JPS62101823A - Intake device for four-cylinder engine - Google Patents

Intake device for four-cylinder engine

Info

Publication number
JPS62101823A
JPS62101823A JP24200785A JP24200785A JPS62101823A JP S62101823 A JPS62101823 A JP S62101823A JP 24200785 A JP24200785 A JP 24200785A JP 24200785 A JP24200785 A JP 24200785A JP S62101823 A JPS62101823 A JP S62101823A
Authority
JP
Japan
Prior art keywords
intake
cylinder
passage
independent
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24200785A
Other languages
Japanese (ja)
Other versions
JPH0726544B2 (en
Inventor
Mitsuo Hitomi
光夫 人見
Yoshikuni Yada
矢田 佳邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60242007A priority Critical patent/JPH0726544B2/en
Publication of JPS62101823A publication Critical patent/JPS62101823A/en
Publication of JPH0726544B2 publication Critical patent/JPH0726544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a favorable intake air charging efficiency over the whole rotation area by connecting confluence parts to each other and providing a control valve on each of their branch parts to a connecting passage, in a device in which four cylinders are divided into two groups while independent intake passages for each cylinder of each of the groups are made confluent. CONSTITUTION:Cylinders 1a-1d in a four cylinder engine, are divided into a first and a second group of a cylinders of discontinuous intake strokes, and the upper course ends of independent intake passages 9a, 9d and 9b, 9c which are connected to the cylinders of each of the groups respectively, are made confluent into a first and a second confluence parts 10A, 10B. The confluence parts 10A, 10B are led to a collecting part 12 via confluent intake passages 11A, 11B respectively, and the collecting party 12 is opened to the open air via a common intake passage 13. The confluence parts 10A, 10B are connected to each other by means of a connecting passage 19, and a control valve 20 which is closed when an engine speed is below a set value while opened when it is above the set value at least under a high load, is provided in each of the branch ports 18 of the confluence parts 10A, 10B to the connecting passage 19.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、吸気の動的効果(f!l性効果)を利用して
出力の向上を図るようにした4気筒エンジンの吸気装置
の改良に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention is an improvement of an intake system for a four-cylinder engine that uses the dynamic effect (f!l effect) of intake air to improve output. It is related to.

(従来の技術) 従来より、エンジンの吸気装置において、吸気通路内に
生じる吸気圧力振動を利用して、吸気弁が閉じる寸前に
正の吸気圧力波が吸気ポートに伝達されるように、吸気
圧力振動の周期と吸気弁の開閉周期とをマツチングさせ
ることにより、この正の圧力波が生じた空気が慣性によ
って燃焼室内に強制的に押し込まれて、吸気の充填効率
を高めるようにすることは知られている。このような吸
気の動的効果としては、各気筒1Gにおいてその吸気開
始に伴って生じる負の圧力波が吸気通路上流側の大気ま
たは容積部(例えばナージタンク等)への開口端で反射
され正の圧力波となって吸気ボート方向へ戻されること
を利用した慣性効果、および吸気干渉を生じない気筒間
における吸気圧力振動が共振することを利用した共鳴効
果がある。
(Prior Art) Conventionally, in an engine intake system, intake pressure is controlled by utilizing intake pressure vibrations occurring in the intake passage so that a positive intake pressure wave is transmitted to the intake port just before the intake valve closes. It is known that by matching the period of vibration with the opening and closing period of the intake valve, the air in which this positive pressure wave has been generated is forced into the combustion chamber by inertia, increasing the filling efficiency of the intake air. It is being Such a dynamic effect of intake is that the negative pressure wave that occurs with the start of intake in each cylinder 1G is reflected at the open end of the intake passage toward the atmosphere or volume (for example, a nurge tank, etc.), resulting in a positive pressure wave. There is an inertial effect that uses pressure waves that are returned toward the intake boat, and a resonance effect that uses the resonance of intake pressure vibrations between cylinders that do not cause intake interference.

ところで、多気筒エンジンにおいては、吸気行程が連続
し吸気弁の開弁期間がオーバラップする気筒同士が集合
する集合部では、吸気干渉によりほぼ一定の負圧に保持
されて圧力波の伝播を緩衝するダンピング機能を有する
ことから、吸気行程にある気筒の吸気通路内の吸気圧力
振動は実質的に気筒と上記集合部どの間を圧力波が往復
伝播する振動となり、その個有振動数は上記集合部の位
置で決定される。また、吸気弁の開閉周期と吸気圧力振
動の周期とをマツチングさせることができるのは特定の
回転域に限られる。これらのことから、通常の吸気系構
造では上記慣性効果および共鳴効果を全回転域に亘って
発揮させることができない。
By the way, in a multi-cylinder engine, in the cluster where cylinders with continuous intake strokes and overlapping intake valve opening periods come together, the negative pressure is maintained at a nearly constant level due to intake interference, buffering the propagation of pressure waves. Therefore, the intake pressure vibration in the intake passage of the cylinder during the intake stroke becomes a vibration in which the pressure wave propagates back and forth between the cylinder and the above-mentioned collection part, and its unique frequency is equal to the above-mentioned collection part. determined by the position of the part. Further, matching the opening/closing cycle of the intake valve and the cycle of intake pressure vibration is limited to a specific rotation range. For these reasons, the normal intake system structure cannot exhibit the above-mentioned inertial effect and resonance effect over the entire rotation range.

そのため、従来、実開昭59−58736号公報に開示
されるように、6気筒エンジンにおいて、各気筒を吸気
行程が連続しない気筒群に分け、各気筒の吸気系を、互
いに独立した気筒別の独立吸気通路で気筒群別の合流部
に合流させ、該多気筒群別の合流部を互いに独立した気
筒群別の合流吸気通路で上記合流部より上流側で集合部
に集合させるように構成して、各気筒群において土に低
回転域で共鳴効果をj7るようにするとともに、上記各
気筒群別の合流部を大きな容積の容積部として各気筒毎
に主に高回転域で慣性効果を1qるようにする。さらに
、上記気筒群別の合流部上流側において、各気筒群別の
合流部同士を連通ずる連通部および合流吸気通路の途中
同士を連通する;1通部を設け、該各連通部をエンジン
回転数に応じて開閉弁で開閉制御することにより、上記
共鳴効果の発生回転域を可変とし、よって上記の慣性効
果および共鳴効果によって低回転から高回転までのほぼ
全回転域に亘って吸気系1眞効率を良好に高めて出力の
向上を図るようにしたものが提案されている。
For this reason, conventionally, as disclosed in Japanese Utility Model Application Publication No. 59-58736, in a six-cylinder engine, each cylinder is divided into cylinder groups whose intake strokes are not continuous, and the intake system of each cylinder is divided into independent cylinder groups. The cylinder groups are configured to merge into a convergence section for each cylinder group through an independent intake passage, and the confluence section for each multi-cylinder group is converged into a convergence section on the upstream side of the confluence section by mutually independent confluence intake passages for each cylinder group. In addition to creating a resonance effect in the low rotation range in each cylinder group, the merging section of each cylinder group is used as a large volume part to create an inertia effect mainly in the high rotation range for each cylinder. Make it 1q. Further, on the upstream side of the merging portion for each cylinder group, a communication portion is provided that connects the merging portions for each cylinder group, and a communication portion is provided in the middle of the merging intake passage. By controlling opening and closing with on-off valves according to the number of rotations, the rotation range in which the resonance effect occurs can be made variable, and the intake system 1 A device has been proposed that aims to improve the output by improving the efficiency.

(発明が解決しようとする問題点) そこで、上記の考えを利用して、4気筒エンジンにおい
て共鳴効果と慣性効果とを発揮させて出力向上を図るこ
とが考えられる。しかし、4気筒エンジンの場合、吸気
行程の連続しない気筒群における共鳴は1回転当りの2
回の吸気弁開閉周期を持つ2気筒間で行われるため、共
鳴点より低回転側で各気筒群別の合流吸気通路が集合す
る集合部による圧力波の反射2反転作用により慣性効果
が得られるものの、共鳴点では6気筒エンジン(3気筒
間の共鳴)の場合とは異なり逆に負圧波となって吸気充
填効率を低下させるマイナス側に作用することになる(
第6図参照)。このため、4気筒エンジンの場合、共鳴
効果を利用して出力向上を図ることは困難であることを
児い出した。
(Problems to be Solved by the Invention) Therefore, it is possible to improve the output by utilizing the resonance effect and inertia effect in a four-cylinder engine using the above idea. However, in the case of a four-cylinder engine, resonance in a group of cylinders whose intake strokes are not consecutive is 2 per revolution.
Since this is carried out between two cylinders with an intake valve opening/closing period of 1,000 times, an inertial effect is obtained due to the reflection and reversal of pressure waves at the convergence area where the merging intake passages of each cylinder group converge on the lower rotation side than the resonance point. However, at the resonance point, unlike in the case of a 6-cylinder engine (resonance between 3 cylinders), it becomes a negative pressure wave and acts on the negative side, reducing the intake air filling efficiency (
(See Figure 6). For this reason, it has been found that in the case of a four-cylinder engine, it is difficult to improve the output by utilizing the resonance effect.

本発明は、かかる点に着目してなされたもので、上記の
如く吸気行程の連続しない気筒群の吸気系による慣性効
果を低回転域で冑ながら、上記の如きマイナス側共鳴作
用が生じないように気筒群別の合流吸気通路同士又は気
筒別の独立吸気通路の途中同士を連通しかつこの連通部
による圧力波の反射1反転作用により慣性効果を高回転
域で1得ることにより、低回転域および高回転域におい
て吸気の慣性効果を共に有効に発揮させて、広範囲の回
転域に亘って出力向上を図ることにある。
The present invention has been made with attention to this point, and is designed to eliminate the inertia effect caused by the intake system of the cylinder group whose intake strokes are not consecutive as described above in the low rotation range, while preventing the occurrence of the negative side resonance effect as described above. By connecting the merging intake passages of each cylinder group or between the independent intake passages of each cylinder, and obtaining an inertia effect in the high rotation range by the reflection and reversal of pressure waves by this communication part, the low rotation range is improved. The purpose is to effectively exhibit the inertia effect of the intake air in both the high speed range and the high speed range, thereby improving the output over a wide range of speed.

(問題点を解決するための手段) 上記の目的を達成するため、本発明の解決手段は、各気
筒を吸気行程が連続しない気筒群に分け、各気筒の吸気
系を、互いに独立した気筒別の独立吸気通路で気筒群別
の合流部に合流させ、該多気筒群別の合流部を互いに独
立した気筒群別の合流吸気通路で上記合流部より上流側
で集合部に集合させるように構成することを前提どする
。そして、このような吸気系において、上記各合流吸気
通路もしくは各独立吸気通路の途中から分岐して相互を
連通ずる連通路を設ける。さらに、各合流吸気通路もし
くは各独立吸気通路の連通路への各分岐部に、少なくと
もエンジンの高負荷時、エンジン回転数が設定値以下の
ときに閉じ、設定圃以上になると聞く制御弁を設けると
ともに、上記連通路を、その通路長さの1/2が上記分
岐部から集合部までの通路良さよりも短くなるように設
定する構成どしたものである。
(Means for solving the problem) In order to achieve the above object, the solving means of the present invention divides each cylinder into groups of cylinders whose intake strokes are not consecutive, and divides the intake system of each cylinder into cylinder groups that are independent of each other. The cylinder groups are configured to merge into a convergence section for each cylinder group through an independent intake passage, and the confluence section for each multi-cylinder group is converged into a convergence section upstream of the confluence section through mutually independent confluence intake passages for each cylinder group. What should I do on the premise that I will do so? In such an intake system, a communication passage is provided which branches from the middle of each of the above-mentioned combined intake passages or each of the independent intake passages and communicates with each other. Furthermore, a control valve is provided at each junction of each combined intake passage or each independent intake passage to the communication passage, which closes at least when the engine is under high load and when the engine speed is below a set value, and when the engine speed exceeds the set value. In addition, the communicating path is configured such that 1/2 of the length of the communicating path is shorter than the path length from the branching portion to the converging portion.

(作用〉 上記の構成により、本発明では、高出力が要求される少
なくとも高負荷時において、エンジン回転数が設定値以
下の低回転域では、制御弁の閉作動により連通路による
合流吸気通路相互間もしくは独立吸気通路相互間の連通
が遮断されている。
(Function) With the above configuration, in the present invention, at least in high load situations where high output is required, in the low engine speed range below the set value, the merging intake passages are interconnected by the communication path by the closing operation of the control valve. communication between the intake passages or between the independent intake passages is cut off.

このため、独立吸気通路および合流吸気通路の通路長さ
を所定長ざに適切に設定すると、低回転域において各気
筒群における各気筒と集合部との間で慣性効果を十分に
発揮させることが可能である。
Therefore, by appropriately setting the passage lengths of the independent intake passages and the combined intake passages to predetermined lengths, it is possible to sufficiently exert the inertia effect between each cylinder in each cylinder group and the gathering section in the low rotation range. It is possible.

一方、エンジン回転数が設定値以上となり、各気筒群で
マイナス側共鳴作用が生じる高回転域では、制御弁の閉
作動により、合流吸気通路相互間もしくは独立吸気通路
相互間が連通路によって連通されることにより、上記マ
イナス側共鳴作用の発生はない。しかも、該連通路の中
間点で圧力波の反射1反転作用が1qられ、かつ該連通
路の通路長さの1、−′2 (中間点までの通路長)が
連通路への分岐部から集合部までの通路長さよりも短い
ことにより、高回転域において各気筒毎に吸気行程で発
生した負圧波が該連通路で反射9反転して正圧波となっ
て各気筒の吸気ポートに戻る慣性効果が有効に発揮され
ることに仕る。以上のことから、低回転から高回転まで
の広い回転域に亘って吸気の充+g効串が高められて出
力の向上が可能となる。
On the other hand, in the high engine speed range where the engine speed exceeds the set value and negative side resonance occurs in each cylinder group, the closing operation of the control valve causes the merging intake passages or independent intake passages to communicate with each other through the communication passage. By doing so, the above-mentioned negative side resonance effect does not occur. In addition, the pressure wave reflection 1 reversal effect is 1q at the intermediate point of the communicating path, and the path length of the communicating path is 1, -'2 (path length to the intermediate point) from the branching point to the communicating path. Because the passage length is shorter than the passage length to the gathering part, the negative pressure waves generated in the intake stroke of each cylinder in the high rotation range are reflected in the communication passage 9 and reversed, becoming positive pressure waves and returning to the intake port of each cylinder due to inertia. We aim to ensure that the effects are effectively demonstrated. From the above, it is possible to increase the intake air filling and g effect over a wide rotation range from low rotation to high rotation, thereby making it possible to improve the output.

(実施例) 以下、本発明の実施例を図面に基づいて詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図〜第3図は本発明を直列型の4気筒エンジンに適
用した場合の第1実施例を示し、第1図および第2図は
その概略構造を、第3図は要部の縦断構造を示している
。同図において、18〜1dはエンジン本体2内に直列
状に形成された第1〜第4気筒であって、その点火順序
は第1→第3→第4→第2の気筒類に行われる。この各
気筒1a〜1dにはそれぞれピストン3上方に燃焼室4
が形成され、該燃焼室4には吸気ボー1−5および排気
ポート6が開口しており、該吸気ボート5には吸気弁7
が、排気ポート6には排気弁8がそれぞれ各ボートを所
定のタイミングで開閉するように配設されている。
1 to 3 show a first embodiment in which the present invention is applied to an in-line four-cylinder engine. It shows the structure. In the figure, 18 to 1d are the first to fourth cylinders formed in series in the engine body 2, and the firing order is first → third → fourth → second cylinders. . Each of the cylinders 1a to 1d has a combustion chamber 4 above the piston 3.
An intake bow 1-5 and an exhaust port 6 are opened in the combustion chamber 4, and an intake valve 7 is formed in the intake boat 5.
However, exhaust valves 8 are arranged in the exhaust port 6 to open and close each boat at predetermined timing.

上記各気筒1a〜1dは、吸気行程(点火順序)が連続
しない第1および第2気筒群A、Bに分けられ、第1気
筒群Aは第1および第4気筒1a。
The above-mentioned cylinders 1a to 1d are divided into first and second cylinder groups A and B whose intake strokes (ignition order) are not consecutive, and the first cylinder group A includes the first and fourth cylinders 1a.

1dからなり、第2気筒群Bは第2および第3気筒lb
、1cからなる。第1気筒詳Aにおける第1、第4気筒
1a、1clの各吸気ポート5には、互いに独立した気
筒別の第1および第4独立吸気通路9a 、9dの下流
端が連通接続され、これら第1.第4独立吸気通路9a
 、 9dの上流端は気筒群別の第1合流部10Aに合
流されている。また、第2気筒群Bにおける第2.第3
気筒lb。
1d, and the second cylinder group B consists of the second and third cylinders lb
, 1c. The downstream ends of the first and fourth independent intake passages 9a and 9d for each cylinder are connected to each intake port 5 of the first and fourth cylinders 1a and 1cl in the first cylinder details A. 1. Fourth independent intake passage 9a
, 9d are merged into a first merging portion 10A for each cylinder group. Also, the second cylinder in the second cylinder group B. Third
Cylinder lb.

1Cの各吸気ポート5には、同じく互いに独立した気筒
別の第2および第3独立吸気通路9b、9Cの下流端が
連通接続され、これら第2.第3独立吸気通路9b、9
cの上流端は気筒群別の第2合流部10Bに合流されて
いる。さらに、上記第1合流部10Aには気筒群別の第
1合流吸気通路11Aの下流端が、また第2合流部部1
0Bには気筒群別の第2合流吸気通路11Bの下流端が
それぞれ連通接続され、これら第1および第2合流吸気
通路11△、11Bの上流端は上記合流部10A、10
Bより上流側においC集合部12に集合され、該集合部
12は共通吸気通路13を介して大気に開口している。
The downstream ends of second and third independent intake passages 9b and 9C for each cylinder, which are also independent from each other, are connected to each intake port 5 of 1C. Third independent intake passage 9b, 9
The upstream end of c is merged into a second merging portion 10B for each cylinder group. Further, the first merging portion 10A includes a downstream end of the first merging intake passage 11A for each cylinder group, and a second merging portion 1
The downstream ends of second merging intake passages 11B for each cylinder group are connected to 0B, and the upstream ends of these first and second merging intake passages 11Δ, 11B are connected to the merging portions 10A, 10.
On the upstream side of B, the air is collected in a C collecting part 12, and the collecting part 12 is open to the atmosphere via a common intake passage 13.

上記各独立吸気通路98〜9dは同径、同通路長さQ虻
に形成されているとともに、各合流吸気通路11A、1
1Bも同径、同通路長さ交2に形成されている。また、
集合部12は該集合部12で圧力波の反射1反転を十分
に行い1!y8容積を右する容積部(サージタンク)に
形成されている。
Each of the independent intake passages 98 to 9d is formed to have the same diameter and the same passage length Q, and each of the merging intake passages 11A, 1
1B is also formed with the same diameter and the same passage lengths of 2. Also,
The collecting section 12 sufficiently performs 1 inversion of reflection of the pressure wave in the collecting section 12 and 1! It is formed in the volume part (surge tank) to the right of the y8 volume.

以上の構成により、各気筒1a〜1(1の吸気系は、他
の気筒と吸気干渉しない吸気通路の有効長として気が)
別の独立吸気通路98〜9dと気筒群別の合流吸気通路
11A、1”lBとからなる通路長さ(01+、Q2)
を有していて、低回転域で各気筒1a〜1dと集合部1
2との間で慣性効果を発揮するように設定されている。
With the above configuration, each cylinder 1a to 1 (the intake system of 1 is assumed to have an effective length of the intake passage that does not interfere with intake air from other cylinders).
Passage length (01+, Q2) consisting of separate independent intake passages 98 to 9d and combined intake passages 11A and 1"lB for each cylinder group
, and each cylinder 1a to 1d and the gathering part 1
It is set to exhibit an inertial effect between the two.

また、上記各独立吸気通路98〜9dはエンジン本体2
の気筒列方向と直角方向つまり側方に延びてそれぞれ気
筒群別の合流部10A、10Bに合流し、該各合流部1
OA、10Bから気筒群別の合流吸気通路11A。
Further, each of the independent intake passages 98 to 9d is connected to the engine main body 2.
extends in a direction perpendicular to the cylinder row direction, that is, laterally, and merges into the merging portions 10A and 10B for each cylinder group, respectively, and each merging portion 1
A merging intake passage 11A for each cylinder group from OA and 10B.

11Bは上方に立上ったのち気筒列方向と平行に後方へ
延びており、かつ各独立吸気通路98〜9dの通路長さ
91は各合流吸気通路11A、11Bの通路良さQ2よ
りも短く設定されていて、上記各気筒1a〜1dにおい
て集合部12との間で低回転域で慣性効果を発揮するた
めの有効長(9+ +92 >を確保するに当って、他
の部材に干渉しないでコンパクトなレイアウトになるよ
うにしている。尚、14は共通吸気通路13の上流端に
設けられたエアクリーナ、15は共通吸気通路13に配
設され吸入空気量を検出するエアフローメータ、16は
各合流吸気通路11A、11Bに配設され互いに連動し
て吸入空気量を制御するスロットル弁、17は各独立吸
気通路98〜9dに配設され燃料を噴射供給する燃料噴
射弁である。
11B rises upward and then extends rearward parallel to the cylinder row direction, and the passage length 91 of each independent intake passage 98 to 9d is set shorter than the passage quality Q2 of each merging intake passage 11A and 11B. In order to ensure an effective length (9+ +92 >) between each of the cylinders 1a to 1d and the gathering portion 12 to exert an inertia effect in the low rotation range, it is possible to maintain a compact structure without interfering with other members. In addition, 14 is an air cleaner provided at the upstream end of the common intake passage 13, 15 is an air flow meter arranged in the common intake passage 13 and detects the amount of intake air, and 16 is an air cleaner provided at the upstream end of the common intake passage 13. Throttle valves 17 are arranged in the passages 11A and 11B and control the amount of intake air in conjunction with each other, and fuel injection valves 17 are arranged in each of the independent intake passages 98 to 9d to inject and supply fuel.

さらに、上記各合流部10A、IOBには、各合流部1
0A、10Bから分岐する分岐孔18を介して合流部1
0A、IOB相互間を連通ずる連通路19が設けられて
いる。上記連通路19は、での通路長さ03の1 、、
、、’ 2 (連通路19の中間点までの長さ)が合流
吸気通路11A、11Bの通路長さ02 (つまり分岐
孔18から集合部12までの通路長さ)よりも短くなる
(Q3/ 2<、92 )ように設定されていて、上記
各気筒1a〜1dと集合部12との間での慣性効果発生
回転域よりも高回転側で、連通路19の中間点ぐの圧力
波の反射1反転作用により各気筒1a〜1dと連通路1
9との間で慣性効果を発揮するようにしている。
Furthermore, each of the above-mentioned merging parts 10A and IOB includes each merging part 1
Confluence part 1 via branch hole 18 branching from 0A and 10B
A communication path 19 is provided that communicates between 0A and IOB. The communication passage 19 has a passage length 03 of 1.
,,' 2 (the length to the midpoint of the communication passage 19) is shorter than the passage length 02 (that is, the passage length from the branch hole 18 to the gathering part 12) of the merging intake passages 11A and 11B (Q3/ 2<, 92), and on the higher rotation side than the rotation range where the inertia effect occurs between each of the cylinders 1a to 1d and the gathering portion 12, the pressure wave at the middle point of the communication passage 19 is set as follows. Communication passage 1 is connected to each cylinder 1a to 1d by the reflection 1 reversal action.
9 to create an inertia effect.

そして、上記各分岐孔18にはそれぞれ2分岐孔18を
開閉する。詳しくは圧力波の伝播を実質的に許容又は阻
止し得るように開閉する7h1j御弁20が配設されて
おり、これら各制御弁2oは、単一のバルブシャフト2
1に一体的に運動可能に固定されていて、図示していな
いが、エンジン運転状態(エンジン回転数およびエンジ
ン負荷)を検出する運転状態検出手段の出力を受ける制
御回路によりアクチュエータを介して開閉制御され、上
記連通路19による合流部10A、IOB相互間の連通
をエンジン運転状態に応じて制御し、少なくともエンジ
ン負荷9荷時においてエンジン回転数力N pQ定1直
以下の低回転域では閉じられ、エンジン回転数が設定値
以上となる高回転域では開かれるように構成されている
。このようなエンジン回転故に応じた制御弁20の開閉
作動は、少なくとも高出力が要求される高負荷時におい
て行われるようにすればよく、低負荷時には制御弁2o
が開状態または開状態に保たれるようにしてもよい。
Two branch holes 18 are opened and closed in each of the branch holes 18, respectively. Specifically, a 7h1j control valve 20 is provided that opens and closes to substantially allow or prevent the propagation of pressure waves, and each of these control valves 2o is connected to a single valve shaft 2.
Although not shown, the opening/closing control is controlled via an actuator by a control circuit that receives the output of an operating state detection means that detects the engine operating state (engine speed and engine load). The communication between the merging section 10A and the IOB through the communication passage 19 is controlled according to the engine operating state, and is closed at least in the low rotation range below the engine speed N pQ constant 1 shift when the engine load is 9. , is configured to open in a high rotation range where the engine rotation speed exceeds a set value. The opening/closing operation of the control valve 20 in response to engine rotational failure may be performed at least during high loads that require high output, and the control valve 20 may be opened/closed at least during low loads.
may be kept open or open.

次に、上記実施例の作用について述べるに、例えば高出
力が要求される高負荷時において、エンジン回転数が設
定値以下の低回転域では、各制御弁20が閉じていて、
連通路19による合流部10A、IOB相互間の連通が
遮断されている。この状態では、第1気筒群Aの第1.
第4気筒1a。
Next, to describe the operation of the above embodiment, for example, in a high load state where high output is required, each control valve 20 is closed in a low speed range where the engine speed is below a set value.
Communication between the merging portion 10A and the IOB through the communication path 19 is cut off. In this state, the first cylinder of the first cylinder group A.
Fourth cylinder 1a.

1dおよび第2気lF?I群Bの第2.第3気筒lb。1d and 2nd Qi IF? 2nd of group I B. 3rd cylinder lb.

1Gにおいては、その吸気系として気筒別の各独立吸気
通路9a〜9(1と気筒群別の合流吸気通路11A、1
1Bとからなる通路つまり各気筒1a〜1dから集合部
12に至る通路が気筒間の吸気干渉を生じない吸気系を
構成し、しがもこの通路長さく、Q++、Q2)は比較
的長くてその個有振動数が低回転域での吸気弁7の開閉
開明にマツチングすることから、低回転域で上記各気筒
1a〜1dと集合部12との間で各気筒1a〜1d毎に
慣性効果が有効に得られて吸気充填効率が高められる。
In 1G, the intake system includes independent intake passages 9a to 9 (1) for each cylinder and combined intake passages 11A, 1 for each cylinder group.
1B, that is, the passage from each cylinder 1a to 1d to the collecting part 12, constitutes an intake system that does not cause intake interference between the cylinders.However, this passage is long, and Q++, Q2) are relatively long. Since its unique frequency matches the opening and closing of the intake valve 7 in the low rotation range, there is an inertia effect for each cylinder 1a to 1d between each cylinder 1a to 1d and the gathering portion 12 in the low rotation range. is effectively obtained and the intake air filling efficiency is increased.

一方、エンジン回転数が設定値以上となる高回転域では
、上記気筒群別の吸気系ではマイナス側の共鳴作用が生
じるが、その際には、各制御弁20が開いて、連通路1
9により合流部10A、10B相互間が連通ずることに
より、上記マイナス側共鳴作用の発生はない。しがち、
この状態では、各気筒1a〜1dの吸気行程で生じる負
圧波が上記連通路19の中間点で反射1反転されて正圧
波が各気筒1a〜1dの吸気ポート5に伝播されるとい
う1n性効果ht iqられ、かつ上記連通路19の通
路長さp3の1/′2が合流吸気通路11A、11Bの
通路長ざ02 (分岐孔18がら集合部12までの通路
長さ)よりも短いことがら、この負圧波およびその反射
波(正圧波)の伝播に供される通路長さくQ+ +、Q
、/ 2)が短くなってその吸気圧力1辰初周期が高回
転域での吸気弁7の開閉周期にマツチングするので、高
回転域で各気筒1a〜1d毎に慣性効果が有効に得られ
て吸気充填効率が高められる。しかも、この高回転域で
は、吸気行程が等間隔(360’毎)に行われる同じ気
筒群A又はB内の他の気筒から伝播する圧力波も有効に
作用することになり、この気筒間の圧力伝播により高回
転域での吸気充填効率が大幅に高められる。
On the other hand, in a high rotation range where the engine rotation speed exceeds the set value, negative resonance occurs in the intake system for each cylinder group, but in this case, each control valve 20 opens and the communication passage 1
Since the merging portions 10A and 10B communicate with each other through 9, the above-mentioned negative side resonance effect does not occur. I tend to
In this state, a negative pressure wave generated during the intake stroke of each cylinder 1a to 1d is reflected at the intermediate point of the communication passage 19 and is inverted, and a positive pressure wave is propagated to the intake port 5 of each cylinder 1a to 1d. ht iq, and 1/'2 of the passage length p3 of the communication passage 19 is shorter than the passage length 02 of the merging intake passages 11A and 11B (the passage length from the branch hole 18 to the gathering part 12). , the length of the path used for the propagation of this negative pressure wave and its reflected wave (positive pressure wave) Q + +, Q
, /2) becomes shorter and the initial cycle of one intake pressure matches the opening/closing cycle of the intake valve 7 in the high rotation range, so the inertia effect can be effectively obtained for each cylinder 1a to 1d in the high rotation range. This increases intake air filling efficiency. Moreover, in this high rotation range, pressure waves propagating from other cylinders in the same cylinder group A or B, whose intake strokes are performed at equal intervals (every 360'), also act effectively, and Pressure propagation greatly increases intake air filling efficiency in the high rotation range.

したがって、第6図に示すように、少なくとも高負荷時
に、上記低回転域の慣性効果(実線で示す)と高回転域
の慣性効果(破線で示す)とが得られる各回転数の中間
回転数に相当する上述の設定回転数N1を境に、これよ
り低回転側で制御弁20を閉じ、これより高回転側で制
御弁20を開くようにすることにより、低回転から高回
転までの広い回転域に亘って出力トルクを向上させるこ
とができる。
Therefore, as shown in FIG. 6, at least at high loads, the intermediate rotation speeds at which the inertia effect in the low rotation range (shown by the solid line) and the inertia effect in the high rotation range (shown by the broken line) can be obtained. By closing the control valve 20 on the lower rotation side and opening the control valve 20 on the higher rotation side with the above-mentioned set rotation speed N1 as the boundary, a wide range from low rotation to high rotation can be achieved. Output torque can be improved over the rotation range.

ここで、上記第6図の特性について詳述するに、制御弁
20h<rJJじているときの出力ピーク(慣性同調)
の回転数Na(rpm)は、 Na=(θ、/’6>−f [但し、θ:吸気弁の有効量弁明間(deg>、f :
圧力波反転部下流の吸気系(つまり集合部12までの吸
気系)の個有振動数(H2) ] で求められる。また、制御弁20が閉じているときの出
力の谷部(共鳴)の回転数Nb(rpm )は、Nb=
60−f で求められる。従って、制御弁20を開から開にする上
記設定回転数N1は、Na<l’l+<Nllの範囲内
に設定すればよい。
Here, to explain in detail the characteristics shown in FIG. 6 above, the output peak (inertia tuning) when the control valve 20h<rJJ
The rotational speed Na (rpm) is as follows: Na=(θ, /'6>-f [where θ: intake valve effective amount clearance (deg>, f:
It is determined by the characteristic frequency (H2) of the intake system downstream of the pressure wave inversion section (that is, the intake system up to the collection section 12). Further, the rotation speed Nb (rpm) of the output valley (resonance) when the control valve 20 is closed is Nb=
60-f. Therefore, the set rotational speed N1 for opening the control valve 20 from open to open may be set within the range of Na<l'l+<Nll.

また、制御弁20の開閉は、必ずしも実施例のように設
定回転数以下の全回転域で閉じ、それ以上の全回転域で
開くものでなくてもよい。即ち、吸気系の構造や使用回
転域によっては、第6図の回転域のより低回転側あるい
はより高回転側で制御弁の閉と開とのトルク特性の逆転
が起り1qる。
Further, the control valve 20 does not necessarily need to be opened and closed in the entire rotation range below the set rotation speed and opened in the entire rotation range above the set rotation speed, as in the embodiment. That is, depending on the structure of the intake system and the operating rotation range, the torque characteristics between closing and opening of the control valve may be reversed at the lower or higher rotation side of the rotation range shown in FIG. 6.

そのような領域では、トルク特性の高い方に制御弁を間
あるいは開にすることによって乗り換えれば良い。
In such a region, it is sufficient to switch to the one with higher torque characteristics by opening or closing the control valve.

(他の実施例) 第4図および第5図は本発明の第2実施例を示しく第1
実M!例と同一部分については同一の符号を付してその
説明を古I8づる)、上記第1実施例では合流部10A
、10B相互間を連通路1つで)1通したのに代え、各
独立吸気通路98〜9d相互間を連通路19′で連通し
たものである。すなわち、各独立吸気通路98〜9dの
途中から分岐して独立吸気通路98〜9d相互間を連通
する連通路19′を設け、各独立吸気通路98〜9dの
連通路19′への各分岐孔18′に、少なくとも高負荷
時、エンジン回転数が設定値以下のときに閉じ、エンジ
ン回転数が設定値以上となると開く制御弁20を設けた
ものである。
(Other Embodiments) FIGS. 4 and 5 show a second embodiment of the present invention.
Real M! The same parts as in the example are given the same reference numerals and the explanation is given in the old I8). In the first embodiment, the confluence part 10A
, 10B are communicated with each other through a communication passage 19', instead of one communication passage connecting each of the independent intake passages 98 to 9d. That is, a communication passage 19' is provided which branches off from the middle of each independent intake passage 98-9d and communicates between the independent intake passages 98-9d, and each branch hole from each independent intake passage 98-9d to the communication passage 19' is provided. 18' is provided with a control valve 20 that closes when the engine speed is below a set value and opens when the engine speed exceeds the set value, at least when the load is high.

本例においても、上記第1実m例と同様に、少なくとも
高負荷時に低回転域および高回転域で慣性効果が11ら
れて全回転域で出力の向上を図ることができる。そして
、この場合、連通路19′による連通位置が各独立吸気
通路98〜9dの途中に移ったので、第1実施例に較べ
て各気筒1a〜1dと連通路19′との通路長さが短く
なって高回転域での慣性効果の発生域が高回転側へ移る
こ、とになる。また、高回転域では他の気筒から伝播す
る圧力波も連通路19′を介して有効に作用して高回転
域での吸気充填効率が一層向上する。また、連通路19
′による連通は、本例の如く4つの全独立吸気通路9a
7/9d相互間を1つの連通  ′路19′で連通ずる
ほか、各気筒l11′毎に第1と第4の独立吸気通路9
a、9d同士、および第2と第3の独立吸気通路9b 
、9c同士をそれぞれ連通路で連通ずるようにしてもよ
く、同様に慣性効果を十分にかつ有効に発揮でき好まし
いが、吸気行程が連続する気筒の独立吸気通路間の連通
であっても、各連通路で圧力波の反射1陵転作用が一応
10られて慣性効果を発揮し得る。
In this example as well, as in the first example, the inertia effect is increased to 11 in the low rotation range and high rotation range at least when the load is high, so that the output can be improved in the entire rotation range. In this case, since the communication position of the communication passage 19' has been moved to the middle of each independent intake passage 98-9d, the passage length between each cylinder 1a-1d and the communication passage 19' is shorter than in the first embodiment. As a result, the inertia effect generation region in the high rotation range shifts to the high rotation side. Furthermore, in the high rotation range, pressure waves propagating from other cylinders also act effectively through the communication passage 19', further improving the intake air filling efficiency in the high rotation range. In addition, the communication path 19
′, the communication is between four completely independent intake passages 9a as in this example.
In addition to communicating with each other through one communication passage 19' between 7 and 9d, there are also first and fourth independent intake passages 9 for each cylinder l11'.
a, 9d, and the second and third independent intake passages 9b
, 9c may be communicated with each other through communication passages, which is preferable as it can sufficiently and effectively exert the inertia effect, but even if the independent intake passages of cylinders whose intake strokes are consecutive are communicated with In the communication path, the pressure wave is reflected and transformed by 10 degrees, and an inertial effect can be exerted.

(発明の効果) 以上説明したように、本発明の4気筒エンジンの吸気装
置によれば、吸気行程が連続しない気筒群の吸気系を気
筒別の独立吸気通路と気筒群別の合流吸気通路で構成し
て低回転域で慣性効果を有効に発揮させる一方、上記合
流吸気通路相互間もしくは独立吸気通路相互間を所定長
さの連通路によって少なくとも高負荷時に高回転域で連
通させて、気筒群におけるマイナス側共鳴作用を発生さ
せることなく上記連通路による圧力波の反射9反転作用
によって慣性効果を有効に発揮させるようにしたので、
高出力が要求される高負荷時において低回転から高回転
までの広い領域に亘って出力を有効かつ十分に向上させ
ることができる。
(Effects of the Invention) As explained above, according to the intake system for a four-cylinder engine of the present invention, the intake system of the cylinder groups whose intake strokes are not consecutive is divided into independent intake passages for each cylinder and combined intake passages for each cylinder group. At the same time, the combined intake passages or the independent intake passages are communicated with each other by a communication passage of a predetermined length in the high rotation range at least under high load, so that the cylinder group Since the inertial effect is effectively exerted by the reflection and inversion of the pressure waves by the communication passage without causing the negative side resonance effect,
During high loads that require high output, the output can be effectively and sufficiently improved over a wide range from low rotation to high rotation.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を例示し、第1図〜第3図は第1
実施例を示し、第1図および第2図はそれぞれ全体概略
構成を示す斜視図および模式平面図、第3図は要部の縦
断側面図である。第4図および第5図は第2実施例を示
し、第4図はその全体概略構成の斜視図、第5図は模式
平面図である。 第6図は本発明により1!7られるエンジン回転数に対
する出力トルク特性を示す図である。 18〜1d・・
・気筒、9a〜9d・・・独立吸気通路、10A・・・
第1合流部、10B・・・第2合流部、11A・・・第
1合流吸気通路、11B・・・第2合流吸気通路、12
・・・集合部、13・・・共通吸気通路、18.18’
・・・分岐孔、19.19’・・・連通路、20・・・
制御弁、A・・・第1気筒群、B・・・第2気筒群。 :Jニー エンジン回戦数
The drawings illustrate embodiments of the invention, and FIGS.
An example is shown, and FIGS. 1 and 2 are a perspective view and a schematic plan view showing the overall schematic configuration, respectively, and FIG. 3 is a longitudinal sectional side view of the main part. FIGS. 4 and 5 show a second embodiment, with FIG. 4 being a perspective view of its overall schematic configuration, and FIG. 5 being a schematic plan view. FIG. 6 is a diagram showing the output torque characteristics with respect to the engine rotational speed, which is increased by 1!7 according to the present invention. 18~1d...
・Cylinder, 9a to 9d...Independent intake passage, 10A...
First merging part, 10B... Second merging part, 11A... First merging intake passage, 11B... Second merging intake passage, 12
...Gathering part, 13...Common intake passage, 18.18'
... Branch hole, 19.19'... Communication path, 20...
Control valve, A...first cylinder group, B...second cylinder group. :J Knee Engine Rounds

Claims (1)

【特許請求の範囲】[Claims] (1)各気筒を吸気行程が連続しない気筒群に分け、各
気筒の吸気系を、互いに独立した気筒別の独立吸気通路
で気筒群別の合流部に合流させ、該各気筒群別の合流部
を互いに独立した気筒群別の合流吸気通路で上記合流部
より上流側で集合部に集合させるように構成した4気筒
エンジンの吸気装置において、上記各合流吸気通路もし
くは各独立吸気通路の途中から分岐して相互を連通する
連通路を設け、各合流吸気通路もしくは各独立吸気通路
の連通路への各分岐部に、少なくとも高負荷時、エンジ
ン回転数が設定値以下のときに閉じ、設定値以上になる
と開く制御弁を設けるとともに、上記連通路をその通路
長さの1/2が上記分岐部から集合部までの通路長さよ
りも短くなるように設定したことを特徴とする4気筒エ
ンジンの吸気装置。
(1) Each cylinder is divided into cylinder groups whose intake strokes are not continuous, and the intake system of each cylinder is merged into the confluence section of each cylinder group with an independent intake passage for each cylinder, and the confluence of each cylinder group is In an intake system for a four-cylinder engine, in which the sections are arranged in merging intake passages for each cylinder group that are independent of each other, and are assembled into a gathering part upstream of the merging part, from the middle of each of the merging intake passages or each independent intake passage. A communication passage that branches out and communicates with each other is provided, and each branch part of each combined intake passage or each independent intake passage to the communication passage is closed at least when the load is high and when the engine speed is below a set value. A four-cylinder engine characterized in that a control valve is provided that opens when the above-mentioned condition is exceeded, and the communicating passage is set so that 1/2 of the passage length is shorter than the passage length from the branching part to the gathering part. Intake device.
JP60242007A 1985-10-29 1985-10-29 Intake device for 4-cylinder engine Expired - Fee Related JPH0726544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60242007A JPH0726544B2 (en) 1985-10-29 1985-10-29 Intake device for 4-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60242007A JPH0726544B2 (en) 1985-10-29 1985-10-29 Intake device for 4-cylinder engine

Publications (2)

Publication Number Publication Date
JPS62101823A true JPS62101823A (en) 1987-05-12
JPH0726544B2 JPH0726544B2 (en) 1995-03-29

Family

ID=17082870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60242007A Expired - Fee Related JPH0726544B2 (en) 1985-10-29 1985-10-29 Intake device for 4-cylinder engine

Country Status (1)

Country Link
JP (1) JPH0726544B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227819A (en) * 1988-03-09 1989-09-12 Mazda Motor Corp Engine intake device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043130U (en) * 1983-09-02 1985-03-27 トヨタ自動車株式会社 Internal combustion engine intake system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043130U (en) * 1983-09-02 1985-03-27 トヨタ自動車株式会社 Internal combustion engine intake system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227819A (en) * 1988-03-09 1989-09-12 Mazda Motor Corp Engine intake device

Also Published As

Publication number Publication date
JPH0726544B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
JPS6014169B2 (en) Intake system for multi-cylinder engines
JPH0353452B2 (en)
JPS62101823A (en) Intake device for four-cylinder engine
JPS6291623A (en) Intake-air device of engine
JPS61116020A (en) Engine intake-air device
JP2543906B2 (en) Engine intake system
JPS61116022A (en) Engine intake-air device
JP2502621B2 (en) Engine intake system
JPH073175B2 (en) Engine intake system
JPS61157716A (en) Air intake device of multicylinder engine
JPH0315807Y2 (en)
JP2583527B2 (en) Engine intake system
JPS6296726A (en) Air intake device for multiple cylinder engine
JPH0192520A (en) Engine intake-air device
JP2583529B2 (en) Engine intake system
JPH0353453B2 (en)
JP2771176B2 (en) Engine intake system
JPH0517378B2 (en)
JPH0354318A (en) Intake device of multiple cylinder engine
JPH01227820A (en) Engine intake device
JPS61201819A (en) Air intake device for engine
JPH0517372B2 (en)
JPH03286133A (en) Air intake device for multiple cylinder engine
JPH0380967B2 (en)
JPH0192519A (en) Engine intake-air device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees