻止型半導体素子のカソードが流電陽極に接続
され、前記太陽電池のカソードと前記逆阻止型半導体素
子のアノードが被防食体に接続されたことを特徴とする
電気防食装置。 2、逆阻止型半導体素子がダイオードである特許請求の
範囲第1項記載の電気防食装置。 3、逆阻止型半導体素子が逆阻止3端子サイリスタであ
る特許請求の範囲第1項記載の電気防食装置。 4、太陽電池のアノードが流電陽極に、カソードが被防
食体に接続されており、かつ、前記太陽電池の発生電流
によって駆動されるように接続された電磁リレーのb接
点が前記太陽電池と並列に接続されたことを特徴とする
電気防食装置。
[Claims] 1. An anode of a solar cell and a cathode of a reverse blocking semiconductor element provided in parallel with the solar cell are connected to a galvanic anode, and the cathode of the solar cell and the reverse blocking semiconductor element are connected to a current anode. A cathodic protection device characterized in that an anode is connected to an object to be protected. 2. The electrolytic protection device according to claim 1, wherein the reverse blocking semiconductor element is a diode. 3. The electrolytic protection device according to claim 1, wherein the reverse blocking semiconductor element is a reverse blocking three-terminal thyristor. 4. The anode of the solar cell is connected to the current anode, the cathode is connected to the object to be protected, and the b contact of the electromagnetic relay connected to be driven by the current generated by the solar cell is connected to the solar cell. A cathodic protection device characterized by being connected in parallel.
JP60242713A 1985-10-31 1985-10-31 Electrolytic corrosion preventive device Pending JPS62103381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60242713A JPS62103381A (en) 1985-10-31 1985-10-31 Electrolytic corrosion preventive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60242713A JPS62103381A (en) 1985-10-31 1985-10-31 Electrolytic corrosion preventive device

Publications (1)

Publication Number Publication Date
JPS62103381A true JPS62103381A (en) 1987-05-13

Family

ID=17093132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60242713A Pending JPS62103381A (en) 1985-10-31 1985-10-31 Electrolytic corrosion preventive device

Country Status (1)

Country Link
JP (1) JPS62103381A (en)

Similar Documents

Publication Publication Date Title
USRE46862E1 (en) Sacrificial anode assembly
US5139634A (en) Method of use of dual bed cathodic protection system with automatic controls
US3240688A (en) Aluminum alloy electrode
US5026468A (en) Dual bed cathodic protection system with automatic controls
ES2052328T3 (en) DEVICE AND METHOD FOR REAL-TIME MONITORING OF ACCIDENTAL DAMAGE TO THE PROTECTIVE COATING OF UNDERGROUND OR SUBMERGED METAL STRUCTURES OR PIPES.
RU2713898C1 (en) Device for cathodic protection with autonomous power supply
USH1644H (en) Method and apparatus for providing continuous cathodic protection by solar power
JPS62103381A (en) Electrolytic corrosion preventive device
Newman Cathodic protection with parallel cylinders
JPS59193283A (en) Device for corrosion prevention using galvanic anode
JPS62116790A (en) Electrolytic corrosion preventive device
CN212567583U (en) Hydrology water resource monitoring devices
Schwalm et al. Stray current--the major cause of underground plant corrosion
Bashi et al. Cathodic protection system
KR20110001823A (en) Solar cell aparatus
EP0548241B1 (en) Method for preventing sea water cells from being destroyed by biofouling
JPS6254090A (en) Device for electrically preventing corrosion of embedded metallic body
JPS6319322Y2 (en)
NZ232873A (en) Corrosion protection of solar cell module frame
US3560359A (en) Corrosion protection
JPS59177379A (en) Method for carrying out electric protection of article buried in ground
CN1040137C (en) Dual bed cathodic protection system with automatic controls and method
JP4015933B2 (en) Method for manufacturing concrete structure
Sen et al. Corrosion and steel grounding
JPH0423406Y2 (en)