JPS62100481A - Dewaxing furnace for ceramics - Google Patents

Dewaxing furnace for ceramics

Info

Publication number
JPS62100481A
JPS62100481A JP60239088A JP23908885A JPS62100481A JP S62100481 A JPS62100481 A JP S62100481A JP 60239088 A JP60239088 A JP 60239088A JP 23908885 A JP23908885 A JP 23908885A JP S62100481 A JPS62100481 A JP S62100481A
Authority
JP
Japan
Prior art keywords
furnace
temperature
pressure
degreasing
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP60239088A
Other languages
Japanese (ja)
Inventor
成 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60239088A priority Critical patent/JPS62100481A/en
Publication of JPS62100481A publication Critical patent/JPS62100481A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業1−の利用範囲〕 本発明はセラミックスの粉末成形体に添加されている成
形助剤を分解揮発させて焼成するセラミックス用脱脂炉
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Scope of Application in Industry 1-] The present invention relates to a degreasing furnace for ceramics that decomposes and volatilizes a forming aid added to a powder compact of ceramics for firing.

〔従来の技術及び解決しようとする問題点〕セラミック
ス製品は、そのセラミックス原料粉末に有機系の成形助
剤(結合剤、潤滑剤、l−11塑刑なと)を加えること
により成形し、= it、 を高温で焼成し、焼結する
ことにより′41)られる。
[Prior art and problems to be solved] Ceramic products are molded by adding organic molding aids (binder, lubricant, l-11 plasticizing agent) to the ceramic raw material powder. '41) by firing it at high temperature and sintering it.

最近の合成法で得られる高純度原料の人里は、従来の陶
磁器用の粘子のようにそれ自体に可塑性がないことから
、成形に当たって好ましい塑性を与えるため1:は、成
形助剤髪添加する6二とが11−むを得なくなっている
High-purity raw materials obtained by recent synthesis methods do not have plasticity in themselves like the traditional clay for ceramics, so in order to give them preferable plasticity during molding, 1: Adding a molding aid is necessary. 62 and 11- are unavoidable.

特に、最近ではタービンブレ・−F等の複雑形状品が高
精度で、か−)、人μ生産できる射出成形d;が主流し
、なりつつあるが、例λば、本成形法では平均粒径1μ
mのセラミックスに対して成形助剤を30〜40重量部
配合笛部いと良好な成形体が得られないことが知られて
いる。
In particular, recently, injection molding, which can be produced by humans with high precision and can be manufactured by humans, is becoming mainstream for complex-shaped products such as turbine brakes and -F. Diameter 1μ
It is known that if 30 to 40 parts by weight of the molding aid is mixed with the ceramic of m, a good molded body cannot be obtained.

また、管やハニカノ、などの長尺物の成形に適した押出
成形法においても、原料の種に1によっては10〜20
重駄部もの成形助剤を必要とする。
Also, in the extrusion molding method, which is suitable for molding long objects such as pipes and honeycombs, depending on the type of raw material, 10 to 20
Heavy parts also require molding aids.

成形助剤は、種類によって異なるが、はぼ100〜50
0℃の範囲で熱分解する。したがって、成形体を焼成す
る時の昇温速度が適正でないと、成分の分解がごく狭い
温度範囲で起るため、蒸気江の局部的な」−昇を招き、
成形体に割れやふくれなどの欠陥が生じることになる。
The molding aid varies depending on the type, but the amount is approximately 100 to 50.
It decomposes thermally in the 0°C range. Therefore, if the temperature increase rate when firing the compact is not appropriate, the decomposition of the components will occur within a very narrow temperature range, leading to a localized rise in the steam flow.
Defects such as cracks and blisters will occur in the molded product.

このため、成形助剤を多酸に含む成形体については焼成
前処理として脱脂工程を設けており、脱脂焼成炉によっ
て一般に大俄界11R俄或いは不活性雰囲気中で高精度
に昇温速度をコントロールして成形助剤を分解除去させ
ている。
For this reason, molded bodies containing molding aids in polyacids are subjected to a degreasing process as a pre-firing treatment, and the temperature rise rate is generally controlled with high precision in a degreasing firing furnace or in an inert atmosphere. The molding aid is decomposed and removed.

この工程は製造プロセスの中でも最も時間を要する工程
である。すなわち、まず、多くの有機系成形助剤に効し
て第4図に示すように、jl、温速度一定で加熱減酸曲
線をそれぞれ求めておき、成形助剤の組み合わせとして
、量的なものを考慮して、加熱減景曲線が温度に対して
徐々に減駄するように選定する。
This step is the most time-consuming step in the manufacturing process. That is, first, as shown in Figure 4, the heating deoxidation curves for many organic molding aids are determined at constant jl and temperature rate, and then quantitative In consideration of this, the heating-decrease curve is selected so that it gradually decreases with respect to temperature.

次に、このようにして決定した成形助剤の組み合オ〕せ
を含む成形体について、各助剤の熱分解温度を考慮しな
がら、昇温速度及び昇温ステップを決定し、実際に何度
か成形体を加熱焼成する。このときの欠陥の発生状況な
どを加味して上記昇温条件を何度か修正して決定すると
いう手順を踏む。
Next, for the molded article containing the combination of molding aids determined in this way, the temperature increase rate and temperature increase steps are determined while taking into account the thermal decomposition temperature of each aid, and what is actually done? The molded body is then heated and fired. At this time, a procedure is followed in which the above-mentioned temperature increase conditions are revised several times in consideration of the occurrence of defects and the like.

また、脱脂工程においては、幇に温度をゆっくり1−げ
ただけでは良好な成形体が得られない場合もある。すな
オ)ち、熱分解温度範囲が狭くて急激に熱分解するよう
な成形体については、熱分解が開始する温度で保持する
が、又は1埠温、jl−潟髪小刻みに繰り返して熱分解
を制御することが必要であり、このような場合には更に
条4’4設定に多大な時間を要する。
Furthermore, in the degreasing step, it may not be possible to obtain a good molded product by simply increasing the temperature slowly. In other words, for molded products that have a narrow thermal decomposition temperature range and undergo rapid thermal decomposition, they are held at the temperature at which thermal decomposition begins, or they are heated repeatedly in small increments. It is necessary to control the disassembly, and in such a case it also takes a great deal of time to set the rows 4'4.

また、シフ。温条件の設定においては、安全側に決めて
いくことから、脱脂時間自体も極めて長くなり、上記射
出成形体については通常7〜108 illの脱脂二1
−程が実施されていた。したがって、精度の高い温度制
御が可能な脱脂用の焼成炉が要請されていた。
Also, Schiff. Since the temperature conditions are set on the safe side, the degreasing time itself becomes extremely long.
-Procedures were being implemented. Therefore, there has been a need for a degreasing furnace that allows highly accurate temperature control.

本発明の目的は、(−記従来技術の欠点を解決し、脱脂
中の成形体の割れを確実に防出でき、しかも脱脂時間を
大幅に短縮0r能なセラミックス用脱脂炉を提供するに
ある。
The purpose of the present invention is to provide a degreasing furnace for ceramics that can solve the drawbacks of the prior art described above, reliably prevent cracking of molded bodies during degreasing, and can significantly shorten the degreasing time. .

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため、本発明は、セラミックス成形
体に添加されている成形助剤を分解揮発(脱脂)するに
際し、真空炉を用い、加熱)1温過程における真空度の
変化を検知して、熱分解ガス発生速度を予測しながら、
リアルタイムに昇温速度を自動制御できろようにしたも
のである。
In order to achieve the above object, the present invention uses a vacuum furnace to decompose and volatilize (degrease) a forming aid added to a ceramic molded body, and detects changes in the degree of vacuum during a one-temperature process (heating). , while predicting the rate of pyrolysis gas generation.
This allows automatic control of the heating rate in real time.

以下に本発明を実施例に基づいて詳細に説明する。The present invention will be explained in detail below based on examples.

〔実施例〕〔Example〕

第1図は本発明の一実施例に係る脱脂焼成炉の構成を示
している。この焼成炉は、脱脂すべき成形体1を収容す
る炉芯管2と該炉芯管2を加熱する加熱炉3と温度制御
器4を有し、炉芯管2の端面の一方から真空ポンプ5で
炉内を吸引し、また真空創6を設けて炉内真空度を計測
する。
FIG. 1 shows the configuration of a degreasing and firing furnace according to an embodiment of the present invention. This firing furnace has a furnace core tube 2 that accommodates a compact 1 to be degreased, a heating furnace 3 that heats the furnace core tube 2, and a temperature controller 4. 5, the inside of the furnace is suctioned, and a vacuum wound 6 is provided to measure the degree of vacuum inside the furnace.

ここで、真空計6としてはメータリレー付きのビラニー
真空計を用い、該リレー動作信号を温度制御器4に入力
して炉内真空度の変化をリアルタイムで温度制御に反映
させるようにする。また、温度測定器9で温度を測定し
、これを温度制御器4に入力する。
Here, a Villany vacuum gauge with a meter relay is used as the vacuum gauge 6, and the relay operation signal is input to the temperature controller 4 so that changes in the degree of vacuum in the furnace are reflected in temperature control in real time. Further, the temperature is measured by the temperature measuring device 9 and inputted to the temperature controller 4.

すなオ)ち、ピラニー真空416の釦を任意の真空度に
設定しておき、封部加熱時に熱分解ガスの発生により炉
内真空度の指示針が計定値を超えた時、リレーが作動し
て温度制御における一定昇温速度プログラムを停止トさ
せて温度保持させて熱分解裂抑制すると共に、炉内真空
度を割−)だ時に再び一定昇温速度で加熱するようなシ
ーケンスとする。
In other words, set the Pirani vacuum 416 button to a desired degree of vacuum, and when the indicator needle for the degree of vacuum in the furnace exceeds the measured value due to the generation of pyrolysis gas during heating of the seal, the relay is activated. Then, the constant temperature increase rate program in temperature control is stopped to maintain the temperature to suppress thermal decomposition, and when the degree of vacuum in the furnace is reduced, heating is resumed at a constant temperature increase rate.

第2図(a)、(b)は上記脱脂炉の動作例を示したも
ので、(a)は、成形体1を炉芯管2内に挿入した後、
真空ポンプ5で炉内を頁窄状態にして一定昇温速度で加
熱したときの真空度の経時変化をyJ、温カーブと対し
2;させて示したものである。真空度の曲線のビ・−夕
は熱分解ガスの発ノドとt、f応l、5ており、ピーク
高さが高いほどガス発生速度は犬で、成形体に悪影響を
与える。このピーク7の高さは昇温速度により変化し、
昇温速度を−Lげていくとガス発生速度は高くなり、ピ
ーク値も上がる。
FIGS. 2(a) and 2(b) show an example of the operation of the above-mentioned degreasing furnace.
The graph shows the change over time in the degree of vacuum when the inside of the furnace is brought into a closed state with the vacuum pump 5 and heated at a constant temperature increase rate by yJ and the temperature curve. The height of the vacuum degree curve corresponds to the generation of pyrolysis gas, t, f, and 5. The higher the peak height, the faster the gas generation rate, which has an adverse effect on the molded product. The height of this peak 7 changes depending on the temperature increase rate,
As the temperature increase rate increases by -L, the gas generation rate increases and the peak value also increases.

したがって、メータリレ一式ピラ二真空計6で任意のピ
ーク高さくリレー設定値8、同図(b))でリレーを作
動させるようにし、炉内真空度がそれに達したときに温
度制御器4に信号を送り、昇温を停止するようにすれば
、同図(b)に示すように、真空度のピークは小さくな
り、急激な熱分解を抑制することができる。
Therefore, the meter relay set Pirani vacuum gauge 6 is configured to operate the relay at an arbitrary peak height relay setting value 8 (Figure (b)), and when the vacuum degree in the furnace reaches that value, a signal is sent to the temperature controller 4. If the temperature rise is stopped by sending the temperature, the peak of the degree of vacuum will become smaller, as shown in FIG. 4(b), and rapid thermal decomposition can be suppressed.

〔具体的使用例〕[Specific usage example]

従来実施していた脱脂焼成条件の一例を第3図(a)に
示す。これは、15〜20重に部のメトロース系結合剤
と3 IRbt部の潤滑剤と15〜15重量部の分散剤
を含み、炭化珪素とコロイド黒鉛との混合原料の押出成
形体についてのもので、ステップ状の加熱を行い、室温
から400℃までに12時間も要していた。
An example of conventional degreasing and firing conditions is shown in FIG. 3(a). This is for an extrusion molded product of a mixed raw material of silicon carbide and colloidal graphite, containing 15 to 20 parts by weight of a metrose-based binder, 3 parts by weight of a lubricant, and 15 to 15 parts by weight of a dispersant. , stepwise heating was performed, and it took 12 hours from room temperature to 400°C.

これに対し、第3図(1))は本発明による脱脂焼成炉
によって脱脂したときの炉内真空度と温度の経時変化を
示したものである。本成形体においては、炉内V(空度
が1.0Torrに達するような条件で割れが発生する
ので、リレー設定値を6 Torrとして自動制御を行
った。すなわち、最初、温度調節器の昇温速度を2℃/
ll1inに設定して昇温を行い、炉内真空度が熱分解
によるガス発生で6 Torrを超えたときに真空計の
リレーが作動し、温度調節器の昇温加熱の実行を停止さ
せ、温度を保持する。これにより、脱脂工程は約5時間
で完了し、脱脂時間を従来より約1/2に短縮でき、し
かも割れのない良好な成形体を得た。
On the other hand, FIG. 3(1)) shows the change over time in the degree of vacuum in the furnace and the temperature when degreasing is performed using the degreasing and firing furnace according to the present invention. In this molded product, cracks occur under the condition that the V in the furnace (vacancy level reaches 1.0 Torr), so automatic control was performed with the relay setting value set at 6 Torr. Temperature rate 2℃/
When the vacuum level inside the furnace exceeds 6 Torr due to gas generation due to thermal decomposition, the vacuum gauge relay is activated, and the temperature controller stops heating, and the temperature is increased. hold. As a result, the degreasing step was completed in about 5 hours, reducing the degreasing time to about 1/2 compared to the conventional method, and a good molded article without cracks was obtained.

従来法では、成形助剤の熱分解基礎データに基づいて、
最終的には試行錯誤的に焼成プルログラムに決めていた
が1本発明では、実際の熱分解の状況を検知しながら自
動的に昇温するものであり、割れに対して安全で、しか
も効率的な脱脂焼成が可能である。また、成形助剤の種
類や量を変えても、更に他の助剤を追加した場合でも、
問題なく適用できるという利点がある。
In the conventional method, based on the basic thermal decomposition data of the molding aid,
In the end, we decided on a fired pulrogram through trial and error, but the present invention automatically raises the temperature while detecting the actual thermal decomposition situation, making it safe and efficient against cracking. Degreasing and firing is possible. In addition, even if you change the type or amount of the molding aid, or add other aids,
It has the advantage that it can be applied without problems.

=7− なお、本発明の脱脂炉における熱分解ガス検出感度は炉
芯管の容積と真空ポンプの排気能力の関係でほぼ決まる
ことから、真空ポンプは炉内の真空到達時間が数秒から
数十秒になるような排気能力のものを使用すれば、問題
はない。
= 7 - Note that the detection sensitivity of pyrolysis gas in the degreasing furnace of the present invention is almost determined by the relationship between the volume of the furnace core tube and the evacuation capacity of the vacuum pump. If you use one with an exhaust capacity that lasts for seconds, there will be no problem.

また、炉内真空度を検知して昇温速度をコントロールす
る他の例として、次のような態様も可能である。すなわ
ち、炉内真空度がある一定値よりも低下した時に昇温を
停止し、温度を保持すること(上記実施例)によっても
、なおかつ多Vの熱分解ガスを発生し続けるような成形
体の場合には、炉内真空度が設定値以−ヒになるまで温
度を降下させることにより熱分解を停止トさせ、設定値
以上になった時に再び昇温させるといった二段状の温度
制御もできる。
Further, as another example of controlling the temperature increase rate by detecting the degree of vacuum in the furnace, the following embodiment is also possible. In other words, even if the temperature increase is stopped and the temperature is maintained when the vacuum level in the furnace drops below a certain value (as in the above example), it is possible to produce a compact that continues to generate high-V pyrolysis gas. In some cases, it is also possible to perform two-step temperature control in which thermal decomposition is stopped by lowering the temperature until the degree of vacuum in the furnace reaches a set value or higher, and then the temperature is raised again when the degree of vacuum in the furnace reaches or exceeds the set value. .

〔発明の効果〕〔Effect of the invention〕

以」二詳述したように、本発明によれば、成形助剤の種
類や星に関係なく適正な熱分解(脱脂)条件が自動的に
設定できるから、従来法のような割れ防止等の観点から
適正条件を決めるために必要−8= とされていた実験等が全く不要になるばかりでなく、熱
分解とは無関係な温度領域における昇温速度を大きくと
ることができるため、脱脂処理時間が極めて短時間にな
り、省エネという点において斯界に大きな効果をもたら
すものである。
As described in detail below, according to the present invention, it is possible to automatically set appropriate thermal decomposition (degreasing) conditions regardless of the type or star of the molding aid, so it is not possible to prevent cracking, etc. as in conventional methods. Not only does it completely eliminate the need for experiments, etc., which were considered necessary to determine the appropriate conditions from the viewpoint of degreasing, but the degreasing treatment time can be increased because the temperature increase rate can be increased in a temperature range unrelated to thermal decomposition. The time required for this process is extremely short, which brings great benefits to the industry in terms of energy conservation.

更に、焼成時の割れを防止できることかIF)、製品の
歩留まり向上を図ることができ、省資源にも役立つと共
に、エンジニアリングセラミックスの場合、信頼性向上
に大きく寄!j、できる。
Furthermore, it can prevent cracking during firing (IF), improve product yield, help save resources, and in the case of engineering ceramics, greatly improve reliability. j-I can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るセラミックス用脱脂炉
の構成を示す説明図、第2図(a)。 (b)は該炉の炉内真空度及び温度の経時的変化を示す
図、第3図(a)、(b)は油記実施例における制御記
録の結果を示す図、第4図は各種成形助剤の熱分解特性
を示す図である。 ■・・・セラミックス成形体、2・・炉芯管、;3・・
・加熱部、4・・・温度制御器、5・・・vc空ポンプ
、6・・・真空部、9・・温度測定器。
FIG. 1 is an explanatory diagram showing the configuration of a ceramic degreasing furnace according to an embodiment of the present invention, and FIG. (b) is a diagram showing changes over time in the vacuum degree and temperature inside the furnace, Figures 3 (a) and (b) are diagrams showing the results of control records in the oil record example, and Figure 4 is a diagram showing various types of FIG. 3 is a diagram showing the thermal decomposition characteristics of a molding aid. ■... Ceramic molded body, 2... Furnace tube, ; 3...
- Heating section, 4...Temperature controller, 5...VC empty pump, 6...Vacuum section, 9...Temperature measuring device.

Claims (2)

【特許請求の範囲】[Claims] (1)有機系成形助剤を用いて成形されたセラミックス
粉末成形体を加熱・脱脂する炉において、炉内を大気圧
以下の圧力に保持できる密閉容器と真空ポンプと圧力計
と炉内の温度を制御する温度制御器を有し、前記成形助
剤の熱分解、蒸発によるガス発生を炉内圧力として検出
し、その変化を予測して先行的に熱分解条件を自動制御
するように構成したことを特徴とするセラミックス用脱
脂炉。
(1) In a furnace that heats and degreases a ceramic powder molded body formed using an organic molding aid, there is a closed container capable of maintaining the inside of the furnace at a pressure below atmospheric pressure, a vacuum pump, a pressure gauge, and the temperature inside the furnace. The apparatus is configured to detect gas generation due to thermal decomposition and evaporation of the forming aid as furnace pressure, predict changes in the pressure, and automatically control thermal decomposition conditions in advance. A degreasing furnace for ceramics characterized by:
(2)前記温度制御器は、任意に設定可能な圧力値に対
し、炉内圧力が該設定置を越えた時にリレーを動作させ
て実行中の昇温制御を停止し、代りに温度を保持するか
或いは降温させる制御を実行する制御機能を有するもの
である特許請求の範囲第1項記載のセラミックス用脱脂
炉。
(2) The temperature controller operates a relay to stop the temperature increase control in progress when the pressure in the furnace exceeds the set value for a pressure value that can be set arbitrarily, and instead maintains the temperature. 2. The degreasing furnace for ceramics according to claim 1, which has a control function for controlling the temperature of the ceramics.
JP60239088A 1985-10-25 1985-10-25 Dewaxing furnace for ceramics Withdrawn JPS62100481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60239088A JPS62100481A (en) 1985-10-25 1985-10-25 Dewaxing furnace for ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60239088A JPS62100481A (en) 1985-10-25 1985-10-25 Dewaxing furnace for ceramics

Publications (1)

Publication Number Publication Date
JPS62100481A true JPS62100481A (en) 1987-05-09

Family

ID=17039641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60239088A Withdrawn JPS62100481A (en) 1985-10-25 1985-10-25 Dewaxing furnace for ceramics

Country Status (1)

Country Link
JP (1) JPS62100481A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03136835A (en) * 1989-10-23 1991-06-11 Matsushita Electric Works Ltd Method for degreasing powder molded product
US8336974B2 (en) 2008-08-05 2012-12-25 Samsung Electronics Co., Ltd. Door of refrigerator and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215578A (en) * 1984-04-09 1985-10-28 株式会社日本製鋼所 Method of dewaxing ceramic formed body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215578A (en) * 1984-04-09 1985-10-28 株式会社日本製鋼所 Method of dewaxing ceramic formed body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03136835A (en) * 1989-10-23 1991-06-11 Matsushita Electric Works Ltd Method for degreasing powder molded product
US8336974B2 (en) 2008-08-05 2012-12-25 Samsung Electronics Co., Ltd. Door of refrigerator and method for manufacturing the same
US9308677B2 (en) 2008-08-05 2016-04-12 Samsung Electronics Co., Ltd. Door of refrigerator and method for manufacturing the same

Similar Documents

Publication Publication Date Title
GB1370274A (en) Method and apparatus for sintering compacts of powder materials
GB2516991A (en) Metal component forming
MX2013004502A (en) Method for producing fired body and firing furnace used therefor.
JPS62100481A (en) Dewaxing furnace for ceramics
Kwon et al. Densification and grain growth of porous alumina compacts
JP2003212521A5 (en)
JPH0686337B2 (en) Degreasing method for powder molded products
Ritzhaupt-Kleissl et al. Development of ceramic microstructures
JPS6135150B2 (en)
GB2569814A (en) Method of creating a mould from refractory material
US5486331A (en) Process for degreasing ceramic molded bodies
JPH07116487B2 (en) Method for degreasing metal powder injection molded body
JPS63199817A (en) Method for cooling casting product
SU1011045A3 (en) Metxhod for making products of silicone nitride
US5226470A (en) Expendable ceramic mandrel
JPH02154982A (en) Tool for heat treatment and manufacture thereof
Yun et al. Determination of rapid heating cycles for binder removal from open pore green ceramic components
Grinchuk et al. Formation of Oxides Upon Thermal Debinding and Their Role in Obtaining Reaction-Bonded Silicon Carbide
JPH0142913B2 (en)
JPS62171965A (en) Dewaxing process and apparatus therefor
JPH02303650A (en) Method for rapidly molding ceramic shell mold
JP2539759B2 (en) Degreasing method for powder molded products
JPS63297275A (en) Method for degreasing
JPS61161385A (en) Hot hydrostatic pressing device
KODAIRA et al. Hot Isostatic Pressing of Beryllium Oxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees