JPS63297275A - Method for degreasing - Google Patents
Method for degreasingInfo
- Publication number
- JPS63297275A JPS63297275A JP62131812A JP13181287A JPS63297275A JP S63297275 A JPS63297275 A JP S63297275A JP 62131812 A JP62131812 A JP 62131812A JP 13181287 A JP13181287 A JP 13181287A JP S63297275 A JPS63297275 A JP S63297275A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- degreasing
- air
- inert gas
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005238 degreasing Methods 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims description 21
- 239000000843 powder Substances 0.000 claims abstract description 21
- 239000011261 inert gas Substances 0.000 claims abstract description 18
- 239000011230 binding agent Substances 0.000 claims abstract description 11
- 239000000919 ceramic Substances 0.000 claims abstract description 8
- 239000011347 resin Substances 0.000 claims abstract description 6
- 229920005989 resin Polymers 0.000 claims abstract description 6
- 239000000155 melt Substances 0.000 claims abstract 2
- 239000007789 gas Substances 0.000 description 24
- 238000000465 moulding Methods 0.000 description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000000462 isostatic pressing Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
この発明は、成形助剤を含有する粉体成形物の脱脂に係
り、特に成形助剤を大量に含有する粉体成形物の脱脂に
適する粉体成形物の脱脂方法に関する。Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) This invention relates to the degreasing of powder moldings containing a molding aid, and particularly to powder moldings containing a large amount of the molding aid. This invention relates to a method for degreasing powder molded articles suitable for degreasing objects.
(従来の技術)
一般に、ファインセラミックス製品は、成形助剤および
焼結助剤を加えて調整された原料粉体を型に入れて成形
したのち、これを脱脂し、さらに焼成工程で焼結して展
進される。上記成形には、従来より乾式プレスによるプ
レス成形、静水圧成形、泥壊鋳込成形、固型鋳込成形な
ど各種の方法があるが、これら成形方法は量産的でない
。そのため、7アインセ2ミツクスを能率よく成形する
方法として射出成形で成形する方法が開発、されつつあ
る。(Prior art) Generally, fine ceramic products are produced by putting raw material powder prepared by adding molding aids and sintering aids into a mold, molding it, degreasing it, and then sintering it in a firing process. will be developed. Conventionally, there are various methods for the above-mentioned molding, such as press molding using a dry press, isostatic pressing, mud-breaking molding, and solid molding, but these molding methods are not suitable for mass production. Therefore, as a method for efficiently molding 7-in-se-2 mixes, a method of molding by injection molding is being developed and being developed.
しかし、ファインセラミックスを射出成形で成形するた
めには、粉体にそれに適した流動性を付与しなければな
らず、従来の成形法にくらべて多量の成形助剤を添加す
る必要がある。その添加量は、粉体の種類9粒度分布、
平均粒4度、比表面積。However, in order to mold fine ceramics by injection molding, it is necessary to impart suitable fluidity to the powder, and it is necessary to add a larger amount of molding aid than in conventional molding methods. The amount added is based on the powder type, particle size distribution,
Average grain size 4 degrees, specific surface area.
成形助剤の種類などによって異なるが、粉体に対して1
8〜3Qwt%に及ぶ。通常添加された成形助剤は、脱
脂工程における加熱により蒸散する。Although it varies depending on the type of molding aid, etc., 1
It ranges from 8 to 3 Qwt%. Usually, the added forming aid evaporates due to heating in the degreasing process.
しかるに、従来の脱脂工程においては、脱脂工程中にお
いて、その全期間にわたって、例えば窒素(Nりなどの
不活性ガスを一定流量で供給していた。つまり、脱脂炉
中の温度を上昇し始める時点から、上昇を停止し、放冷
が終了する時点まで、−貫して不活性ガスを供給してい
た。However, in the conventional degreasing process, an inert gas such as nitrogen is supplied at a constant flow rate throughout the degreasing process.In other words, at the point when the temperature in the degreasing furnace starts to rise Inert gas was continuously supplied from 1 to 2 until the ascent was stopped and cooling was completed.
しかしながら、このように不活性ガスを全脱脂工程期間
中、供給する方式では、ガスの使用量が太き(、脱脂に
要するコストが高くなる。さらに1不活性ガス雰囲気中
では、最大加熱温度を高めに設定する必要があるととも
に、不活性ガスの流入・流出に伴う熱拡散により、電力
消費量が大きくなり、ガス使用量が大きくなることと相
俟りて、脱脂コストが大きくなる。さらに、不活性ガス
雰囲気下においては、微量の炭素成分が残渣となり、こ
の残液が焼結後の〕丁インセラミックス製品の強度劣化
の原因となる場合もある。However, in this method of supplying inert gas during the entire degreasing process, the amount of gas used is large (and the cost required for degreasing increases.1) In an inert gas atmosphere, the maximum heating temperature cannot be increased. It is necessary to set the temperature higher, and the power consumption increases due to the heat diffusion caused by the inflow and outflow of inert gas, which together with the gas consumption increases, increases the degreasing cost.Furthermore, In an inert gas atmosphere, a trace amount of carbon components remains as a residue, and this residual liquid may cause deterioration in the strength of the ceramic product after sintering.
(発明が解決しようとする問題点)
本発明は、上記事情を参酌してなされたもので、電力の
消費を削減して脱脂コストを低減し、かつ、品質向上に
寄与することのできる脱脂方法及びその装置に関する。(Problems to be Solved by the Invention) The present invention has been made in consideration of the above circumstances, and is a degreasing method that reduces power consumption, reduces degreasing costs, and contributes to quality improvement. and its apparatus.
(問題点を解決するための手段と作用)脱脂炉内におけ
る脱脂を、脱脂始期と脱脂終期を酸化性雰囲気で行うと
ともに、脱脂中間期を不活性ガス雰囲気で行うようにし
たもので、給電量及び不活性ガス供給量の低減を可能と
したものである。(Means and effects for solving the problem) Degreasing in a degreasing furnace is performed in an oxidizing atmosphere at the beginning and end of degreasing, and in an inert gas atmosphere during the intermediate stage of degreasing. This also makes it possible to reduce the amount of inert gas supplied.
(実施例) 以下、本発明の一実施例を図面を参照して詳述する。(Example) Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.
第1図は、この実施例の脱脂方法に用いられる脱脂装置
を示している。この装置は、例えば耐火物質でできた炉
体(1)と、この1体(1)の内壁部全面に内装された
ヒータ(2)・・・と、このヒータ(2)・・・に電力
を給電する電源(3)と、炉体(1)へファインセラミ
ックス製の粉体成形物(4)・・・を出入れするための
開閉扉(5)と、炉体(1)内に設けられ粉体成形物(
4)・・・を互に接触しないように載置する載置台(6
)と、一端部が炉体(1)内部に開口し且つ他端部が炉
体(1)を介して外部に設けられている気体供給管(7
)と、気体供給管(7)の外側端部が気体流出側に接続
された電磁弁(8)と、この電磁弁(8)の気体流入側
に接続された窒素(Nt)ガス源(9)と、同じく電磁
弁(8)の気体流入側に接続された空気取入口部と、N
宜ガス源(9)と電磁弁(8)との間に設けられN、ガ
スの流量を計測して流量を示す電気信号8Fを出力する
流量計αυと、炉体(1)内部の温度を検出して炉内温
度を示す電気信号STを出力する温度センナa2と、上
記電気信号8T、 8Fを入力するとともに後述する所
定のプログラムに従って電磁弁(8)及び電源(3)を
制御する制御部C13と、炉体(1)の上部に設けられ
た排気ダクトα尋と、この排気ダク) (141の外側
端部に接続され脱脂により粉体成形物(4)・・・から
発散した有機ガスを燃焼させる燃焼バーナ霞とからなっ
ている。しかして、上記粉体成形物(4)・・・は、窒
化珪素(si、N、)に成形助剤としてワックス系バイ
ンダを2Qwt%添加したものである。そして、載置台
(6)は、粉体成形物(4)・・・を多段に収納できる
構造となっている。FIG. 1 shows a degreasing apparatus used in the degreasing method of this embodiment. This device consists of a furnace body (1) made of, for example, a refractory material, a heater (2) installed on the entire inner wall of this body (1), and a power supply for this heater (2). A power supply (3) for supplying power to the furnace body (1), an opening/closing door (5) for taking in and out the fine ceramic powder moldings (4)... to the furnace body (1), and a door (5) installed in the furnace body (1) Powder molded product (
4) A mounting table (6
), and a gas supply pipe (7) whose one end opens inside the furnace body (1) and whose other end is provided outside through the furnace body (1)
), a solenoid valve (8) whose outer end of the gas supply pipe (7) is connected to the gas outflow side, and a nitrogen (Nt) gas source (9) connected to the gas inflow side of this solenoid valve (8). ), an air intake port also connected to the gas inflow side of the solenoid valve (8), and an N
A flowmeter αυ is installed between the gas source (9) and the solenoid valve (8) to measure the flow rate of the gas and output an electric signal 8F indicating the flow rate, and a A temperature sensor a2 that detects and outputs an electric signal ST indicating the furnace temperature, and a control section that inputs the electric signals 8T and 8F and controls the solenoid valve (8) and power source (3) according to a predetermined program to be described later. C13, the exhaust duct α-hiro provided at the top of the furnace body (1), and this exhaust duct) (organic gas emitted from the powder molded product (4)... connected to the outer end of 141 and degreased) The powder molded product (4)... is made by adding 2Qwt% of wax-based binder as a molding aid to silicon nitride (si, N,). The mounting table (6) has a structure in which the powder molded products (4) can be stored in multiple stages.
つぎに、上記構成の脱脂装置を用いた本発明の脱脂方法
について述べる。Next, a degreasing method of the present invention using the degreasing apparatus having the above configuration will be described.
まず、開閉扉(5)を開き、射出成形により成形された
粉体成形物(4)・・・を炉体(1)内に設けられた載
置台(6)上に多段に互に接触しないように格納する。First, open the opening/closing door (5) and place the powder moldings (4) formed by injection molding on the mounting table (6) provided in the furnace body (1) in multiple stages so as not to touch each other. Store it like this.
つぎに、開閉Jif (5)を閉め、粉体成形物(4)
・・・を炉体(1)内に密閉したのち、制御部(13か
ら信号Svを電磁弁(8)に印加し空気取入口部から炉
体(1)内に空気が流入する状態にする。ついで制御部
αJにては、温度センナα3からの電気信号8Tに基づ
き、炉内温度が以下のようになるように、温度制御信号
SCを電源(3)に印加する(第2図参照)。すなわち
、まず、室温から100℃まで4℃/時間の割合で昇温
する。つまり、室温から140℃までは、脱脂を空気雰
囲気中にて行う。そして、炉内温度が有機バインダの樹
脂成分の融解温度よりも低い140℃になった時点で電
磁弁(8)を切換え、N、ガスを780m”/ トライ
の割合で当ガス源(9)から炉体(1)中に供給する。Next, close the opening/closing Jif (5) and close the powder molding (4).
... is sealed in the furnace body (1), and then a signal Sv is applied from the control unit (13) to the solenoid valve (8) to cause air to flow into the furnace body (1) from the air intake port. Next, the control unit αJ applies a temperature control signal SC to the power supply (3) based on the electric signal 8T from the temperature sensor α3 so that the temperature inside the furnace becomes as follows (see Fig. 2). That is, first, the temperature is raised from room temperature to 100°C at a rate of 4°C/hour.In other words, from room temperature to 140°C, degreasing is performed in an air atmosphere.Then, the furnace temperature is raised to 100°C at a rate of 4°C/hour. When the temperature reaches 140°C, which is lower than the melting temperature of the reactor, the solenoid valve (8) is switched and nitrogen and gas are supplied from the gas source (9) into the furnace body (1) at a rate of 780 m''/trial.
そして、140℃から200℃まで1℃/時間の割合で
昇温させ、ついで200℃から300℃まで2℃/時間
の割合で昇温させ、さらに300℃から400℃まで5
℃/時間の割合で昇温させる。つまり、有機バインダ中
の樹脂成分が熱酸化する温度領域にては、炉内を不活性
ガス雰囲気に置換する。このとき有機バインダの約95
0,10は有機ガスとして除去され、排気ダクト0乃か
ら燃焼バーナα9まで排出され、無害なガスとなる。そ
して、炉体(1)中の温度が有機バインダが発炎しない
400℃になった時点で、炉内温度上昇を停止させ40
0℃に保持したまま、再び電磁弁(8)を切換える。こ
れにより、空気取入口αQから炉体(1)内に空気を流
入させ、自然拡散により炉内雰囲気を徐々に空気に置換
して空気中脱脂を約6時間行う。この400℃における
空気中脱脂により粉体成形物(4)・・・中の有機バイ
ンダが酸化反応して、発散除去され、炭素を含有する残
渣として残留することがない。また、ヒータ(2)・・
・により炉内温度を脱脂工程中終始−貫してN1ガス雰
囲気中にて、500℃まで昇温させる場合に比べて、第
1表のように、N。Then, the temperature was raised from 140°C to 200°C at a rate of 1°C/hour, then from 200°C to 300°C at a rate of 2°C/hour, and then from 300°C to 400°C for 5
Raise the temperature at a rate of °C/hour. That is, in a temperature range where the resin component in the organic binder is thermally oxidized, the inside of the furnace is replaced with an inert gas atmosphere. At this time, about 95% of the organic binder
0 and 10 are removed as organic gases and discharged from exhaust ducts 0 to combustion burner α9, becoming harmless gases. When the temperature in the furnace body (1) reaches 400°C, at which the organic binder does not ignite, the temperature rise in the furnace is stopped and the temperature rises to 400°C.
Switch the solenoid valve (8) again while maintaining the temperature at 0°C. As a result, air is allowed to flow into the furnace body (1) through the air intake port αQ, and the atmosphere inside the furnace is gradually replaced with air by natural diffusion, thereby performing in-air degreasing for about 6 hours. By this in-air degreasing at 400° C., the organic binder in the powder molded product (4) undergoes an oxidation reaction and is diffused and removed, so that it does not remain as a carbon-containing residue. Also, heater (2)...
As shown in Table 1, compared to the case where the furnace temperature is raised to 500° C. in an N1 gas atmosphere throughout the degreasing process, as shown in Table 1, N.
ガス供給量が37%、また、ヒータ(2)・・・への電
力供給量6!!+低減する。Gas supply amount is 37%, and power supply amount to heater (2)... is 6! ! +Reduce.
第 1 表
さらに、上述したように、粉体成形物(4)・・・中に
、炭素残渣がほとんど残留しないので、第2表に示すよ
うに、N、ガス雰囲気中にて500°Cまで昇温させて
脱脂した従来法に比べて、焼結体から切り出したテスト
ピースについて測定した3点曲げ強度及び密度がわずか
ではあるが向上する。Table 1 Furthermore, as mentioned above, since almost no carbon residue remains in the powder molded product (4)... as shown in Table 2, it can be heated up to 500°C in a N or gas atmosphere. Compared to the conventional method of degreasing by raising the temperature, the three-point bending strength and density measured on test pieces cut from the sintered body are slightly improved.
第 2 表
かくして、空気中の脱脂が完了すると、ヒータ(2)・
・・への給電を停止し、空気雰囲気中にて室温まで炉冷
させる。Table 2 Thus, when the degreasing in the air is completed, the heater (2)
Stop power supply to ... and allow the furnace to cool to room temperature in an air atmosphere.
なお、上記実施例における昇温速度は、セラミックス、
バインダの材種、配合量に応じて適宜変更してよい。さ
らに、Ntガスの代りにヘリウム(He)ガス、アルゴ
ン(Ar )ガスを用いてもよい。さらに、上記実施例
においては、N、ガスと空気との−入れかえを電磁弁(
8)を用いて行っているが、別々の供給管を用いたり、
開閉扉の開閉により行ってもよい。Note that the temperature increase rate in the above examples is for ceramics,
It may be changed as appropriate depending on the type and amount of the binder. Furthermore, helium (He) gas or argon (Ar) gas may be used instead of Nt gas. Furthermore, in the above embodiment, the exchange between N, gas and air is performed using a solenoid valve (
8), but using separate supply pipes,
This may be done by opening and closing the opening/closing door.
本発明の脱脂方法は、脱脂のための昇温温度初期段階と
昇温温度終期段階を空気中で脱脂し、その中間段階を不
活性ガス雰囲気により脱脂するようにしたので、最高脱
脂温度を比較的低く設定でき、昇温のための給電量及び
不活性ガス雰囲気にするためのガス量を節約でき、経済
性が向上し、生産コストが低くなる。さらに、この大気
中脱脂により、脱脂後の粉末成形体中に炭素を含有する
残渣が残留することがないので、焼結後の機械的性質が
一貫して不活性ガス雰囲気中にて脱脂した粉末成形体に
比べて幾分改善する。In the degreasing method of the present invention, the initial stage of raising the temperature for degreasing and the final stage of raising the temperature for degreasing are performed in air, and the intermediate stage is degreased in an inert gas atmosphere, so the maximum degreasing temperature is compared. The temperature can be set to a low temperature, and the amount of power supplied for heating up and the amount of gas used to create an inert gas atmosphere can be saved, improving economic efficiency and lowering production costs. Furthermore, this atmospheric degreasing prevents any carbon-containing residue from remaining in the powder compact after degreasing, so the mechanical properties after sintering are consistent with those of the powder degreased in an inert gas atmosphere. This is somewhat improved compared to molded products.
第1図は本発明の一実施例の脱脂方法に用いられる脱脂
装置の構成図、第2図は同じく脱脂方法を説明するだめ
のグラフである。
(1):炉 体、 (4) :粉体成形物。
(9) : N!ガス源。
代理人 弁理士 則 近 憲 佑
同 松山光之FIG. 1 is a block diagram of a degreasing apparatus used in a degreasing method according to an embodiment of the present invention, and FIG. 2 is a graph for explaining the same degreasing method. (1): Furnace body, (4): Powder molded product. (9): N! gas source. Agent Patent Attorney Noriyuki Chika Yudo Mitsuyuki Matsuyama
Claims (1)
機バインダとからなる成形体を空気中で常温から上記有
機バインダ中の樹脂が溶融する温度未満かつ近傍の第1
温度まで昇温させる第1工程と、この第1工程後に不活
性ガス・雰囲気中にて上記第1温度から上記成形体中の
有機バインダが空気中にて発炎しない程度にまで減量す
る第2温度まで昇温させ上記成形体を脱脂する第2工程
と、この第2工程後に上記第2温度近傍温度にて上記成
形体を保持しながら上記脱脂炉内の不活性ガスを徐々に
空気と置換する第3工程とを具備することを特徴とする
脱脂方法。A molded body made of ceramic powder and an organic binder containing a resin component is heated in the air in a degreasing furnace from room temperature to below the temperature at which the resin in the organic binder melts and in the vicinity of the first
a first step in which the temperature is raised to a temperature, and a second step in which the organic binder in the molded body is reduced from the first temperature in an inert gas atmosphere to an extent that the organic binder in the molded body does not ignite in the air after this first step. A second step of raising the temperature to a temperature and degreasing the molded body, and after this second step, gradually replacing the inert gas in the degreasing furnace with air while holding the molded body at a temperature near the second temperature. A degreasing method characterized by comprising a third step of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62131812A JPS63297275A (en) | 1987-05-29 | 1987-05-29 | Method for degreasing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62131812A JPS63297275A (en) | 1987-05-29 | 1987-05-29 | Method for degreasing |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63297275A true JPS63297275A (en) | 1988-12-05 |
Family
ID=15066683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62131812A Pending JPS63297275A (en) | 1987-05-29 | 1987-05-29 | Method for degreasing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63297275A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104550946A (en) * | 2014-12-31 | 2015-04-29 | 苏州米莫金属科技有限公司 | Spraying-type degreasing furnace and degreasing process |
-
1987
- 1987-05-29 JP JP62131812A patent/JPS63297275A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104550946A (en) * | 2014-12-31 | 2015-04-29 | 苏州米莫金属科技有限公司 | Spraying-type degreasing furnace and degreasing process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1333012A4 (en) | Burning furnace, burnt body producing method, and burnt body | |
JPS63183103A (en) | Sintering method for injection molding | |
JPS63297275A (en) | Method for degreasing | |
JP2587476B2 (en) | Manufacturing method of silicon nitride molded product | |
JPS5913470B2 (en) | Silica brick manufacturing method | |
CN208671664U (en) | A kind of box electric kiln may filter that furnace gas | |
ES8308628A1 (en) | Method and apparatus for sintering refractory walls. | |
JP3307697B2 (en) | Batch type firing furnace | |
JP3023184B2 (en) | Continuous tunnel furnace | |
JP3017981B1 (en) | Sintering furnace for nuclear fuel | |
JPH06221764A (en) | Device for heat treatment and its heat-treated object | |
JPH05148511A (en) | Manufacture of ferrous metal powder sintering metal mold | |
CN218864804U (en) | Silicon carbide sintering furnace cooling device | |
JP3058532B2 (en) | Ceramic ventilation control valve | |
JP2010096389A (en) | Atmosphere furnace | |
JPH0128083B2 (en) | ||
JPH03275570A (en) | Method for heating ceramics by induction | |
JP2005232541A (en) | Degreasing furnace | |
JP2940627B2 (en) | Method for producing silicon nitride ceramic sintered body | |
JPH10195507A (en) | Method for sintering sintered parts and sintering furnace | |
JPS62171965A (en) | Dewaxing process and apparatus therefor | |
JPS6287464A (en) | Method of dewaxing ceramic formed body | |
JP2018184647A (en) | Heat treatment apparatus for metal powder compact | |
JP2601614B2 (en) | Ceramic firing method | |
JPS62100481A (en) | Dewaxing furnace for ceramics |