JPS6199691A - Steel sheet electroplated with combined layer - Google Patents

Steel sheet electroplated with combined layer

Info

Publication number
JPS6199691A
JPS6199691A JP21926384A JP21926384A JPS6199691A JP S6199691 A JPS6199691 A JP S6199691A JP 21926384 A JP21926384 A JP 21926384A JP 21926384 A JP21926384 A JP 21926384A JP S6199691 A JPS6199691 A JP S6199691A
Authority
JP
Japan
Prior art keywords
layer
content
alloy plating
steel sheet
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21926384A
Other languages
Japanese (ja)
Other versions
JPH0328518B2 (en
Inventor
Shingo Nomura
伸吾 野村
Hirohiko Sakai
堺 裕彦
Hidetoshi Nishimoto
西本 英敏
Masatoshi Iwai
正敏 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21926384A priority Critical patent/JPS6199691A/en
Publication of JPS6199691A publication Critical patent/JPS6199691A/en
Publication of JPH0328518B2 publication Critical patent/JPH0328518B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To obtain the titled steel sheet superior in various characteristics such as corrosion resistance, by laminating Zn-Ni alloy plated layer, Zn-Fe alloy plated layer having a suitable Fe content, and Zn-Fe alloy plated layer having a suitable adhered quantity and Fe content in order, on steel sheet. CONSTITUTION:Steel sheet electroplated with combined layer composed of Zn-Ni alloy plated layer as the first layer, Zn-Fe alloy plated layer having 60-90wt% Fe content as the second layer, and Zn-Fe alloy plated layer having 0.1-3g/m<2> adhered quantity and <60% Fe content as the uppermost layer therein, and is superior in bare corrosion resistance, chemical conversion treatability, electrodeposition coating property, water resistant adhesive property and corrosion resistance after coating, press workability, spot weldability, etc. In said sheet, it is preferable to adjust the first layer to 5-50g/m<2> adhered quantity, 8-15% Ni content, the second layer to 1-10g/m<2> adhered quantity, 70-80% Fe content, the uppermost layer to 0.5-2.0g/m<2> adhered quantity, 30-55% Fe content.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は複層電気めっき鋼板に関し、さら [Industrial application field] The present invention relates to a multilayer electroplated steel sheet, and further relates to a multilayer electroplated steel sheet.

【二評しくは
、裸耐蝕性、化成処理性、11着塗装性、塗装後の耐水
密着性、塗装後の耐蝕性、ブレ入加工性、スボッ(溶接
性等に優れた複層電気めっき鋼板に関するものである。 1従来技1FII 最近になって、自動車車体の腐蝕に対処するために亜鉛
系めっき鋼板が広く使用されており、特に、Zn−陥系
合金電気めっき鋼板が工業的に生産されるようになり、
自動車用防錆鋼板として使用されてきている。 そして、二のZn−Ni系合金電気めっF!鋼板は塗装
しない状態における耐蝕性(裸耐蝕性という)が、従来
の溶融亜鉛めっき、電気亜鉛めっき、合金化溶融亜鉛め
っき等に比較して優れているために、自動車部品として
のドア、71ングー、C7−/カー、パネル等の袋構造
部内側のように塗料が廻り込まない部分の孔あき腐蝕(
pcrrolaLion)に効果を発揮している。 また、自動車外面の塗膜への種々の原因による疵を基点
とするm膜面のかさぶた状の腐蝕(scabcorrs
ion)に対処するために、いままでは、冷間圧延鋼板
が使用されていた自動車外面へめっきを施すことが検討
され、部分的には実施されている。 このめっき鋼板の使用についてみると、めっき鋼板は冷
間圧延鋼板と同等の塗装特性を有することが要求される
が、Zn−Ni系合金電気めっき鋼板は池の亜鉛系めっ
き鋼板と同様に、塗装特性、例えば、燐酸塩処理性、塗
膜耐水密着性、塗装後の耐蝕性、カチオン電着塗装時の
クレータ−特性等が冷間圧延鋼板に比較して劣っている
。 このZn−Ni系合金めっき鋼板の塗装後の特性を改良
するために、本発明者はZn−Ni系合金電気めっきの
上に、Feめっき或いはZn含有量が40wt%以下の
Fe−Znlk合金めっきを施した二層めっき鋼板を提
案し、このZn−Fe/Zn  Ni系二層めっき鋼板
は、自動車用の3コート塗装を行なった後の耐水密着性
および電着塗装後の塩水噴霧試験により評価した塗装後
の耐蝕性がZn−Ni系合金めっきより優れている。 しかなか呟本発明者は上記に説明したZn−Fe系合金
めっき層を上層とし、Zn−Ni系合金めっき層を下層
とする二層めっき鋼板ら自動車用として適用しようとし
て、種々調査を行なったところ以下に説明するような欠
点のあることがわかった。 (1)Zn−Fe系合金めっきは、めっき&面にめっき
時のめっき液の流れに沿ったムラが生成し易く、二のム
ラは塗装前処理として自動車用鋼板に対し一般に実施さ
れている燐酸亜鉛処理を行なった後でも色の濃淡として
残り、甚しい場合には、電着塗装を行なった後でも表面
が不均一になることで残り、塗装外観を劣化させている
。このZo−Fe系合金めっきのムラ、表面不均一はF
e含有量が約80wt%以下の場合に著しくなよ傾向が
ある。 (2)塗装を行なったこの二層めっき鋼板を、自動車外
板をシュミレートした塩水噴霧→湿潤→乾燥のサイクル
試験を実施すると塗膜に膨れが生じていなのに疵の周囲
の塗膜が剥離する現象がみられ、この現象は塗膜に疵が
つき、下地のめっき層が露出した部分が7ノードなり、
この疵の周囲の塗膜下のめっき層がカソードとなって腐
蝕反応が進行することにより、疵の周囲の塗膜にアルカ
リが生成され、このアルカリが塗膜と下地のめっ外層と
の接着力を劣化させるために起ろのである。そして、こ
の現象は、Zn−Fe系合金めっき層の上層のFe含有
量が約80wt%以上で著しくなる傾向にあり、従って
、(1)で説明しためっきのムラと上記に説明したm膜
のカソード剥離との両方を、Zi−Fe系合金めっき層
の上層におけるFe含有量を調節することでは解消する
ことは不可能であり、他の何等かの方法をとらざるを得
ない。 (3)さらに、この二層めっき鋼板は従来の亜鉛系めっ
き鋼板に比較して、カナオン電′t1塗装時のクレータ
−特性が向上したが、冷間圧延鋼板と比較するとやや劣
る傾向にあり、めっき鋼板の外使いの1が増加するにつ
れてクレータ−は従来に比べ発生し易くなろことが懸念
され、クレータ−特性の一層の向上が要求されるのであ
る。 【発明が解決しようとする問題点1 本発明は上記に説明したように、従来における自動者用
の鋼板として、種々のめり811i板が使用されていた
が未だ充分といえないこと、また、本発明者の自動車用
めっき鋼板に対する数々の知見により、さらに、本発明
者が鋭I!、6N究の結果、耐蝕性、加工性、溶接性、
表面路31成、塗装性等の特性の優れた、めっ!屑を三
M構造とする?!屑主電気っき鋼板を開発したのである
。 1問題点を解決するだめの手段】 本発明に係る複層itλめっき鋼板の特徴とするところ
は、鋼板上にZn−Ni系合金めっき層を第1層、Fe
含有i160−90wt%のZn−Fe系合金めっき層
を第2層および付1):liが0.1〜3g/−2でF
e含有量が60wt%未満のZn  Fe系合金めつき
層を最上層として設けたことにある。 なお、付着量5〜5OTi/a”でNi含有量が8〜l
5wt%のZn−Ni系合金めっき層を第1層とするこ
と、また、付着11〜10g/m”でFe含有量が71
1〜80wt%のZn−Fe合金系めっ8Mを第2層と
すること、さらに、付着1o、s〜2.0゜/纏2でF
e含有量が30−55wt%のZn−Fe系合金めっき
層を最上層とすることらできろ。 本発明に係る複層電気めっき鋼板について、以下詳細に
説明する。 先ず、Zn−Ni系合金めっ層の第1層、Fe含有ii
60−90wt%のZn−Fe系合金めっき層の第2層
および付着量が0.1〜3g/w’でFe含有量が60
wt%未満のZn−FePS合金めっき層の最上層の夫
々について説明する。 (1)第1層について。 この第1層としてのZn−Ni系合金めっき層は、複合
電気め−)と鋼板の耐蝕性を発揮させる層であり、この
tIS1層をZn−N1系合金めっき層としたのは、同
一めっき付着量で比較した場合、裸耐蝕性、待に孔あき
腐蝕に対する耐蝕性が亜鉛系めっさ中で最も優れている
ためであり、Ni含有量として8〜15wt%の範囲が
裸耐蝕性の点からみて好適であり、また、このZn−N
i系合金めっき層に微量のFe、 Co%C「、Mo等
を含有させて裸耐蝕性をさらに向上させることができ机 (2)第2層について。 Zn−Ni系合金めりき屑の第1層の上に、Fr含含有
量6御〜90 の第2層を設けるが、この第2層は、Zn−Ni系合金
め−)き層の第1層との相剰効果により、採便用の場合
の孔あき耐蝕性を改良すると共に、(1着量が0.1〜
3g/m’でFe含有ゑが60wt%未満のZn−Fe
系合金めっき層のm3層との相剰効果によりカチオン電
着塗装時のクレータ−特性、燐酸塩処理時のムラをt+
qnするのに有効である。 先ず、孔あき耐蝕性について説明すると、従来下層にZ
n−Ni系、Zn−Fe系等の亜鉛系合金めっき層と、
その上層にFe含有量が約61)wt%以上のZn−F
e系合金めっきを有する場合には、上層は塗装性を改良
する層と考えられ、この層における孔あき耐蝕性につい
ては考I!されていなかった。 これは、上層のZn含有量が40wt%以下であり、か
つ、めっト付]I量が4g/−”程度であって、下層の
Zn−Ni系合金めっき層の典型的な付着量である20
〜40g/wb”に比較して少ないため、上層が孔あき
耐蝕性に効果があろとは考えられなかったためである。 しかし、本発明者が、Zn−Ni(13wt%)系合金
めっきの一層めっ!鋼板(付着量3017m”)と、Z
n−Fe(80wt%)系合金めっき層の上M(付着1
4g/m2)、Zo−Ni(1 3wt%)系合金メツ
き層の下N(付’1t2611/II”)のJl/)っ
PaJlを、塩水噴n(35℃X 6 H r)+乾燥
( 5 0℃X 4 Hr)→7!1ll(50℃、相
対湿度95%X14Hr)の1サイクル2’4Hrの腐
蝕試験を30サイクル実施したところ、Zn−N1(1
 3wt%)系合金めっき層の一層めっき鋼板は板厚0
.8關を貫通する孔あき腐蝕が生じたが、二層めりき鋼
板においては最大0.5〜鋤の浸蝕しか生じていなかっ
た。 この実験から明らかなように、Zn−N1系合金めっき
層の上のZn−Fe系合金めっ8層は,χn−Ni系合
金めっき層との相剰効果によって孔あき耐蝕性の向上に
貢献していることがわかった。 この原因は、Zn−N:系合金めっき層が腐蝕される場
合は、Zoが選択的に腐蝕され、噴霧する食塩水中の電
位は次第に責な方向に移行し、遂には素地の鋼板よりも
貴となる、所謂、電位の逆転現象が生じ、そのため、Z
n−Ni系合金めっき層一層めっき鋼板の場合は、腐蝕
が進行し、素地の鋼板が露出すると素地鋼板の腐蝕が促
進される可能性があるが、これに対し、Zn−Ni合金
系めりき層の上にZn−Fe系合金めっき層がある二層
めっき鋼板では、先ず、上層のZn−Fe系合金めっき
層が腐蝕するが、下層のZi−N+P.合金めり!層が
一部露出するとZn−Ni系合金めっき層の方がZn−
Fe系合金めっき層より卑であるため、Zn−Ni系合
金めっき層が優先的に腐蝕するのでZn−Fe系合金め
っき層の腐蝕は抑制されるのである。 しかし、zn  Ni系合金めっき層ら腐蝕の進行と共
に責となり、逐にはZn−Fe系合金めっき層の電位よ
り責とななり、Zn  Ni系合金めっき層の腐蝕は抑
制され、再び、Zn−Fe系合金めっき層が腐蝕される
。 このように、二層めっき鋼板の場合には、Zn−Fe系
合金めつと層の上層とZn−NlJA合金めっき層の下
層との開において、〃ルパニック・7クシタンが交互に
発生している間は腐蝕反応が停滞するため、めっき層の
電位が鋼板の電位と同一になるまでの時間が、Zn−N
i系合金めっき層が一層のめっき鋼板に比較して長くな
る。 従って、Zn−Fe系合金めっき層の上層とZn−Ni
系合金めっき層の下層とを有するめっ1鋼板は、Zn−
Ni系合金層一層の鋼板よりも、綱板を犠牲陽極作用に
より保護している時間が長く、その結果として、孔あき
耐蝕性が良好となるものと推測されろ。 そして、上記の説明から明らかであるが、Zn−Fe系
合金めっき層の上層はZ、n−Ni系合金めりき層の下
層との電位の交互に移動するというやりとり、即ち、相
互作用により孔あき耐蝕性を向上させるものであり、単
なる塗装性改良のためのらのではない。 しかして、Zn−Fe系合金めっき層の孔あき耐蝕性を
向上させるのは、Fe含有量と密接な関係があり、Fe
含有量が60wt%以上においてZ!1〜Fe系合金め
っき層の電位がけなところで、孔あき耐蝕性の効果が顕
著であり、さらに、このZn−Fe系合金めっき層は塗
装後の塩水噴霧試験による塗膜の膨れ防止、塗sit水
密着性に著しい効果があるが、これは、このめり!層が
燐酸塩処理において耐蝕性に好ましイPhosphop
hylliLe(ZnzFe(P(L)z ・4rho
)を主体とする燐酸塩皮膜を生成するためであり、また
、Fe含有量が90wt%までは着しい塗膜のカソード
剥離が起らないのである。よって、Fe含有量は60〜
90wt%とする。 このように、Fe含有量160−90w1%のZn−F
e系合金めっき層の12層とZn  Ni系合金めっ1
層の第1Imとの相開効果により孔あき耐蝕性の改善に
は、このttS2層の付、17iが1〜lOg/s’で
あることが望ましく、付着量が167m2未満では孔あ
き耐蝕性の改善効果は少なく、また、10g/纏:を越
える付着量ではこの効果が飽和してしまい、かつ、電着
応力の大きい第2層が過大となるため第2層のめっき屑
の加工性が劣化するようになる。 (3)最上層めっき層について。 上記詳細に説明したように、Zn−Ni系合金めっき層
を第1層とし、Zn−Fe(60−90wt%)系合金
めっき層を第2層とする鋼板を、自動車用防錆鋼板とし
て使用した場合には、燐酸塩処理時の外観ムラ、カチオ
ン電着塗装時のクレータ−特性には依然として問題があ
り、この問題を解決するために、付着量0.1〜3g/
m”でFe含有量60wt%未満のZn  Fe系合金
めっき層の最上層を上記説明したFe含有量60−90
wt%のZn−Fe系合金めっき層の第2層の上に設け
るものであり、そのため、最上層と第2層との相互作用
により燐酸塩処理時の外観ムラを抑制し、さらに、カチ
オン電着塗装時のクレータ−特性を向上させるのである
。 この最上層の付着量とカチオン電着塗装時のクレータ−
特性の関係について説明すると、一般に、いままでは、
カチオン電着塗装時のクレータ−発生の防止には、表層
にFe含有量が60wt%以上のZn−Fe系連続被覆
層を設けるのが有利とされていたが、本発明者は、二の
Fe含有量6(let%以上のZn−Fe系合金めっき
層の第2層の上に、さらに、最上層として、クレータ−
特性が劣るとされているFe含有3160wt%未満の
Zn−Fe系合金めっき層を付着量0.1〜3g/m’
でめっ!層を施し、燐酸塩処理およびカチオン電着塗装
を行なったところ、燐酸塩処理後のムラが低減され、さ
らに、第1図に示すように、最上層のめっき付11が 
0.1〜3.0g/m”の範囲においてクレータ−発生
個数が極めて少ないことがわかった。 そして、このクレータ−発生の減少は最上層のめっき付
着量が0.5〜2.0g7’+”の範囲において特に著
しいのである。なお、電着塗装の条件は電圧250〜・
′、7ノード対カソードの面積比は25:1で、電圧は
入槽後ステップ的に付与した。 最上層のめっき層としては、Fe含有量が60社%未満
のZn−Fe系合金めっきとする必要があり、Fe含有
量は少なくと630wt%以上とすることが望ましい。 このような、最上層の現象、付着量お上りFe含有量等
と燐酸塩処理時における最上層の作用お上り/または効
果について説明すると、燐酸塩処理は一種の電気化学的
反応であり、試料表面が燐酸塩処理液に接触すると、表
面の種々の不均一により局所7ノードと局所カソードが
形成され、局所7ノードでは試料が溶解し、局所カソー
ドでlよ水素が発生すると共に燐酸塩の核が形成され、
この核が成長してlf+酸塩結晶となって表面を覆うよ
うになる。 燐酸塩処理では、この反応初期における結晶核の生成量
が多い程、燐酸塩結晶がwI纏で均一となり好ましいと
され、従って、表面のミクロな電位的な不均一が多い程
結晶は@綱で均一なムラのないものとなり、最上層のZ
n−Fe系合金めっ8層は、表面のミクロな電位的不均
一をもたらしたものといえる。 Zn−Fe(60wt%未満)系合金めっき層の最上層
における、例えば、Fe含有fi30〜55w1%のZ
n−Fe合金系めっき層の場合、a、F、δ1、り等の
Zn−Fe系合金相のうち2種以上を含む混和となり、
これら異相合金相は当然電位が異なるので異相合金相の
結晶間で7ノード・カソード対を形成し、燐酸塩皮膜は
均一となる。 また、Zn−Fe(60wt%未満)系合金メツ!層の
最上層の付着量が0.1〜3.0g/m”という微小付
着量では、一般に第2層表面は完全には被覆されず、部
分的に第2層が露出していることがあり、この第2層露
出部と最上層との間のFe含有量の差に基づく電位の差
ら7ノード・カソード対を形成し、燐酸塩皮膜の均一化
、微細化に寄与する。よって、最上層の付yeI量が3
,0g7m’を越えるように過大になると不都合なこと
およびm2Mの最上層との相互作用が重要で、あること
がわかる。 なお、燐酸塩処理時に局所7ノードは溶解するが、溶解
量は通常1g/J程度であるので最上層・ の相当な部
分および第2層の一部は溶解するものと考えられる。 そして、Zn −Fe(60−90wt%)系合金めっ
き層の第2層およびZn  Fe(60wt%未満)系
合金めっき層の最上層は、共にFeを含有しているので
溶解したFeイオンは一部分は燐酸塩皮膜に加えられて
P hopshophy l l i teに転換され
、コノ燐酸塩皮膜中のPl+osphophyllit
eの比率が高い程、塗装後の耐蝕性、耐水密着性が良好
であり、従って、Fe含有量が第2層に比較して少ない
最上層の付着量が過大になることおよび最上層のFe含
有量が30wt%未満と過小になることは燐酸塩結晶に
加わるFeイオン亀の減少となり、燐酸塩皮膜のP h
ospho+ンhylliteの比率が減少することに
らなるので好ましくない。 なお、最上層の電着塗装時のクレータ−発生の抑$II
効果ら、上記した燐酸塩結晶の微細化により達成できる
ものである。 燐酸塩結晶は絶縁体であろが、燐酸塩結晶相互の間に隙
間があり、Ti電着塗装時はこの隙1111(空孔)を
通じて電流が流れ、水素〃スが発生すると共に塗料U(
脂の付着が起り、そして、この隙間(空孔)は燐酸塩結
晶が微細化すると共に数は多くはなるが、個々の空孔(
隙間)の面積は減少し、全体として隙1111(空孔)
の面積率は減少し、水素発生のサイトが分散され、各サ
イトに流れる電流ら減少する。 また、クレータ−発生の磯?Aには、発生した水素がI
I模膜中とり込まれ焼付時の塗FA樹脂の流動によって
、水素の逃げた後が補修されずクレータ−として残ると
いう説と、過剰な電流により水素発生サイトの周辺の温
度が上昇するため8(脂が変質し、焼付は時のO(脂の
流動の際、まわりの1,4(脂をはじくことに上書)ク
レータ−が発生するという説があるが、これらの何れが
正しいにせよ燐酸塩結晶が微細化すると各水素発生サイ
トへの電流が減少するのでクレータ−発生は抑!i11
される。 第2図に第1図の試料の燐酸塩処理後の空孔率と平均結
晶径を示すが、第1図でクレータ−発生が低減される最
上層付着量0.1〜3.0H/m”の範囲で空孔率は減
少し結晶粒ら微細化していることがわかる。 なお、第2層と最上層との製法について説明すると、第
2層、最上層は共にZn−Fe系合金めっきであり、F
e含有量が異なっており、Zn  Fe系合金めっきの
Fe含有量を変える方法としては、めっき浴のZnイオ
ンとFeイオンの比率、即ち、めっき浴組成を変化させ
る方法以外に、陰極電流密度を変化させる方法があるが
、この電流密度制御法を使用すればMS2層と最上層を
同一組成のめっき浴でめっきすることが可能となり装置
を簡略化でおる。 1例として、 硫酸第一鉄(FeSO4・7HzO)  3θOg/l
硫酸亜鉛 (ZnSO,・7H,0)   25g/l
硫酸アンモニウム((MHI)2SO1)  J13g
/lの組成のめっき浴を用い、浴温6(1’c、浴のρ
11p)12.Oの条件で、陰極?を流密度3(IA/
d■二とすると、fII2Ff!めっき層に適した[e
含有畿75〜(%のZn−Fe系合金めっき層がMNで
き、また、陰極電流密度5A/cla’とすれば最上層
ぬっと層に適したFe含有frLS’ Owt%のZn
−Fe系合金めっき層が得られる。なお、これ以外の従
来がら知られているZn−Fe系合金電気めっき法を使
用してもよい。 [実施例1 本発明に係る複層電気めっき鋼板の実施例を説明し、併
せて比較例を説明する。 実施例 第1表に示す本発明に係る複層電気めっき鋼板および比
較例のめっき鋼板を電気めっき方法により作製して、(
1)採材孔あき耐蝕性試験、(2)燐酸塩処理皮膜の均
一性、(3)カチオン電着塗装時のクレータ−特性、(
4)塗膜の1カンード剥離性、(S)塗膜の耐水密着性
の試験を行ない、その結果を第2表に示す。 なお、めっき原板は全べて0.13+m厚さのアルミキ
ルド冷閤圧lLw4板を使用した。 (])ai材孔あき耐蝕性試験 めっきしたままの試片を端面、裏面をシールした後、次
の腐蝕サイクル試験を30サイクル実施した。 塩水噴?!((35°(x6Hr)−+乾燥(50’C
X4Hr)→湿fA(50℃X14Hr、相対湿度95
%)→塩水噴霧・・・1休日は終日湿潤としサイクルに
は数えない、1 試験後の試片は除錆し、最大浸蝕深さを測定した。なお
、めっきを行なわない0 、8 meal!iの冷間■
延鋼板では腐蝕は2oサイクルで裏面まで貫通した。 評価    最大浸蝕澤さ 0    0.4m+w以下 Δ     0.4〜0.8mm ×     孔あき貫通(0,8Mm)(2)燐酸塩処
理皮膜の均一性 市販の自動車用浸漬型燐酸亜鉛処理液を用い、燐酸塩処
理を行なった後の外観を次の3段階で評価した。 ○ : 均一で色ムラがない Δ : めっP8液の流れに沿った色ムラが少IZ認め
られる × : ムラが著しい (3)カチオン電着塗装時のクレータ−特性燐酸塩処理
後の試片にカチオン電着塗装を行ない、表面に発生した
クレータ−状の欠陥の数を測定した。クレータ−発生個
数が少ない程クレーター特性は良好である。なお、電着
塗装は電圧250V、7ノードとカン−どの面積比は7
ノード:カソード=25:1、電圧は試片を入槽後ステ
ップ状に印加して実施した。 評価     クレータ−の数 0     10個/da”以下 Δ      11〜100個/d−二×      
101固/dll”以上(4)塗膜の耐カンード剥離性 浸漬型燐酸塩処理→カチオン電着塗装→中上塗の3コー
ト塗装を行なった試片に、グラベロメーターで塗膜にチ
クピング疵を与え、次の腐蝕サイクル試験を30サイク
ル実施した。 塩水噴n(35℃X2Hr)−+乾燥(50°(:X8
  ・Hr)−湿fl(50℃X14Hr、相対湿度9
5%)→塩水噴霧・・・[休日は終日湿潤としサイクル
には数えない、1 試験後の試片はテーピング後塗膜剥離面積を測定し、全
面積に対する剥離面積率を測定した。ただし、チッピン
グの際、塗膜の剥離した部分は塗膜剥離面積から除外し
た。 評価      剥離面積率 0      2%以下 Δ       2〜20% X        20%以上 (5)塗膜の耐水密着性 上記説明した(4)項と同一の3コート塗装を行なった
試片を、脱イオン水中に40℃の温度で10日問浸漬後
、カッターナイフで2論−間隔の基盤目も100個切り
、テーピング後残留した基盤目の数で評価した。 評価      残留した基盤目数 0      100個 △          99〜51111i1×   
      50個以下 第2表から次のことがわかる。 実施例1〜7の本発明に係る複層電×めっき鋼板は、最
上117)付1)、l力(1,1〜:(g/+*’〕1
14pH内であり(3)のクレータ−特性が良好である
。 比較例1の最上層がないもの、比較例2の最上層付着量
が過剰なものはカチオン電着塗装時のクレータ−特性が
劣っている。 比較例3のptS2層がないものは線材の孔あき耐蝕性
、カチオン電着塗装時のクレータ−特性が劣っている。 比較例4の第2層のFe含有量が95wt%と多いもの
は塗膜の耐カソード剥離性が劣っている。 比較例5のZn  N+系合金めっきの一層の鋼板では
線材孔あき耐蝕性、カチオン電着塗装時のクレータ−特
性および塗膜の耐水密着性が劣っている。 なお、I’12図における燐酸塩の空孔率は、燐酸塩処
理前後の鋼板を5%食塩水中で2mV/secの走査速
度でカソード方向に分極し、自然電位−201)mVの
電位における電流値を測定し、次式により計ヰした。 空孔率(%)=(燐酸塩処理後の電流値(A/csQl
/(燐酸塩処理前の電流値(A/c+sす)×100 [発明の効果1 以上説明したように、本発明に係る複層電気めっき鋼板
は上記の構成を有しているものであろがら、線材孔あき
耐蝕性、燐酸塩処理性、電着塗装性、塗装後の耐蝕性等
に優れており、自動車用の材料として優れた防&111
1板である。
[Two-layered electroplated steel sheet with excellent bare corrosion resistance, chemical conversion treatment properties, 11-layer paintability, water-resistant adhesion after painting, corrosion resistance after painting, break-in workability, and weldability. 1. Prior Art 1.FII Recently, zinc-based plated steel sheets have been widely used to combat corrosion of automobile bodies, and in particular, Zn-depressed alloy electroplated steel sheets have been industrially produced. I started to
It has been used as a rust-proof steel plate for automobiles. And the second Zn-Ni alloy electroplating F! Steel plates have superior corrosion resistance when not painted (referred to as bare corrosion resistance) compared to conventional hot-dip galvanizing, electrolytic galvanizing, alloyed hot-dip galvanizing, etc. , C7-/Porous corrosion in areas where paint cannot penetrate, such as the inside of bag structures such as cars and panels (
pcrrolaLion). In addition, scab-like corrosion (scab-like corrosion) on the car's exterior paint film is caused by scratches caused by various causes.
ion), plating the outer surfaces of automobiles, which were previously made of cold-rolled steel sheets, has been considered and partially implemented. Regarding the use of this plated steel sheet, it is required that the plated steel sheet has coating properties equivalent to those of cold-rolled steel sheet, but Zn-Ni alloy electroplated steel sheet, like the zinc-based plated steel sheet, cannot be coated. Properties such as phosphate treatment properties, water-resistant adhesion of coatings, corrosion resistance after coating, and crater properties during cationic electrodeposition coating are inferior to those of cold-rolled steel sheets. In order to improve the properties of this Zn-Ni alloy plated steel sheet after painting, the present inventor applied Fe plating or Fe-Znlk alloy plating with a Zn content of 40 wt% or less on top of the Zn-Ni alloy electroplating. This Zn-Fe/Zn Ni double-layer plated steel sheet was evaluated by water-resistant adhesion after 3-coat coating for automobiles and salt water spray test after electrodeposition coating. The corrosion resistance after coating is superior to that of Zn-Ni alloy plating. However, the inventor of the present invention has conducted various investigations in an attempt to apply the above-described two-layer plated steel sheet having a Zn-Fe alloy plating layer as an upper layer and a Zn-Ni alloy plating layer as a lower layer to automotive applications. However, it was found that there were some shortcomings as explained below. (1) Zn-Fe alloy plating tends to cause unevenness on the plating and surface along the flow of the plating solution during plating. Even after zinc treatment, it remains as a shade of color, and in severe cases, even after electrodeposition painting, it remains as an uneven surface, deteriorating the painted appearance. The unevenness and surface non-uniformity of this Zo-Fe alloy plating is caused by F.
There is a marked tendency to become worse when the e content is about 80 wt% or less. (2) When this double-layer coated steel sheet is subjected to a cycle test of salt spray → wet → drying that simulates an automobile exterior panel, the paint film peels off around the flaw even though the paint film does not blister. This phenomenon is caused by scratches on the paint film, where the underlying plating layer is exposed and there are 7 nodes.
The plating layer under the paint film around this flaw acts as a cathode and the corrosion reaction progresses, producing alkali in the paint film around the flaw, and this alkali strengthens the adhesion between the paint film and the underlying outer plating layer. It's happening in order to degrade it. This phenomenon tends to become significant when the Fe content of the upper layer of the Zn-Fe alloy plating layer is about 80 wt% or more, and therefore, the unevenness of the plating explained in (1) and the m film explained above tend to become significant. It is impossible to eliminate both cathode peeling and cathode peeling by adjusting the Fe content in the upper layer of the Zi-Fe alloy plating layer, and some other method must be used. (3) Furthermore, compared to conventional zinc-based plated steel sheets, this double-layer plated steel sheet has improved crater characteristics when painted with Kanao Den't1, but it tends to be slightly inferior when compared to cold-rolled steel sheets. As the number of external uses of plated steel sheets increases, it is feared that craters will occur more easily than before, and further improvements in crater properties are required. Problem 1 to be Solved by the Invention As explained above, the present invention solves the problem that, although various types of 811i plates have been used as steel plates for automobiles in the past, they are still not sufficient. Based on the numerous findings of the inventor regarding plated steel sheets for automobiles, the present inventor has further developed the I! , As a result of 6N research, corrosion resistance, workability, weldability,
It has excellent properties such as a 31-layer surface and paintability! Make the waste into a 3M structure? ! They developed a scrap electroplated steel sheet. [Means for Solving Problem 1] The feature of the multilayer ITλ-plated steel sheet according to the present invention is that the first layer is a Zn-Ni alloy plating layer on the steel sheet, and
Zn-Fe alloy plating layer containing i160-90wt% as second layer and attached 1): Li is 0.1-3g/-2 and F
The reason is that a Zn Fe alloy plating layer having an e content of less than 60 wt% is provided as the uppermost layer. In addition, when the adhesion amount is 5 to 5 OTi/a'' and the Ni content is 8 to 1
The first layer should be a 5wt% Zn-Ni alloy plating layer, and the Fe content should be 71 with an adhesion of 11 to 10 g/m''.
1 to 80 wt% of Zn-Fe alloy plating 8M is used as the second layer, and F
This can be done by using a Zn-Fe alloy plating layer with an e content of 30-55 wt% as the uppermost layer. The multilayer electroplated steel sheet according to the present invention will be explained in detail below. First, the first layer of the Zn-Ni alloy plating layer, Fe-containing ii
The second layer of Zn-Fe alloy plating layer of 60-90 wt% and the adhesion amount is 0.1-3 g/w' and the Fe content is 60
Each of the uppermost layers of the Zn-FePS alloy plating layer of less than wt% will be described. (1) Regarding the first layer. This Zn-Ni alloy plating layer as the first layer is a layer that exhibits the corrosion resistance of the composite electrolyte and steel plate.The reason why this tIS1 layer is made of a Zn-N1 alloy plating layer is that This is because the corrosion resistance against bare corrosion and pitting corrosion is the best among zinc-based platings when compared in terms of coating weight. This Zn-N is preferable from the viewpoint of
(2) Regarding the second layer, the corrosion resistance can be further improved by incorporating trace amounts of Fe, Co%C, Mo, etc. into the i-based alloy plating layer. A second layer with an Fr content of 6 to 90 is provided on top of the first layer. In addition to improving the perforation corrosion resistance when used for toilet use,
Zn-Fe containing less than 60 wt% of Fe at 3 g/m'
Due to the additive effect of the alloy plating layer with the m3 layer, the crater characteristics during cationic electrodeposition coating and unevenness during phosphate treatment are reduced to t+.
It is effective for qn. First, to explain the perforation corrosion resistance, conventional
Zinc alloy plating layer such as n-Ni type or Zn-Fe type,
Zn-F with Fe content of about 61)wt% or more in the upper layer
If E-based alloy plating is used, the upper layer is considered to be a layer that improves paintability, and the pitting corrosion resistance of this layer should be considered! It had not been done. This means that the Zn content of the upper layer is 40 wt% or less, and the amount of plating is about 4 g/-'', which is the typical coating amount of the lower Zn-Ni alloy plating layer. There are 20
~40g/wb'', so it could not be considered that the upper layer would have an effect on the perforation corrosion resistance. However, the inventors of the present invention Me! Steel plate (adhesion amount 3017m) and Z
Top M (adhesion 1) of n-Fe (80wt%) based alloy plating layer
4g/m2) and Zo-Ni (13wt%) based alloy plating layer under N ('1t2611/II'') Jl/) PaJl, salt water spray n (35℃ x 6H r) + drying. (50°C
3wt%) type alloy plating layer has a thickness of 0.
.. Although pitting corrosion occurred through eight holes, corrosion of only a maximum of 0.5 - spade occurred in the double-layered galvanized steel plate. As is clear from this experiment, the 8 layers of Zn-Fe alloy plating on the Zn-N1 alloy plating layer contribute to improving the pitting corrosion resistance due to the additive effect with the χn-Ni alloy plating layer. I found out that it is. The reason for this is that when the Zn-N: alloy plating layer is corroded, Zo is selectively corroded, and the potential in the sprayed saline solution gradually shifts to a negative direction, eventually becoming more noble than the base steel plate. A so-called potential reversal phenomenon occurs, and as a result, Z
In the case of single-layer plated steel sheets coated with n-Ni alloy, corrosion may progress and if the base steel plate is exposed, corrosion of the base steel plate may be accelerated. In a double-layer plated steel sheet with a Zn-Fe alloy plating layer on top of the Zn-Fe alloy plating layer, the upper Zn-Fe alloy plating layer corrodes first, but the lower Zn-Fe alloy plating layer corrodes. Alloy Meri! When a part of the layer is exposed, the Zn-Ni alloy plating layer becomes more Zn-
Since the Zn--Ni-based alloy plating layer is more base than the Fe-based alloy plating layer, the Zn--Ni-based alloy plating layer corrodes preferentially, so that the corrosion of the Zn--Fe-based alloy plating layer is suppressed. However, the Zn-Ni alloy plating layer becomes a liability as the corrosion progresses, and the potential of the Zn-Fe-based alloy plating layer gradually becomes a culprit, and the corrosion of the Zn-Ni alloy plating layer is suppressed. The Fe-based alloy plating layer is corroded. In this way, in the case of a double-layer plated steel sheet, between the upper layer of the Zn-Fe alloy plating layer and the lower layer of the Zn-NlJA alloy plating layer, the Since the corrosion reaction stagnates in Zn-N, the time it takes for the potential of the plating layer to become the same as that of the steel plate is
The i-based alloy plating layer is longer than that of a single-layer plated steel sheet. Therefore, the upper layer of the Zn-Fe alloy plating layer and the Zn-Ni
The plated steel sheet having the lower layer of the Zn-based alloy plating layer is
It is assumed that the steel plate is protected for a longer period of time by sacrificial anode action than a steel plate with a single Ni-based alloy layer, and as a result, the perforation corrosion resistance is better. As is clear from the above explanation, the upper layer of the Zn-Fe alloy plating layer and the lower layer of the Z and n-Ni alloy plating layer alternately move in potential, that is, the pores are formed by interaction. It improves corrosion resistance and is not just for improving paintability. Therefore, improving the pitting corrosion resistance of the Zn-Fe alloy plating layer is closely related to the Fe content.
When the content is 60wt% or more, Z! 1 - The effect of pitting corrosion resistance is remarkable in places where the potential of the Fe-based alloy plating layer is low, and furthermore, this Zn-Fe-based alloy plating layer has excellent resistance to blistering of the coating film in the salt spray test after painting, It has a remarkable effect on water adhesion, but this is the best! Phoshop layer is preferred for corrosion resistance in phosphate treatment
hylliLe(ZnzFe(P(L)z ・4rho
), and cathode peeling of the coating film does not occur until the Fe content is 90 wt%. Therefore, the Fe content is 60~
It is set to 90wt%. In this way, Zn-F with Fe content of 160-90w1%
12 layers of e-based alloy plating layer and Zn Ni-based alloy plating layer 1
In order to improve the perforation corrosion resistance due to the phase opening effect with the first Im of the layer, it is desirable that the adhesion 17i of this ttS2 layer is 1 to lOg/s', and if the adhesion amount is less than 167 m2, the perforation corrosion resistance will be The improvement effect is small, and if the coating weight exceeds 10 g/metal, this effect will be saturated, and the second layer, which has a high electrodeposition stress, will be excessively large, so the workability of the second layer plating scrap will deteriorate. I come to do it. (3) Regarding the top plating layer. As explained in detail above, a steel sheet having a Zn-Ni alloy plating layer as the first layer and a Zn-Fe (60-90wt%) alloy plating layer as the second layer is used as a rust-preventing steel sheet for automobiles. In this case, there are still problems with uneven appearance during phosphate treatment and crater characteristics during cationic electrodeposition coating.
The uppermost layer of the Zn-Fe alloy plating layer with an Fe content of less than 60 wt% in m'' has an Fe content of 60-90 as described above.
It is provided on the second layer of the Zn-Fe alloy plating layer of wt%, and therefore, the interaction between the top layer and the second layer suppresses the appearance unevenness during phosphate treatment, and furthermore, the cationic electrolyte This improves the crater characteristics during coating. The amount of adhesion of this top layer and the crater during cationic electrodeposition coating
To explain the relationship between characteristics, in general, until now,
In order to prevent the occurrence of craters during cationic electrodeposition coating, it has been considered advantageous to provide a Zn-Fe continuous coating layer with an Fe content of 60 wt% or more on the surface layer. On top of the second layer of the Zn-Fe alloy plating layer having a content of 6 (let% or more), a crater layer is further added as the top layer.
A Zn-Fe alloy plating layer with an Fe content of less than 3160 wt%, which is said to have poor properties, is deposited at a coating weight of 0.1 to 3 g/m'.
Deme! When a layer was applied, phosphate treatment and cationic electrodeposition coating were performed, the unevenness after phosphate treatment was reduced, and as shown in Figure 1, the top layer 11 with plating was
It was found that the number of craters generated was extremely small in the range of 0.1 to 3.0 g/m''. This decrease in crater generation occurred when the coating weight of the top layer was 0.5 to 2.0 g7'+ This is particularly noticeable in the range of ``. In addition, the conditions for electrodeposition coating are voltage 250~.
', 7 The area ratio of the node to the cathode was 25:1, and the voltage was applied in steps after entering the tank. The uppermost plating layer needs to be a Zn-Fe alloy plating with an Fe content of less than 60 wt%, and it is desirable that the Fe content is at least 630 wt% or more. To explain the phenomenon of the top layer, the amount of adhesion, the Fe content, etc., and the effect of the top layer during phosphate treatment, phosphate treatment is a type of electrochemical reaction, and When the surface comes into contact with the phosphating solution, local 7 nodes and local cathodes are formed due to various inhomogeneities on the surface, the sample is dissolved at the local 7 nodes, hydrogen is generated at the local cathode, and phosphate nuclei are formed. is formed,
This nucleus grows to become an lf+ acid salt crystal and covers the surface. In phosphate treatment, it is said that the larger the amount of crystal nuclei generated at the initial stage of the reaction, the more uniform the phosphate crystal will be, and the more uniform the phosphate crystal will be. It becomes uniform and even, and the Z of the top layer
It can be said that the eight n-Fe alloy plating layers caused microscopic potential non-uniformity on the surface. For example, Z with an Fe content of 30 to 55 w1% in the top layer of the Zn-Fe (less than 60 wt%) alloy plating layer.
In the case of an n-Fe alloy plating layer, it is a mixture containing two or more types of Zn-Fe alloy phases such as a, F, δ1, and
Since these different alloy phases naturally have different potentials, a 7-node cathode pair is formed between the crystals of the different alloy phases, and the phosphate film becomes uniform. Also, Zn-Fe (less than 60 wt%) alloy Metsu! When the coating weight of the top layer is as small as 0.1 to 3.0 g/m'', the surface of the second layer is generally not completely covered and the second layer is partially exposed. The difference in potential based on the difference in Fe content between the exposed second layer and the top layer forms a 7-node cathode pair, contributing to uniformity and miniaturization of the phosphate film. The amount of attached yeI on the top layer is 3
, 0g7m' is unfavorable and the interaction with the top layer of m2M is important. Note that during the phosphate treatment, seven local nodes are dissolved, but since the amount of dissolution is usually about 1 g/J, it is thought that a considerable portion of the top layer and a portion of the second layer will be dissolved. The second layer of the Zn-Fe (60-90 wt%) alloy plating layer and the top layer of the Zn-Fe (less than 60 wt%) alloy plating layer both contain Fe, so some of the dissolved Fe ions are is added to the phosphate film and converted to P hophophyllite, and Pl+osphophyllit in the conophosphate film
The higher the ratio of e, the better the corrosion resistance and water resistant adhesion after painting. If the content is too small (less than 30 wt%), Fe ion atoms added to the phosphate crystals will decrease, and the Ph of the phosphate film will decrease.
This is undesirable because it results in a decrease in the ratio of ospho+hyllite. In addition, suppression of crater generation during electrodeposition coating of the top layer
These effects can be achieved by making the phosphate crystals finer as described above. Although phosphate crystals are insulators, there are gaps between the phosphate crystals, and during Ti electrodeposition, current flows through these gaps 1111 (vacancies), generating hydrogen gas and causing paint U (
Fat adhesion occurs, and as the phosphate crystals become finer, the number of these gaps (vacancies) increases, but individual pores (
The area of the gap 1111 (void) decreases, and the area of the gap 1111 (void) decreases as a whole.
The area ratio of hydrogen decreases, the sites of hydrogen generation are dispersed, and the current flowing to each site decreases. Also, is it a crater-producing rock? In A, the generated hydrogen is I
One theory is that due to the flow of the coating FA resin during baking, which is incorporated into the I pattern, the area where hydrogen escapes is not repaired and remains as a crater, and the other is that the temperature around the hydrogen generation site increases due to excessive current.8 (There is a theory that when fat changes its quality and seizes, craters of 1 and 4 (overwritten by repelling fat) are generated around it when fat flows, but whichever of these is correct is correct. As phosphate crystals become finer, the current flowing to each hydrogen generation site decreases, suppressing crater formation!i11
be done. Figure 2 shows the porosity and average crystal diameter of the sample in Figure 1 after phosphate treatment, and Figure 1 shows that the top layer deposition rate at which crater generation is reduced is 0.1 to 3.0 H/m. It can be seen that the porosity decreases and the crystal grains become finer within the range of and F
The e content is different, and methods for changing the Fe content of Zn-Fe alloy plating include changing the ratio of Zn ions and Fe ions in the plating bath, that is, changing the plating bath composition, as well as changing the cathode current density. There is a method of changing the current density, but if this current density control method is used, it becomes possible to plate the MS2 layer and the top layer with a plating bath having the same composition, and the apparatus can be simplified. As an example, ferrous sulfate (FeSO4・7HzO) 3θOg/l
Zinc sulfate (ZnSO, 7H, 0) 25g/l
Ammonium sulfate ((MHI)2SO1) J13g
Using a plating bath with a composition of /l, bath temperature 6 (1'c, bath ρ
11p) 12. Cathode under O condition? The flow density 3 (IA/
If d■2, then fII2Ff! [e] suitable for plating layer
If the Zn-Fe alloy plating layer with a content of 75~(%) can be MN, and the cathode current density is 5A/cla', the Fe-containing frLS' Owt% Zn is suitable for the topmost layer.
- A Fe-based alloy plating layer is obtained. Note that other conventionally known Zn--Fe alloy electroplating methods may be used. [Example 1] An example of a multilayer electroplated steel sheet according to the present invention will be described, and a comparative example will also be described. Example A multilayer electroplated steel sheet according to the present invention shown in Table 1 and a plated steel sheet of a comparative example were produced by an electroplating method.
1) Corrosion resistance test using sampled holes, (2) Uniformity of phosphate treatment film, (3) Crater characteristics during cationic electrodeposition coating, (
4) The one-cand releasability of the coating film and the water resistant adhesion of the (S) coating film were tested, and the results are shown in Table 2. Note that all plated original plates used were aluminum killed cold-rolled lLw4 plates with a thickness of 0.13+m. (]) AI material perforation corrosion resistance test After sealing the end and back surfaces of the as-plated specimen, the following corrosion cycle test was conducted for 30 cycles. Salt water fountain? ! ((35°(x6Hr)-+Drying(50'C
X4Hr) → Humidity fA (50℃X14Hr, relative humidity 95
%)→Salt spray... 1 Day off was kept wet all day and not counted as a cycle. 1 After the test, the specimen was rust removed and the maximum corrosion depth was measured. In addition, 0,8 meal! without plating! i's cold ■
Corrosion penetrated to the back surface of the rolled steel plate after 2o cycles. Evaluation Maximum erosion depth: 0 0.4 m + w or less Δ 0.4 to 0.8 mm The appearance after the phosphate treatment was evaluated in the following three grades. ○: Uniform and no color unevenness Δ: Slight color unevenness along the flow of the metal P8 solution is observed ×: Significant unevenness (3) Crater characteristics during cationic electrodeposition coating Specimen after phosphate treatment A cationic electrodeposition coating was applied to the surface, and the number of crater-shaped defects generated on the surface was measured. The smaller the number of craters generated, the better the crater characteristics. In addition, the voltage of electrodeposition coating is 250V, and the area ratio between 7 nodes and can is 7.
Node: cathode = 25:1, voltage was applied in a step manner after the specimen was placed in the bath. Evaluation Number of craters 0 10 pieces/da” or less Δ 11-100 pieces/d-2×
101 solids/dll” or more (4) Cand peeling resistance of the paint film A specimen coated with 3 coats of immersion phosphate treatment → cationic electrodeposition → intermediate top coat was tested for chipping defects on the paint film using a gravel meter. The following corrosion cycle test was carried out for 30 cycles: Salt water spray n (35°C
・Hr) - Humidity fl (50℃ x 14Hr, relative humidity 9
5%)→Salt spray...[On holidays, it was kept wet all day and not counted as a cycle, 1. After taping, the peeled area of the paint film was measured on the specimen after the test, and the ratio of peeled area to the total area was measured. However, the part where the paint film was peeled off during chipping was excluded from the peeled area of the paint film. Evaluation Peeling area ratio 0 2% or less Δ 2-20% After 10 days of immersion at a temperature of 40° C., 100 pieces of base grains were cut at two-dimensional intervals using a cutter knife, and evaluation was made based on the number of base grains that remained after taping. Evaluation Number of remaining substrates 0 100 pieces △ 99~51111i1×
The following can be seen from Table 2: 50 or less. The multi-layer electroplated steel sheets according to the present invention in Examples 1 to 7 have a Mogami 117) attachment 1), l force (1,1~: (g/+*') 1)
The pH is within 14, and the crater characteristics of (3) are good. Comparative Example 1 without the top layer and Comparative Example 2 with an excessive amount of top layer deposited had poor crater properties during cationic electrodeposition coating. Comparative Example 3, which does not have the ptS2 layer, has poor perforation corrosion resistance of the wire and crater properties during cationic electrodeposition coating. In Comparative Example 4, the second layer having a high Fe content of 95 wt% had poor cathode peeling resistance of the coating film. The single layer Zn N+ alloy plated steel sheet of Comparative Example 5 was poor in wire hole corrosion resistance, crater properties during cationic electrodeposition coating, and water resistant adhesion of the coating film. The porosity of the phosphate in Figure I'12 is calculated by polarizing the steel plate before and after phosphate treatment in the cathode direction at a scanning rate of 2 mV/sec in 5% saline, and by calculating the current at a potential of -201) mV from the natural potential. The value was measured and calculated using the following formula. Porosity (%) = (Current value after phosphate treatment (A/csQl
/(Current value before phosphate treatment (A/c+s)×100 [Effect of the invention 1 As explained above, the multi-layer electroplated steel sheet according to the present invention has the above-mentioned structure. It has excellent wire rod perforation corrosion resistance, phosphate treatment properties, electrodeposition coating properties, corrosion resistance after coating, etc., and is an excellent material for automobiles.
It is one board.

【図面の簡単な説明】[Brief explanation of drawings]

tjS1図お上りtB2図は本発明に係る複層電気めっ
き鋼板の最上層の付11とクレータ−発生数および燐酸
塩の空孔率を示した図である。 予1 口
Figure tjS1 and Figure tB2 are diagrams showing the number of craters and the porosity of phosphate in the uppermost layer of the multilayer electroplated steel sheet according to the present invention. 1 mouth reserved

Claims (4)

【特許請求の範囲】[Claims] (1)鋼板上にZn−Ni系合金めっき層を第1層、F
e含有量60〜90wt%のZn−Fe系合金めっき層
を第2層および付着量が0.1〜3g/m^2でFe含
有量が60wt%未満のZn−Fe系合金めっき層を最
上層としたことを特徴とする複層電気めっき鋼板。
(1) First layer of Zn-Ni alloy plating layer on steel plate, F
A Zn-Fe alloy plating layer with an e content of 60 to 90 wt% is the second layer, and a Zn-Fe alloy plating layer with a deposition amount of 0.1 to 3 g/m^2 and an Fe content of less than 60 wt% is the second layer. A multilayer electroplated steel sheet characterized by having an upper layer.
(2)付着量5〜50g/m^2でNi含有量が8〜1
5wt%のZn−Ni系合金めっき層を第1層とするこ
とを特徴とする特許請求の範囲第1層記載の複層電気め
っき鋼板。
(2) Ni content is 8 to 1 with adhesion amount of 5 to 50 g/m^2
A multilayer electroplated steel sheet according to claim 1, characterized in that the first layer is a 5wt% Zn-Ni alloy plating layer.
(3)付着量1〜10g/m^2でFe含有量が70〜
80wt%のZn−Fe合金系めっき層を第2層とする
ことを特徴とする特許請求の範囲第1項、第2項記載の
複層電気めっき鋼板。
(3) Fe content is 70 to 70 with a coating amount of 1 to 10 g/m^2
The multilayer electroplated steel sheet according to claims 1 and 2, characterized in that the second layer is an 80 wt % Zn-Fe alloy based plating layer.
(4)付着量0.5〜2.0g/m^2でFe含有量が
30〜55wt%のZn−Fe系合金めっき層を最上層
とすることを特徴とする特許請求の範囲第1項、第2項
および第3項記載の複層電気めっき鋼板。
(4) Claim 1, characterized in that the uppermost layer is a Zn-Fe alloy plating layer with a coating weight of 0.5 to 2.0 g/m^2 and an Fe content of 30 to 55 wt%. , the multilayer electroplated steel sheet according to items 2 and 3.
JP21926384A 1984-10-18 1984-10-18 Steel sheet electroplated with combined layer Granted JPS6199691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21926384A JPS6199691A (en) 1984-10-18 1984-10-18 Steel sheet electroplated with combined layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21926384A JPS6199691A (en) 1984-10-18 1984-10-18 Steel sheet electroplated with combined layer

Publications (2)

Publication Number Publication Date
JPS6199691A true JPS6199691A (en) 1986-05-17
JPH0328518B2 JPH0328518B2 (en) 1991-04-19

Family

ID=16732781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21926384A Granted JPS6199691A (en) 1984-10-18 1984-10-18 Steel sheet electroplated with combined layer

Country Status (1)

Country Link
JP (1) JPS6199691A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8096794B2 (en) 2007-03-15 2012-01-17 Denso Corporation Compressor with oil separation and storage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8096794B2 (en) 2007-03-15 2012-01-17 Denso Corporation Compressor with oil separation and storage

Also Published As

Publication number Publication date
JPH0328518B2 (en) 1991-04-19

Similar Documents

Publication Publication Date Title
EP0047987B2 (en) Cationic electrodeposition lacquer-coated steel material
JPS63143293A (en) Double-layer electroplated steel sheet
JPS5867886A (en) Steel article coated with iron-zinc alloy plating layer having concentration gradient and manufacture thereof
JPH0225439B2 (en)
JPS6199691A (en) Steel sheet electroplated with combined layer
US4490438A (en) Steel sheet with multilayer electroplating and method of producing same
JPS6343479B2 (en)
JPS62294197A (en) Rustproof steel sheet for automobile and its production
JPH0256437B2 (en)
JPS6213590A (en) Surface-treated steel sheet having excellent coating property, adhesion after coating and corrosion resistance and its production
JPH041071B2 (en)
JPS61130498A (en) Composite plated steel sheet having superior corrosion resistance before and after coating with paint
JPS58204193A (en) Surface treated steel plate
JPH0125393B2 (en)
KR100544646B1 (en) Surface Treated Steel Sheet Having Excellent Corrosion Resistance And Manufacturing Method Thereof
JPS6134520B2 (en)
JPH0411636B2 (en)
JPS6240398A (en) Double-plated steel sheet having high corrosion resistance
JPS62243792A (en) Multiply electroplated steel sheet
JPS59129797A (en) Plated steel material
Honjo et al. Improvement of paintability with Fe–P coating on Zn–Fe and Zn–Ni alloy electroplated steels
JPS63192898A (en) Surface-treated steel sheet for cationic electrodeposition coating
JPH08225984A (en) Production of zinc-nickel alloy plated steel sheet excellent in plating appearance and adhesion and corrosion resistance
JPH02104695A (en) Black surface-treated steel material and production thereof
JPS63307297A (en) Production of rustproof steel sheet for automobile