JPS6199692A - Fiber reinforced metallic composite material - Google Patents

Fiber reinforced metallic composite material

Info

Publication number
JPS6199692A
JPS6199692A JP22182784A JP22182784A JPS6199692A JP S6199692 A JPS6199692 A JP S6199692A JP 22182784 A JP22182784 A JP 22182784A JP 22182784 A JP22182784 A JP 22182784A JP S6199692 A JPS6199692 A JP S6199692A
Authority
JP
Japan
Prior art keywords
layer
metal
fiber
prepreg
metallic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22182784A
Other languages
Japanese (ja)
Inventor
Teruhiro Tanaka
田中 照浩
Kazuo Muramatsu
和夫 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP22182784A priority Critical patent/JPS6199692A/en
Publication of JPS6199692A publication Critical patent/JPS6199692A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To obtain the light inexpensive titled composite superior in mechanical strength, by applying electroless and electrolytic platings to surface of aromatic polyamide fiber as reinforcing material, if necessary, further forming metallic layer thereon to obtain prepreg and using it to compose the titled body. CONSTITUTION:Relatively inexpensive aromatic polyamide fiber having high tensile strength and toughness is used as reinforcing material, electroless plating, next electrolytic plating are applied to the surface to form matrix metallic layer bonded mechanically and strongly with said fiber and prepreg is obtd. Prepreg can be obtd. by forming metallic layer having plural layers by further forming metallic layer on said metallic layer by some means. Said prepreg is hot pressed to obtain the titled body. Metallic layer of said plural layers is favorable to compose of metal having relatively high m.p. as inner layer, and metal having relatively low m.p. of <=500 deg.C as outer layer. In hot pressing, joining of the outermost layer by heating without deforming inner metallic layer is favorable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 芳香族ポリアミド繊維を強化材とし、単一金属ま゛たは
合金をマトリックスとする、軽量で;々械的強度の優れ
たt′Rm強化金手、4複合体(以下腹合体と称す)に
関するものである。
[Detailed description of the invention] [Industrial application field] Lightweight and excellent mechanical strength t'Rm reinforcement using aromatic polyamide fiber as a reinforcing material and a single metal or alloy as a matrix This is related to the four-fold complex (hereinafter referred to as the abdominal complex).

〔従来技術と問題点〕[Conventional technology and problems]

繊維強化金属に用いられる強化用繊維、は、アルミナ繊
維、炭素繊維、ボロン繊維など、一般に無機質繊維あり
、また、繊維を結合させて複合体を形成させる材料であ
るマトリックス金属としては、アルミニウム、銅、ニッ
ケルなどが多く使われている。
The reinforcing fibers used in fiber-reinforced metals are generally inorganic fibers such as alumina fibers, carbon fibers, and boron fibers, and the matrix metals used to bond the fibers to form composites include aluminum and copper. , nickel, etc. are often used.

これは比較的高温における機械的強度の向上を目的とし
ているためで、その製法も真空下ホットプレスとなり、
製造原価が高くなる雑煮がある。
This is because the purpose is to improve mechanical strength at relatively high temperatures, and the manufacturing method is hot pressing under vacuum.
There are some types of zoni that are expensive to manufacture.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、強化材として従来の無11j(・ホ偵維の代
りに、比較的安価な有機質の芳香族ポリアミド橙維を使
用するものである。
The present invention uses relatively inexpensive organic aromatic polyamide orange fibers as a reinforcing material in place of the conventional non-woven fibers.

芳香族ポリアミド繊維は、比重1.44、引張強度30
0kg/−で、強靭性を有している。しかも引張強度は
繊維表面の疵にも比較的影響されないと言う他の無機質
繊維に見られない特性を持りている。
Aromatic polyamide fiber has a specific gravity of 1.44 and a tensile strength of 30.
0 kg/- and has strong toughness. Furthermore, the tensile strength is relatively unaffected by flaws on the fiber surface, a property not found in other inorganic fibers.

また、耐熱性においても180’Oなら長時間でも室温
特性を維持できるし、短時間であれば200〜250°
Cの温度においても特性が大幅lこ変化することはない
など、優れた性質を持っている。
In addition, in terms of heat resistance, 180'O can maintain room temperature properties even for long periods of time, and 200 to 250° for short periods of time.
It has excellent properties such that its characteristics do not change significantly even at temperatures of C.

しかしながら、芳香族ポリアミド繊維はその優れた機械
的強度と耐熱性を生かすための良い接着剤が無い。
However, there is no good adhesive for aromatic polyamide fibers to take advantage of their excellent mechanical strength and heat resistance.

本発明は芳香族ポリアミド繊維に対しマトリックスとし
て比較的低融点の金属を用いることにより、用途として
は約200℃以下に限定されるが、比較的安価な複合体
を提供するものでありて、電気48縁物であるポリアミ
ド繊維に対し、先ず無電解めっきにより導電性被膜を作
り、次いで電気めっきによってマトリックスとして十分
な金属層を形、成させることにより問題点を解決したも
のである。
The present invention uses a relatively low melting point metal as a matrix for aromatic polyamide fibers to provide a relatively inexpensive composite, although its use is limited to temperatures below about 200°C. This problem was solved by first forming a conductive film on the polyamide fibers used as the 48 edge material by electroless plating, and then forming a sufficient metal layer as a matrix by electroplating.

〔発明の概−要〕[Summary of the invention]

本発明は芳香族ポリアミド繊維に対するマトリックス金
属の形成法として、繊維の表面に無電解めっきと電気め
っきとによって、繊維と強固な機械的結合をした欠陥の
少ない金ワ;層を形成させてプリプレグとするものであ
る。
The present invention is a method of forming a matrix metal for aromatic polyamide fibers by forming a layer of metal with few defects that has a strong mechanical bond with the fibers by electroless plating and electroplating on the surface of the fibers. It is something to do.

更に、この繊維表面に接して形成した金aA 7F5の
繊維との機械的結合を少しも損なうことなく、シかも複
合体製作を容易にするため、前記R’1.L屏めっきと
電気めっきによってl&維に接して作られた金属層を内
層とし、その外側に異種金vSを…、気めっき、無電解
めっき、溶融めっきあるいは溶射などによりて金属層を
形成させる。
Furthermore, in order to facilitate the fabrication of the fiber composite without impairing the mechanical bond with the gold aA 7F5 fiber formed in contact with the fiber surface, R'1. The metal layer made in contact with the L&fiber by L-screen plating and electroplating is used as the inner layer, and the metal layer is formed on the outside by dissimilar gold vS by air plating, electroless plating, hot-dip plating, thermal spraying, etc.

外層金属は内層金属よりも融点が低く、シかも内層金属
とのぬれ性が良い融点が500°0以下の金属が選ばれ
る。
The outer layer metal has a melting point lower than that of the inner layer metal, and a metal with a melting point of 500°0 or less that has good wettability with the inner layer metal is selected.

このようにして出来上ったプリプレグの外層金属をホッ
トプレスなどの方法によって接合して複合体とする。こ
の上°)合、内層金v1は芳香族ポリアミド繊維を保d
することと、外層金属の繊維との機械的結合をその中間
に介在して十分に作用せしめる役割をはたす。
The outer layer metal of the prepreg thus produced is joined by a method such as hot pressing to form a composite. In this case, the inner layer gold v1 retains the aromatic polyamide fibers.
It plays the role of providing a sufficient mechanical bond between the fibers of the outer layer metal and the fibers of the outer metal layer.

無電解めっきと電気めりきによって形成された一S類の
金属によるマトリックスで複合体を作ることも可能であ
るが、前述の複数層金絹マトリックスの方が作業性も良
いし、複合体の特性もより優れている。
Although it is possible to make a composite using a matrix of Class I S metals formed by electroless plating and electroplating, the multi-layer gold silk matrix described above is easier to work with, and the properties of the composite are is also better.

尚、前述の内層および外層の2重講造ばかりではなく、
熱膨張係数の関係で内層金属を更に2層とした複数層構
造にも意義がある。
In addition to the above-mentioned double structure of inner and outer layers,
Due to the coefficient of thermal expansion, a multi-layer structure with two additional inner metal layers is also meaningful.

〔実施例〕〔Example〕

先ず、プリプレグの製作について手順を追って説明する
First, the manufacturing of prepreg will be explained step by step.

例えば、デエボン社製の芳香族ポリアミド繊維であるケ
ブラー49(直径約21μm)をメチルエチルケトン液
に浸漬し、十分に繊維表面を脱脂する。
For example, Kevlar 49 (diameter approximately 21 μm), which is an aromatic polyamide fiber manufactured by Devon, is immersed in a methyl ethyl ketone solution to thoroughly degrease the fiber surface.

この繊維を分散して拡げ、無電解ニッケルめっき液に浸
漬する。無電解ニッケルめっき液が繊維の間に浸透する
ことにより、繊維の表面を完全に包んだ密着性の良い導
電性のニッケル皮膜が作られる。無電解めっきによるめ
っき厚さは、少なくとも0.3μm以上とする。
The fibers are dispersed and spread and immersed in an electroless nickel plating solution. By penetrating the electroless nickel plating solution between the fibers, a highly adhesive and conductive nickel film is created that completely covers the fiber surface. The plating thickness by electroless plating is at least 0.3 μm or more.

次いで、′磁気ニッケルめっき液ワット浴により大略2
μm厚さのニッケルのめっき層を作る。これによって、
ケブラー49繊維の表面に、機械的結合が十分な、融点
が1726℃のニッケル内層が形成される。
Then, approximately 2
Create a μm thick nickel plating layer. by this,
A nickel inner layer with a melting point of 1726° C., which provides sufficient mechanical bonding, is formed on the surface of the Kevlar 49 fiber.

次に、その外側にニッケルとぬれ性がよく、シかも複合
体製作工程においてケブラー49ハ維の特性を損うこと
のない、融点が232°0の錫の層をtli。
Next, on the outside, a layer of tin with a melting point of 232°0, which has good wettability with nickel and does not impair the properties of the Kevlar 49 fiber during the composite fabrication process, is applied.

気めっきによって2〜3μmの厚さに形成して外層とし
たプリプレグを完成する。
A prepreg is formed as an outer layer by plating to a thickness of 2 to 3 μm.

このようにして完成したプリプレグの各成分割合は、体
積比にして大路次の通りである。
The proportions of each component in the thus completed prepreg are as follows in terms of volume ratio:

ケブラー49・・・・・42〜44% ニッケル・・・・・・・・22〜25チ錫・・・・・・
・・・・・・・・・・・・・32〜35チ第1図は上記
の方法によって形成したプリプレグの断面の150倍の
顕微鏡写真であり、金6皮膜層の状況を明瞭に観察する
ためニッケル屓および錫層のいずれもを約8μmとした
ものであって、中心部がケブラー棋維であり、その外側
がニッケルIH1一番外側が錫層で、金?i5/8はす
べて同心円状1こ形成されている。
Kevlar 49...42-44% Nickel...22-25 Tin...
・・・・・・・・・・・・32~35chi Figure 1 is a 150x micrograph of the cross section of the prepreg formed by the above method, and clearly observes the state of the gold 6 film layer. Therefore, both the nickel layer and the tin layer are about 8 μm thick, with the center being Kevlar fiber, the outer layer being nickel IH1, the outermost layer being tin layer, and gold? All i5/8 are formed into one concentric circle.

次に貧合体化の手順について説明する。第2図は成形型
の側断面図であって、加熱ヒータ1aを埋め込んだ成形
型1の中に上述のプリプレグ3を桔層し、加熱ヒータ1
21こより加熱しながら加圧軸21こより加圧して成形
する。
Next, the procedure for poor coalescence will be explained. FIG. 2 is a side sectional view of the mold, in which the prepreg 3 described above is layered in the mold 1 in which the heater 1a is embedded.
While heating from the shaft 21, pressure is applied from the pressure shaft 21 to form the product.

成形(i圧力6okq/at(1温度210〜220’
Oとして還元基囲気中で30〜60分間加熱、加圧して
複合体とする。
Molding (i pressure 6okq/at (1 temperature 210~220'
The mixture is heated and pressurized for 30 to 60 minutes in a reducing atmosphere with O to form a composite.

第3図は本発明にかかる繊維強化金属複合体の断面の顕
微鏡写真であり、第1図に示したプリプレグを加熱加圧
して成形したものであって、拡大倍率は400倍とした
が、ケブラー49?&維を中心として形成されたニッケ
ルだが、錫によって十分1こ接合され複合体を形成して
いることがわかる。
FIG. 3 is a micrograph of a cross section of a fiber-reinforced metal composite according to the present invention, which was formed by heating and pressing the prepreg shown in FIG. 1, and the magnification was 400 times. 49? It can be seen that although nickel was formed mainly from fibers, it was joined by tin to form a composite.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、店[:漣質l哉維に比べて安価tj有
機貿の芳香族ポリアミド繊維を強化材とし、比;り的低
融点の金tをマトリックスとして1史川できることから
、製造原価が低く殴誠的性′ltの筺れた繊維強化金属
複合体を提供するこきができる。
According to the present invention, it is possible to manufacture the product by using aromatic polyamide fibers manufactured by Organic Trading Co., Ltd., which are cheaper than conventional fibers, as a reinforcing material and using gold, which has a relatively low melting point, as a matrix. It is possible to provide a fiber-reinforced metal composite with low cost and high integrity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の−:AL5例のプリプレグの断面の顕
微鏡写真、第2図は本実廁例の成形型のr(’J断百図
、第3図は本発明1こかかる繊帷強化金I丁;複合体の
断面の顕微鏡写真である− ]・・ 成形型、la・ ヒータ、2・ 加rf軸、3
・・・・プリプレグ。 qi許出?」1人 東洋M機料】4株式会社 代表者 土 井   D 手続補正書(自発) 昭和60年5月lス日 昭和59年特許願第221827号 2、発明の名称 繊維強化金属複合体 3、補正をする者 事件との関係 特許出願人 郵便番号 104 明細書の発明の詳細な説明の欄 5、補正の内容
Fig. 1 is a microscopic photograph of the cross section of the prepreg of -:AL5 example of the present invention, Fig. 2 is a cross section of the mold of this actual example, and Fig. 3 is a cross-sectional view of the fabric of the present invention. Reinforced gold plate; This is a microscopic photograph of the cross section of the composite.] Molding mold, la, heater, 2, heating RF shaft, 3
...Prepreg. Qi permission? "1 person Toyo M Kikyo] 4 Co., Ltd. Representative Doi D Procedural amendment (spontaneous) May 1985 1988 Patent Application No. 221827 2, Title of invention Fiber reinforced metal composite 3, Relationship with the case of the person making the amendment Postal code of the patent applicant 104 Column 5 of the detailed explanation of the invention in the specification, Contents of the amendment

Claims (3)

【特許請求の範囲】[Claims] (1)繊維強化金属複合体において、強化材を芳香族ポ
リアミド繊維とし、該芳香族ポリアミド繊維の表面に無
電解めっきの後電気めっきを施し、必要あれば更にその
上に何らかの手段により金属層を形成することにより、
複数層の金属層を形成したプリプレグを用いることを特
徴とした繊維強化金属複合体。
(1) In the fiber-reinforced metal composite, the reinforcing material is aromatic polyamide fiber, the surface of the aromatic polyamide fiber is subjected to electroless plating followed by electroplating, and if necessary, a metal layer is further applied thereon by some means. By forming
A fiber-reinforced metal composite characterized by using prepreg formed with multiple metal layers.
(2)芳香属ポリアミド繊維の表面に接して比較的高融
点の金属を内層金属層とし、その外側に融点500℃以
下の比較的低融点の金属を外層とした複数層構造を有す
るプリプレグを用いることを特徴とした特許請求の範囲
第(1)項記載の繊維強化金属複合体。
(2) Use a prepreg having a multi-layer structure in which the inner layer is made of a metal with a relatively high melting point in contact with the surface of the aromatic polyamide fiber, and the outer layer is made of a metal with a relatively low melting point of 500°C or less. A fiber-reinforced metal composite according to claim (1).
(3)複数金属層のうち芳香属ポリアミド繊維の表面に
接する内層金属層を変形させることなく、最外層を加熱
接合させたことを特徴とする特許請求の範囲第(1)項
記載の繊維強化金属複合体。
(3) Fiber reinforcement according to claim (1), characterized in that among the plurality of metal layers, the outermost layer is thermally bonded without deforming the inner metal layer in contact with the surface of the aromatic polyamide fiber. metal composite.
JP22182784A 1984-10-22 1984-10-22 Fiber reinforced metallic composite material Pending JPS6199692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22182784A JPS6199692A (en) 1984-10-22 1984-10-22 Fiber reinforced metallic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22182784A JPS6199692A (en) 1984-10-22 1984-10-22 Fiber reinforced metallic composite material

Publications (1)

Publication Number Publication Date
JPS6199692A true JPS6199692A (en) 1986-05-17

Family

ID=16772808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22182784A Pending JPS6199692A (en) 1984-10-22 1984-10-22 Fiber reinforced metallic composite material

Country Status (1)

Country Link
JP (1) JPS6199692A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157410A (en) * 2006-12-26 2008-07-10 Tokai Rubber Ind Ltd Vibration damping device
JP2009504914A (en) * 2005-08-12 2009-02-05 アイソトロン コーポレイション Composition-modulated composite material and method for forming the same
US9938629B2 (en) 2008-07-07 2018-04-10 Modumetal, Inc. Property modulated materials and methods of making the same
US10662542B2 (en) 2010-07-22 2020-05-26 Modumetal, Inc. Material and process for electrochemical deposition of nanolaminated brass alloys
US10781524B2 (en) 2014-09-18 2020-09-22 Modumetal, Inc. Methods of preparing articles by electrodeposition and additive manufacturing processes
US10808322B2 (en) 2013-03-15 2020-10-20 Modumetal, Inc. Electrodeposited compositions and nanolaminated alloys for articles prepared by additive manufacturing processes
US10844504B2 (en) 2013-03-15 2020-11-24 Modumetal, Inc. Nickel-chromium nanolaminate coating having high hardness
US11118280B2 (en) 2013-03-15 2021-09-14 Modumetal, Inc. Nanolaminate coatings
US11180864B2 (en) 2013-03-15 2021-11-23 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US11242613B2 (en) 2009-06-08 2022-02-08 Modumetal, Inc. Electrodeposited, nanolaminate coatings and claddings for corrosion protection
US11286575B2 (en) 2017-04-21 2022-03-29 Modumetal, Inc. Tubular articles with electrodeposited coatings, and systems and methods for producing the same
US11293272B2 (en) 2017-03-24 2022-04-05 Modumetal, Inc. Lift plungers with electrodeposited coatings, and systems and methods for producing the same
US11365488B2 (en) 2016-09-08 2022-06-21 Modumetal, Inc. Processes for providing laminated coatings on workpieces, and articles made therefrom
US11519093B2 (en) 2018-04-27 2022-12-06 Modumetal, Inc. Apparatuses, systems, and methods for producing a plurality of articles with nanolaminated coatings using rotation
US11692281B2 (en) 2014-09-18 2023-07-04 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824446A (en) * 1981-07-13 1983-02-14 ロツクウエル・インタ−ナシヨナル・コ−ポレ−シヨン Ultra-plastic nickel-cobalt matrix which is fibre-reinforced and electroforming-molded
JPS5953640A (en) * 1982-09-20 1984-03-28 Toyo Electric Mfg Co Ltd Production of composite prepreg material of inorganic fiber-metallic matrix

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824446A (en) * 1981-07-13 1983-02-14 ロツクウエル・インタ−ナシヨナル・コ−ポレ−シヨン Ultra-plastic nickel-cobalt matrix which is fibre-reinforced and electroforming-molded
JPS5953640A (en) * 1982-09-20 1984-03-28 Toyo Electric Mfg Co Ltd Production of composite prepreg material of inorganic fiber-metallic matrix

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10961635B2 (en) 2005-08-12 2021-03-30 Modumetal, Inc. Compositionally modulated composite materials and methods for making the same
JP2009504914A (en) * 2005-08-12 2009-02-05 アイソトロン コーポレイション Composition-modulated composite material and method for forming the same
US9115439B2 (en) 2005-08-12 2015-08-25 Modumetal, Inc. Compositionally modulated composite materials and methods for making the same
JP2008157410A (en) * 2006-12-26 2008-07-10 Tokai Rubber Ind Ltd Vibration damping device
US9938629B2 (en) 2008-07-07 2018-04-10 Modumetal, Inc. Property modulated materials and methods of making the same
US10689773B2 (en) 2008-07-07 2020-06-23 Modumetal, Inc. Property modulated materials and methods of making the same
US11242613B2 (en) 2009-06-08 2022-02-08 Modumetal, Inc. Electrodeposited, nanolaminate coatings and claddings for corrosion protection
US10662542B2 (en) 2010-07-22 2020-05-26 Modumetal, Inc. Material and process for electrochemical deposition of nanolaminated brass alloys
US11118280B2 (en) 2013-03-15 2021-09-14 Modumetal, Inc. Nanolaminate coatings
US10844504B2 (en) 2013-03-15 2020-11-24 Modumetal, Inc. Nickel-chromium nanolaminate coating having high hardness
US10808322B2 (en) 2013-03-15 2020-10-20 Modumetal, Inc. Electrodeposited compositions and nanolaminated alloys for articles prepared by additive manufacturing processes
US11168408B2 (en) 2013-03-15 2021-11-09 Modumetal, Inc. Nickel-chromium nanolaminate coating having high hardness
US11180864B2 (en) 2013-03-15 2021-11-23 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US11851781B2 (en) 2013-03-15 2023-12-26 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US10781524B2 (en) 2014-09-18 2020-09-22 Modumetal, Inc. Methods of preparing articles by electrodeposition and additive manufacturing processes
US11560629B2 (en) 2014-09-18 2023-01-24 Modumetal, Inc. Methods of preparing articles by electrodeposition and additive manufacturing processes
US11692281B2 (en) 2014-09-18 2023-07-04 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US11365488B2 (en) 2016-09-08 2022-06-21 Modumetal, Inc. Processes for providing laminated coatings on workpieces, and articles made therefrom
US11293272B2 (en) 2017-03-24 2022-04-05 Modumetal, Inc. Lift plungers with electrodeposited coatings, and systems and methods for producing the same
US11286575B2 (en) 2017-04-21 2022-03-29 Modumetal, Inc. Tubular articles with electrodeposited coatings, and systems and methods for producing the same
US11519093B2 (en) 2018-04-27 2022-12-06 Modumetal, Inc. Apparatuses, systems, and methods for producing a plurality of articles with nanolaminated coatings using rotation

Similar Documents

Publication Publication Date Title
JPS6199692A (en) Fiber reinforced metallic composite material
US3807996A (en) Carbon fiber reinforced nickel matrix composite having an intermediate layer of metal carbide
KR101054462B1 (en) High strength dissimilar metal joining method between a steel-based alloy using an intermediate layer and a titanium or titanium-based alloy having a joint strength exceeding the strength of the base metal
EP0380200A1 (en) Composite foil brazing material
US20030108763A1 (en) Metal fiber-reinforced composite material as well as a method for its production
US8557383B2 (en) Method of producing a material composite
JPS61158876A (en) Direct liquid phase bonding for ceramic to metal
KR890000912B1 (en) Method for joining ceramic and metal
US20050098609A1 (en) Transient eutectic phase process for ceramic-metal bonding metallization and compositing
US3894677A (en) Method of preparing graphite reinforced aluminum composite
CN101333116A (en) Method of Brazing ceramic and ceramic-based composite material with titan alloy
US3796587A (en) Carbon fiber reinforced nickel matrix composite having an intermediate layer of metal carbide
JPH04228480A (en) Composite being stable at high temperature and preparation thereof
CN107488046B (en) Connecting material for connecting silicon carbide ceramics and method for connecting silicon carbide ceramics
US5100049A (en) Method of bonding carbon-carbon and metal matrix composite structures
CN109940969B (en) Al with micron-scale layered structure2O3Preparation method of/Al composite board
US4428523A (en) Metallic solder composite bonding
JPS6018205A (en) Manufacture of titanium-clad steel material
EP2179841B1 (en) Functionally graded high temperature bonding of fiberglass fibers to steel
US5353981A (en) Near-ambient pressure braze consolidation (LPC) process for fiber reinforced magnesium metal matrix
JPH0492871A (en) Ceramic-metal binding body and production thereof
JPH029779A (en) Production of ceramic-metal composite body
JPS5942064B2 (en) Manufacturing method of fiber reinforced composite material
US4350744A (en) Metallic solder composite bonding
JPS6238319B2 (en)