JPS6210291A - Electrolytic copper foil - Google Patents

Electrolytic copper foil

Info

Publication number
JPS6210291A
JPS6210291A JP60146623A JP14662385A JPS6210291A JP S6210291 A JPS6210291 A JP S6210291A JP 60146623 A JP60146623 A JP 60146623A JP 14662385 A JP14662385 A JP 14662385A JP S6210291 A JPS6210291 A JP S6210291A
Authority
JP
Japan
Prior art keywords
electrolytic
copper foil
activated carbon
electrolysis
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60146623A
Other languages
Japanese (ja)
Other versions
JPH0432155B2 (en
Inventor
Kuniki Ueno
上野 国樹
Kazuyoshi Nabekura
鍋倉 一好
Yutaka Hirasawa
平沢 裕
Makoto Fujiki
藤木 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP60146623A priority Critical patent/JPS6210291A/en
Priority to DE3687089T priority patent/DE3687089T3/en
Priority to EP86105554A priority patent/EP0207244B2/en
Priority to AT86105554T priority patent/ATE82333T1/en
Priority to NO862041A priority patent/NO862041L/en
Priority to ES556394A priority patent/ES8708151A1/en
Priority to FI862842A priority patent/FI862842A/en
Publication of JPS6210291A publication Critical patent/JPS6210291A/en
Publication of JPH0432155B2 publication Critical patent/JPH0432155B2/ja
Priority to JP5054589A priority patent/JPH0610181A/en
Priority claimed from JP5054589A external-priority patent/JPH0610181A/en
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To obtain copper foil showing high tensile strength and elongation at ordinary and high temps. and having satisfactory bending resistance by carrying out electrolysis with an electrolytic soln. contg. a certain amount of an electrolytic soln. immediately after treatment with activated carbon. CONSTITUTION:Part of an electrolytic soln. fed from an electrolytic soln. feeding line 1 is treated with activated carbon by passing through a column 2 packed with activated carbon. The remaining electrolytic soln. is allowed to join the treated electrolytic soln. and introduced into an electrolytic cell 3 provided with a cathode drum 4 and insoluble anodes 5 within 20min after the treatment to carry out electrolysis. The amount of the treated electrolytic soln. is >=60vol% of the total amount. Electrolytic copper foil 6 deposited on the cathode drum 4 by the electrolysis is stripped and recovered. Thus, copper foil having superior mechanical properties, high hot elongation and satisfactory bending resistance after heating is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電解銅箔に関し、詳しくは銅箔を電解により得
る際の電解液の60容量%以上を活性炭処理した後20
分以内のものを用いることにより、伸び、耐折り曲げ性
等を大幅に向上させた銅張積層板等に用いられる電解銅
箔に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to electrolytic copper foil, and more specifically, when copper foil is obtained by electrolysis, 60% by volume or more of the electrolyte is treated with activated carbon.
This invention relates to an electrolytic copper foil used for copper-clad laminates, etc., which has significantly improved elongation, bending resistance, etc. by using a copper foil of less than 10 minutes.

[発明が解決しようとする問題点] 近年、電算機を始めとする電子工業の分野において、回
路の高密度化、高信頼性化を図るため、回路の多層化が
盛んに行なわれつつあり、特に多層化した銅張積層板が
使用されている。
[Problems to be solved by the invention] In recent years, in the field of electronics industry including computers, multi-layering of circuits has been actively carried out in order to increase the density and reliability of circuits. In particular, multi-layered copper-clad laminates are used.

従来、このプリント基板に用いられる銅張積層板用の銅
箔としては、一般に電解銅箔が用いられている。この電
解銅箔は、回転する陰極ドラムを使用し、電解槽中に膠
などの添加物を加えた電解液を通し、回転する陰極ドラ
ム上に、銅を電着させ、ドラムを回転させつつ、銅箔を
剥ぎ取る連続電解方式が用いられている。
Conventionally, electrolytic copper foil has generally been used as the copper foil for copper-clad laminates used in this printed circuit board. This electrolytic copper foil uses a rotating cathode drum, passes an electrolytic solution containing additives such as glue into an electrolytic bath, and electrodeposit copper onto the rotating cathode drum. A continuous electrolytic method is used to strip off the copper foil.

この従来法により製造された電解鋼箔は、170℃前後
の低温での熱処理によって1機械的性質が大きく改良さ
れることはなく、圧延鋼箔と比較して折り曲げにより破
断し易い。
Electrolytic steel foil produced by this conventional method does not have its mechanical properties significantly improved by heat treatment at a low temperature of around 170° C., and is more likely to break when bent than rolled steel foil.

また、この電解銅箔は特に熱間時(例えば180℃雰囲
気)の伸びが3.0%前後またはそれ以下と低く、銅箔
のANS I規格であるIPC−CF−150Eでは、
姓能によりクラス1〜4の分類を設けている。特にクラ
ス4では銅箔を熱処理することにより、180℃熱間伸
び率が4.0%以上である品種を設けており、熱処理し
なければ180℃での伸び率を4.0%以上にするのは
困難とされていた。
In addition, this electrolytic copper foil has a low elongation of around 3.0% or less, especially when hot (for example, in a 180°C atmosphere), and according to IPC-CF-150E, which is the ANSI standard for copper foil,
Classes 1 to 4 are established based on surname and ability. In particular, in class 4, by heat-treating the copper foil, we have varieties that have a hot elongation rate of 4.0% or more at 180°C. was considered difficult.

さらに、このような電解銅箔では、銅箔積層板、特に多
層銅箔積層板の製造時に、熱応力がかかる工程で銅箔に
クラックが入ったり、また耐折り曲げ性を重視するフレ
キシブルプリント配線板に供用するには、信頼性が不足
していた。
Furthermore, with such electrolytic copper foil, cracks may appear in the copper foil during the process of applying thermal stress during the production of copper foil laminates, especially multilayer copper foil laminates, and flexible printed wiring boards where bending resistance is important. It lacked reliability for use in the

本発明の目的は、従来の電解銅箔では得られなかった、
常温および熱間での伸びをもち、圧延銅箔と同等または
それ以上の機械的性質を備えた電解鋼箔を提供すること
にある。
The purpose of the present invention is to achieve the following:
The object of the present invention is to provide an electrolytic steel foil that has elongation at room temperature and hot temperature and has mechanical properties equivalent to or better than rolled copper foil.

[問題点を解決するための手段および作用]本発明者等
は、以前からM I L −P−5510Cで要求され
ている熱応力を受けた状態でクラックが発生しないよう
な、いわゆる熱間(例えば180℃雰囲気中)での伸び
が高い電解銅箔の製造について数十回に亘る試験を重ね
てきた。
[Means and effects for solving the problem] The present inventors have developed a so-called hot ( For example, we have conducted dozens of tests to manufacture electrolytic copper foil that has high elongation at 180°C (in an atmosphere).

その中で、電解液の清浄を目的とした活性炭処理を実施
した際、電解に供する電解液の60容量%以上を連続し
て活性炭処理した電解液を使って、直ちに電解すると、
非常に特異な機械的性質をもつ電解銅箔が作成できるこ
とを見い出し、本発明に至った。
Among them, when carrying out activated carbon treatment for the purpose of cleaning the electrolyte, if 60% by volume or more of the electrolyte to be subjected to electrolysis is continuously treated with activated carbon and electrolyzed immediately,
We have discovered that it is possible to create an electrolytic copper foil with very unique mechanical properties, leading to the present invention.

すなわち本発明は、活性炭処理された後20分以内の電
解液を60容伍%以上含有する電解液を用いた電解によ
り(qられた電解銅箔にある。
That is, the present invention resides in an electrolytic copper foil that has been subjected to electrolysis using an electrolytic solution containing 60% by volume or more within 20 minutes after being treated with activated carbon.

本発明の電解鋼箔を得るには、電解に供する電解液の6
0容堡%以上が活性炭処理したものを用いる。活性炭処
理したものが60容量%未渦においては、高い熱間伸び
率を有する電解銅箔が得られない。また、この活性炭処
理した電解液は、活性炭処理後20分以内のものを用い
ることが必要で、20分を超えたものを用いても同様に
高い熱間伸び率を有する電解銅箔は得られない、なお、
電解液の清浄を目的として、活性炭処理を行なうことは
従来より行なわれているが、この活性炭処理した電解液
を本発明のごとり20分以内に電解することはなく、少
なくとも1日以上ドラム罐等に貯蔵することが通常であ
る。
In order to obtain the electrolytic steel foil of the present invention, the electrolytic solution used for electrolysis must be
0% or more of the volume is treated with activated carbon. If the activated carbon-treated foil is not vortexed by 60% by volume, an electrolytic copper foil having a high hot elongation rate cannot be obtained. In addition, it is necessary to use this activated carbon-treated electrolyte within 20 minutes after the activated carbon treatment, and electrolytic copper foil with a similarly high hot elongation rate cannot be obtained even if it is used for more than 20 minutes. No, please note that
Activated carbon treatment has been conventionally performed for the purpose of cleaning the electrolyte, but the activated carbon-treated electrolyte is not electrolyzed within 20 minutes as in the present invention, and is left in the drum can for at least one day. It is normal to store it in

次に本発明の電解銅箔の製造方法を第1図に基づき説明
する。
Next, the method for manufacturing electrolytic copper foil of the present invention will be explained based on FIG.

第1図は本発明の電解銅箔を製造する連続電解方式の装
置の一例を示す概略図であり、1は電解液導入ライン、
2は活性炭充填塔、3は電解槽、4は陰極ドラム、5は
不溶性陽極、6は電解銅箔をそれぞれ示し、また矢線は
電解液の流れを示す。
FIG. 1 is a schematic diagram showing an example of a continuous electrolysis system for manufacturing the electrolytic copper foil of the present invention, in which 1 is an electrolyte introduction line;
2 is an activated carbon packed tower, 3 is an electrolytic cell, 4 is a cathode drum, 5 is an insoluble anode, and 6 is an electrolytic copper foil, and the arrows indicate the flow of the electrolyte.

連続電解方式自体は従来法とほとんど変化ないが、電解
液を電解直前に一定量以上活性炭充填層を通して、例え
ば空塔速度30cm/ sea以下で処理し、20分以
内に電解に供することに特徴がある。
The continuous electrolysis method itself is almost the same as the conventional method, but it is characterized by passing a certain amount of electrolyte through a bed of activated carbon just before electrolysis, processing it at a superficial velocity of 30 cm/sea or less, and providing electrolysis within 20 minutes. be.

すなわち、電解液供給ライン1より導入された電解液の
一定量を活性炭充填塔2に導入し、活性炭処理を行ない
、この活性炭処理を行なって20分以内の電解液を、未
処理の電解液と共に合流させて電解槽3に導入し、電解
を行なう。この電解の際に、電解槽3中の電解液の60
容量%以上が活性炭処理を行なって20分以内の電解液
であることが本発明においては必要である。この電解は
、陰極ドラム4と不溶性陽極5を用いて電解を行ない、
陰極ドラム4に電解銅箔6を析出させる。この電解の際
の電解液組成、電解時間、電流密度、浴温等は所望によ
り適宜窓められる。陰極ドラム4に析出した電解銅箔6
は剥ぎ取られ、銅張積層板等の用途に用いられる。
That is, a certain amount of the electrolyte introduced from the electrolyte supply line 1 is introduced into the activated carbon packed tower 2 and treated with activated carbon, and the electrolyte that has been treated with activated carbon for less than 20 minutes is mixed with the untreated electrolyte. They are combined and introduced into the electrolytic cell 3 for electrolysis. During this electrolysis, 60% of the electrolyte in the electrolytic cell 3
In the present invention, it is necessary that at least % by volume of the electrolytic solution be treated with activated carbon within 20 minutes. This electrolysis is performed using a cathode drum 4 and an insoluble anode 5,
Electrolytic copper foil 6 is deposited on cathode drum 4. The electrolyte composition, electrolysis time, current density, bath temperature, etc. during this electrolysis can be adjusted as desired. Electrolytic copper foil 6 deposited on cathode drum 4
is stripped and used for applications such as copper-clad laminates.

このようにして製造した電解銅箔は、電解液の活性炭に
よる清浄効果と、電解液中の金属陽イオンの酸化還元作
用に起因すると思われる効果の両者により、従来とは異
なる電着状態が形成され、従来の電解鋼箔に比べ、機械
的性質はすべてにおいて良好で、圧延銅箔と比較しても
、同等以上の物性値を表わす。特に熱間伸びは、従来の
電解銅箔に比して飛躍的に増大しており、また熱漬の耐
折り曲げ性も極めて良好である。
The electrolytic copper foil produced in this way has a different electrodeposition state than before due to both the cleaning effect of the activated carbon in the electrolyte and the effect that is thought to be caused by the redox action of the metal cations in the electrolyte. It has better mechanical properties in all respects than conventional electrolytic steel foil, and exhibits physical property values equivalent to or better than rolled copper foil. In particular, the hot elongation is dramatically increased compared to conventional electrolytic copper foil, and the bending resistance during hot soaking is also extremely good.

[実施例] 以下、本発明を実施例および比較例に基づき具体的に説
明する。
[Examples] The present invention will be specifically described below based on Examples and Comparative Examples.

LLL上 電解液として、1iiIWI鋼(Cu SOa  ・5
+−120)280〜360 M ! 、硫酸100〜
150g/Jの硫酸酸性の硫酸銅溶液を用い、液温的5
0℃、電流密度50〜100A/ dゴで電解した。
As the LLL upper electrolyte, 1iiWI steel (Cu SOa ・5
+-120) 280~360M! , sulfuric acid 100~
Using a 150 g/J sulfuric acid acidic copper sulfate solution,
Electrolysis was carried out at 0°C and a current density of 50 to 100 A/d.

電解は空塔速度30cra/ secで、電解に供する
電解液の80容最%を連続活性炭処理をしながら連続電
解を施した。なお、活性炭処理後電解に供するまでの時
間は5分間とした。
Electrolysis was carried out at a superficial velocity of 30 cr/sec, and continuous electrolysis was performed while 80% by volume of the electrolytic solution to be subjected to electrolysis was continuously treated with activated carbon. In addition, the time after activated carbon treatment until it was subjected to electrolysis was 5 minutes.

このようにして得られた35μm電解銅箔の常態(23
℃)、熱漬(180℃、1時間加熱後)、熱間(180
℃)の抗張力、伸び、MIT耐折り曲げ性をIPC−C
F−150Eに規定するクラス1〜4の規格と共に第1
表に示すと共に、常態および熱漬の電解銅箔の金属組織
を示す顕微鏡写真(ioo。
The normal state of the 35 μm electrolytic copper foil obtained in this way (23
°C), hot pickling (180 °C, after heating for 1 hour), hot soaking (180 °C, after heating for 1 hour)
°C) tensile strength, elongation, and MIT bending resistance by IPC-C
Along with the standards for classes 1 to 4 specified for F-150E,
As shown in the table, micrographs (ioo) show the metallographic structure of the electrolytic copper foil in normal state and hot soaked.

倍)を第2図(a>および< b>に示す。times) are shown in Figure 2 (a> and <<b>).

比較例1 電解液として実施例1と同様のものを用い1、活性炭処
理を全く行なわず、実施例1と同様の電解条件で連続電
解を施した。
Comparative Example 1 Using the same electrolyte as in Example 1, continuous electrolysis was carried out under the same electrolytic conditions as in Example 1 without any activated carbon treatment.

このようにして得られた35μm電解銅箔の常態、熱漬
〈180℃、1時間加熱後)、熱間<180℃)の抗張
力、伸び、MIT耐折り曲げ性を第1表に示すと共に、
常態および熱漬の電解銅箔の顕微鏡写真(1000倍)
を第3図(a)および(b)に示す。
The tensile strength, elongation, and MIT bending resistance of the 35 μm electrolytic copper foil obtained in this manner are shown in Table 1 in the normal state, hot soaking (after heating at 180°C for 1 hour), hot <180°C), and the MIT bending resistance.
Micrographs of electrolytic copper foil in normal condition and hot soaked (1000x magnification)
are shown in FIGS. 3(a) and (b).

比較例2 35μmの圧延鋼箔(プリント回路用圧延銅箔、TPO
−35、三井金属鉱業株式会社製)を用い、常態、熱漬
(180℃、1時間加熱後)、熱間(180℃)の抗張
力、伸び、MIT耐折り曲げ性を第1表に示すと共に、
常態および熱漬の圧延銅箔の顕微鏡写真(1000倍)
を第4図(a)および(b)に示す。
Comparative Example 2 35 μm rolled steel foil (rolled copper foil for printed circuits, TPO
-35, manufactured by Mitsui Kinzoku Mining Co., Ltd.), the tensile strength, elongation, and MIT bending resistance in normal state, hot (180 ° C., after heating for 1 hour), and hot (180 ° C.) are shown in Table 1.
Micrographs of normal and hot rolled copper foil (1000x magnification)
are shown in FIGS. 4(a) and (b).

第1表 第1表に示されるごとく、実施例1の電解鋼箔は、熱処
理することなく l PC−CF−150Eのクラス1
〜4のすべての要求物性を満足し、かつ耐折り曲げ性も
好ましい範囲にある。これに対して比較例1の電解銅箔
は、クラス2の常態伸びやクラス3および4の熱間伸び
を満足しておらず、熱処理をすることが必要であり、耐
折り曲げ性も実施例1に比べて低い値を示す。また比較
例2の圧延鋼箔は、クラス1〜4の常態伸びを満足して
おらず、熱処理をすることが必要であり、耐折り曲げ性
も実施例1に比べて低い値を示す。
Table 1 As shown in Table 1, the electrolytic steel foil of Example 1 was treated as PC-CF-150E class 1 without heat treatment.
It satisfies all of the required physical properties of 4 to 4, and the bending resistance is also within a preferable range. On the other hand, the electrolytic copper foil of Comparative Example 1 does not satisfy the normal elongation of Class 2 or the hot elongation of Classes 3 and 4, and requires heat treatment, and the bending resistance is also lower than that of Example 1. shows a lower value compared to . Moreover, the rolled steel foil of Comparative Example 2 does not satisfy the normal elongation of classes 1 to 4, requires heat treatment, and exhibits a lower bending resistance than Example 1.

また、実施例1および比較例1〜2の銅箔の常態および
熱漬の金属組織は、第2〜4図(a)および(b)にそ
れぞれ示されるごとく、実施例1の電解鋼箔では、18
0℃、1hr加熱後に明らかに比較例1の電解銅箔と異
なる巨易化が認められ(第2図(b)参照)、比較例2
の圧延銅箔と同様な現象を生じる。このとき第1表に示
すごとく、熱処理後の伸びは19%と高く、フレキシブ
ルプリント基板に要求される耐折り曲げ性は非常に改良
される。
In addition, as shown in FIGS. 2 to 4 (a) and (b), the metal structures of the copper foils of Example 1 and Comparative Examples 1 and 2 in the normal state and after hot soaking are the same as those of the electrolytic steel foil of Example 1. , 18
After heating at 0°C for 1 hr, the copper foil of Comparative Example 2 was clearly made bulky, which was different from that of the electrolytic copper foil of Comparative Example 1 (see Fig. 2(b)).
A phenomenon similar to that of rolled copper foil occurs. At this time, as shown in Table 1, the elongation after heat treatment was as high as 19%, and the bending resistance required for flexible printed circuit boards was greatly improved.

なお、本試験は35μmの銅箔について行なったが、1
8μmおよび70μmの銅箔においてもほぼ同様の結果
が得られた。
This test was conducted on 35 μm copper foil, but 1
Almost similar results were obtained with copper foils of 8 μm and 70 μm.

実施例2〜4および比較例3〜5 電解液として、硫酸銅(Cu SOa  ・ 5H20
)250〜280 (J/)、硫酸90〜120o/J
の硫′M酸性の硫酸銅溶液を用い、液温的50℃、電流
速度50〜150A/ drdで電解した。
Examples 2 to 4 and Comparative Examples 3 to 5 Copper sulfate (Cu SOa 5H20
)250-280 (J/), sulfuric acid 90-120o/J
Electrolysis was carried out using a sulfuric acid M copper sulfate solution at a liquid temperature of 50°C and a current rate of 50 to 150 A/drd.

電解は空塔速度30CIn/ Secで行ない、電解液
の一部または全部を連続活性炭処理をしたものを用い、
連続電解を施した。なお、活性炭処理後電解に供するま
での時間は5分間とした。
Electrolysis was carried out at a superficial velocity of 30 CIn/Sec, and part or all of the electrolyte was treated with continuous activated carbon.
Continuous electrolysis was performed. In addition, the time after activated carbon treatment until it was subjected to electrolysis was 5 minutes.

このようにして得られた35μmN解銅箔の熱間(18
0℃)伸びおよび電解に供する電解液の活性炭処理した
割合を第2表に示す。
The 35μmN copper-deposited foil thus obtained was heated (18
Table 2 shows the elongation (at 0°C) and the activated carbon-treated ratio of the electrolytic solution used for electrolysis.

第2表 第2表に示されるように、活性炭処理した電解液の割合
が60容量%以上の電解液を用いて電解して得られた実
施例2〜4の電解鋼箔は、熱間伸びが高いのに対し、活
性炭処理した電解液の割合が60容量%未渦の電解液を
用いて電解して得られた比較例3〜4の電解銅箔は、熱
間伸びが低いことが判る。このことから、本発明におい
ては、活性炭処理した電解液の割合が60容■%以上の
電解液を用いて電解することが必要である。
Table 2 As shown in Table 2, the electrolytic steel foils of Examples 2 to 4 obtained by electrolysis using an electrolytic solution in which the proportion of the activated carbon-treated electrolytic solution was 60% by volume or more were hot elongated. It can be seen that the electrolytic copper foils of Comparative Examples 3 and 4 obtained by electrolyzing using an unvortexed electrolyte in which the proportion of the activated carbon-treated electrolyte was 60% by volume had a low hot elongation. . Therefore, in the present invention, it is necessary to conduct electrolysis using an electrolytic solution in which the proportion of the electrolytic solution treated with activated carbon is 60% by volume or more.

例5〜7および 較例5 電解液として、硫酸銅(Cu SO4・ 5H20)2
50〜280 (1/ J 、硫M90〜1201J/
Jの硫酸酸性の硫酸銅溶液を用い、液温的50℃、電流
密度50〜150A/ dTItで電解した。
Examples 5 to 7 and Comparative Example 5 Copper sulfate (CuSO4・5H20)2 as the electrolyte
50~280 (1/J, sulfur M90~1201J/
Electrolysis was carried out using a sulfuric acid acidic copper sulfate solution of J, at a liquid temperature of 50°C and a current density of 50 to 150 A/dTIt.

電解は空塔速度30cm/ secで、電解に供する電
解液の80容量%を連続活性炭処理をしながら連続電解
を施した。また電解液の活性炭処理後電解に供するまで
の時間をそれぞれ2.5分、10分、20分、30分間
とした。
Continuous electrolysis was performed at a superficial velocity of 30 cm/sec while 80% by volume of the electrolyte to be subjected to electrolysis was continuously treated with activated carbon. Further, the time after the activated carbon treatment of the electrolytic solution until it was subjected to electrolysis was set to 2.5 minutes, 10 minutes, 20 minutes, and 30 minutes, respectively.

このようにして得られた35μm電解銅箔の熱間(18
0℃)伸びおよび活性炭処理した電解液の電解までの時
間を第3表に示す。
The thus obtained 35 μm electrolytic copper foil was heated (18
Table 3 shows the elongation (at 0°C) and the time until electrolysis of the activated carbon-treated electrolyte.

第3表 第3表に示されるように、活性炭処理してから20分以
内の電解液を用いて電解して得られた実施例5〜7の電
解銅箔は、熱間伸びが高いのに対し、活性炭処理した後
30分後の電解液を用いて電解して得られた比較例5の
電解銅箔は、熱間伸びが低いことが判る。このことから
、本発明においては、活性炭処理した後20分以内の電
解液を用いて電解することが必要である。
Table 3 As shown in Table 3, the electrolytic copper foils of Examples 5 to 7 obtained by electrolysis using an electrolytic solution within 20 minutes after being treated with activated carbon have high hot elongation. On the other hand, it can be seen that the electrolytic copper foil of Comparative Example 5, which was obtained by electrolysis using an electrolyte solution 30 minutes after the activated carbon treatment, had low hot elongation. For this reason, in the present invention, it is necessary to perform electrolysis using an electrolytic solution within 20 minutes after the activated carbon treatment.

[発明の効果] このように、活性炭処理された後20分以内の電解液を
60容量%以上含有する電解液を用いた電解により得ら
れた本発明の電解銅箔は、常態および熱間において、高
い抗張力および伸びを示すことから、多層銅張積層板等
に使用すれば熱工程での熱応力によるクラック発生の心
配もなく、また、本発明の電解銅箔は耐折り曲げ性も良
好であるため、フレキシブルプリント配線板への用途と
しても、高信頼性を発揮できる。
[Effects of the Invention] As described above, the electrolytic copper foil of the present invention obtained by electrolysis using an electrolytic solution containing 60% by volume or more within 20 minutes after being treated with activated carbon has a Since it exhibits high tensile strength and elongation, there is no fear of cracks occurring due to thermal stress during thermal processing when used in multilayer copper-clad laminates, etc., and the electrolytic copper foil of the present invention also has good bending resistance. Therefore, it can exhibit high reliability when used in flexible printed wiring boards.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電解鋼箔を製造する連続電解方式の装
置の一例を示す概略図、 第2図(a)および(b)は実施例1の常態および熱漬
の電解銅箔の金属組織を示す顕微鏡写真(1000倍)
、 第3図(a)および(b)は比較例1の常態および前接
の電解銅箔の金属組織を示す顕微鏡写真(1000倍)
、および 第4図(a)、8よび(b)は比較例2の常態および熱
漬の電解鋼箔の金属組織を示す顕微鏡写真(1000倍
)。 1:N解液導入ライン、2:活性炭充填塔、3:電解槽
、     4:陰極ドラム、5:不溶性陽極、   
6二電解鋼箔。
FIG. 1 is a schematic diagram showing an example of a continuous electrolysis system for producing the electrolytic steel foil of the present invention, and FIG. Micrograph showing the structure (1000x)
, Figures 3 (a) and (b) are micrographs (1000x magnification) showing the metallographic structures of the normal and antecedent electrolytic copper foils of Comparative Example 1.
, and FIGS. 4(a), 8, and 4(b) are micrographs (1000x magnification) showing the metallographic structure of the electrolytic steel foil of Comparative Example 2 in normal state and hot soaked. 1: N solution introduction line, 2: activated carbon packed tower, 3: electrolytic cell, 4: cathode drum, 5: insoluble anode,
62 electrolytic steel foil.

Claims (1)

【特許請求の範囲】[Claims] 1、活性炭処理された後20分以内の電解液を60容量
%以上含有する電解液を用いた電解により得られた電解
銅箔。
1. Electrolytic copper foil obtained by electrolysis using an electrolytic solution containing 60% by volume or more of electrolytic solution within 20 minutes after being treated with activated carbon.
JP60146623A 1985-07-05 1985-07-05 Electrolytic copper foil Granted JPS6210291A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP60146623A JPS6210291A (en) 1985-07-05 1985-07-05 Electrolytic copper foil
DE3687089T DE3687089T3 (en) 1985-07-05 1986-04-22 Process for producing copper foil by electrodeposition.
EP86105554A EP0207244B2 (en) 1985-07-05 1986-04-22 Process for the production of an electroposited copper foil.
AT86105554T ATE82333T1 (en) 1985-07-05 1986-04-22 COPPER FOIL MANUFACTURED BY ELECTROLYTIC DEPOSITION.
NO862041A NO862041L (en) 1985-07-05 1986-05-22 ELECTROLYTIC PROPOSED COPPER FILM.
ES556394A ES8708151A1 (en) 1985-07-05 1986-06-06 Electrodeposited copper foil.
FI862842A FI862842A (en) 1985-07-05 1986-07-04 GALVANISKT UTFAELLD KOPPARFOLIE.
JP5054589A JPH0610181A (en) 1985-07-05 1993-02-22 Electrolytic copper foil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60146623A JPS6210291A (en) 1985-07-05 1985-07-05 Electrolytic copper foil
JP5054589A JPH0610181A (en) 1985-07-05 1993-02-22 Electrolytic copper foil

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5054589A Division JPH0610181A (en) 1985-07-05 1993-02-22 Electrolytic copper foil

Publications (2)

Publication Number Publication Date
JPS6210291A true JPS6210291A (en) 1987-01-19
JPH0432155B2 JPH0432155B2 (en) 1992-05-28

Family

ID=42727544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60146623A Granted JPS6210291A (en) 1985-07-05 1985-07-05 Electrolytic copper foil

Country Status (1)

Country Link
JP (1) JPS6210291A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027307A (en) * 1997-06-05 2000-02-22 Halla Climate Control Corporation Fan and shroud assembly adopting the fan
WO2001049903A1 (en) * 2000-01-06 2001-07-12 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil and method for inspecting physical property thereof, and copper clad laminate using the electrolytic copper foil
JP2008294432A (en) * 2007-04-26 2008-12-04 Mitsui Mining & Smelting Co Ltd Printed wiring board, method of manufacturing the same, and electrolytic copper foil for copper clad laminate used for manufacturing printed wiring board

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940919A (en) * 1982-08-30 1984-03-06 Nippon Denso Co Ltd Control device for vehicle air-conditioning system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940919A (en) * 1982-08-30 1984-03-06 Nippon Denso Co Ltd Control device for vehicle air-conditioning system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027307A (en) * 1997-06-05 2000-02-22 Halla Climate Control Corporation Fan and shroud assembly adopting the fan
WO2001049903A1 (en) * 2000-01-06 2001-07-12 Mitsui Mining & Smelting Co., Ltd. Electrolytic copper foil and method for inspecting physical property thereof, and copper clad laminate using the electrolytic copper foil
JP2008294432A (en) * 2007-04-26 2008-12-04 Mitsui Mining & Smelting Co Ltd Printed wiring board, method of manufacturing the same, and electrolytic copper foil for copper clad laminate used for manufacturing printed wiring board

Also Published As

Publication number Publication date
JPH0432155B2 (en) 1992-05-28

Similar Documents

Publication Publication Date Title
JP3058445B2 (en) Characterized electrodeposited foils for printed circuit boards and methods for producing the same and electrolytic cell solutions
US4808967A (en) Circuit board material
DE602004012910T2 (en) Copper foil for printed circuit boards with fine structures and manufacturing processes
WO1997043466A1 (en) High-tensile electrolytic copper foil and process for producing the same
EP0862665A1 (en) Process for the electrolytic deposition of metal layers
DE3112216A1 (en) COPPER FILM FOR A PRINTED CIRCUIT AND METHOD FOR THEIR PRODUCTION
JP2007294923A (en) Manufacturing method of copper strip or copper foil having excellent strength, electric conductivity, and bendability, and electronic component using the same
DE3112217A1 (en) COPPER FILM FOR A PRINTED CIRCUIT AND METHOD FOR THEIR PRODUCTION
KR102655111B1 (en) Electrodeposited copper foil with its surfaceprepared, process for producing the same and usethereof
DE69933533T2 (en) Copper foil with a glossy surface with high oxidation resistance and method of manufacture
DE69627254T2 (en) COPPER FILM FOR INTERLAYER CIRCUITS OF MULTILAYER HIGH DENSITY PCB
JPH0610181A (en) Electrolytic copper foil
JPS63310990A (en) Electrolytic copper foil and production thereof
JPS63310989A (en) Electrolytic copper foil and production thereof
CN107604197A (en) Electrolytic copper foil
JP3608840B2 (en) Electrolytic copper foil for flexible wiring boards
JPS6210291A (en) Electrolytic copper foil
JP3943214B2 (en) Electrolytic copper foil containing silver
US5840170A (en) Method for inhibiting the electrodeposition of organic particulate matter on copper foil
DE2034144A1 (en) Process for the electrolytic deposition of pore-free copper of high ductility and purity
JPH07278867A (en) Production of electrolytic copper foil
JPH0368795A (en) Production of copper foil for printed circuit
KR910007950B1 (en) Copper foil of electrodeposition
EP0665309B1 (en) Copper etching process
JPS6152387A (en) Manufacture of electrolytic copper foil having superior elongation during heating at high temperature

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term