KR100544646B1 - Surface Treated Steel Sheet Having Excellent Corrosion Resistance And Manufacturing Method Thereof - Google Patents

Surface Treated Steel Sheet Having Excellent Corrosion Resistance And Manufacturing Method Thereof Download PDF

Info

Publication number
KR100544646B1
KR100544646B1 KR1020010083845A KR20010083845A KR100544646B1 KR 100544646 B1 KR100544646 B1 KR 100544646B1 KR 1020010083845 A KR1020010083845 A KR 1020010083845A KR 20010083845 A KR20010083845 A KR 20010083845A KR 100544646 B1 KR100544646 B1 KR 100544646B1
Authority
KR
South Korea
Prior art keywords
steel sheet
layer
plating
magnesium
zinc
Prior art date
Application number
KR1020010083845A
Other languages
Korean (ko)
Other versions
KR20030053830A (en
Inventor
김명수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020010083845A priority Critical patent/KR100544646B1/en
Publication of KR20030053830A publication Critical patent/KR20030053830A/en
Application granted granted Critical
Publication of KR100544646B1 publication Critical patent/KR100544646B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

내식성이 우수한 아연도금강판 및 그 제조방법에 관한 것으로, 강판에 마그네슘 도금층과 아연도금층이 복층으로 형성되고, 최외층은 아연도금층으로 최소 2g/㎡이상이며, 전체 도금층은 5g/㎡이상인 내식성이 우수한 표면처리강판 및 최소 pH 4이상인 아연도금용액에서 아연도금하여 마그네슘 도금층상에 아연도금층을 형성하고 또한, 수용성 도금용액중에서 음극전해법으로 마그네슘도금층을 형성하는 상기 표면처리강판 제조방법이 제공된다. 본 발명의 표면처리 강판은 인산염 처리시에 인산염용액중에서 마그네슘의 손실을 방지하고 또한 강판의 색상이 아연도금강판과 차이가 거의 없어 내지문강판으로 사용이 가능한 내식성이 우수한 표면처리강판을 경제적으로 생산할 수 있다.A galvanized steel sheet having excellent corrosion resistance and a method of manufacturing the same, the magnesium plated layer and the galvanized layer is formed in multiple layers on the steel sheet, the outermost layer is a galvanized layer of at least 2g / ㎡ or more, the entire plating layer is excellent in corrosion resistance of 5g / ㎡ or more Provided is a method for producing a surface-treated steel sheet which is galvanized in a surface-treated steel sheet and a zinc plating solution having a minimum pH of 4 or more to form a zinc plating layer on a magnesium plating layer, and a magnesium plating layer is formed by a cathodic electrolytic method in an aqueous plating solution. The surface-treated steel sheet of the present invention prevents the loss of magnesium in the phosphate solution during phosphate treatment, and the color of the steel sheet is almost the same as that of galvanized steel sheet. Can be.

마그네슘 도금층, 아연 도금층, 내식성Magnesium Plating Layer, Zinc Plating Layer, Corrosion Resistance

Description

내식성이 우수한 표면처리강판 및 그 제조방법{Surface Treated Steel Sheet Having Excellent Corrosion Resistance And Manufacturing Method Thereof}Surface Treated Steel Sheet Having Excellent Corrosion Resistance And Manufacturing Method Thereof}

본 발명은 내식성이 우수한 아연도금강판 및 그 제조방법에 관한 것이며, 보다 상세하게는 마그네슘 도금층과 아연도금층을 복층으로 갖는 내식성이 우수한 표면처리강판 및 그 제조방법에 관한 것이다. The present invention relates to a galvanized steel sheet excellent in corrosion resistance and a method of manufacturing the same, and more particularly to a surface-treated steel sheet having a magnesium plating layer and a galvanized layer in multiple layers and excellent surface treatment steel sheet and a method of manufacturing the same.

방청용 표면처리강판중 아연도금강판은 내식성이 비교적 우수하여 자동차, 가전 및 건자재용 소재로 널리 사용되고 있으나, 최근 에너지 및 자원절약 측면에서 박도금으로 고 내식성을 확보할 수있는 새로운 도금강판이 요구되고 있다.Galvanized steel sheet among rust-proof surface treated steel sheets is widely used for automobiles, home appliances and building materials because of its excellent corrosion resistance. However, in recent years, a new plated steel sheet is required to secure high corrosion resistance with thin plating in terms of energy and resource saving. have.

이러한 요구에 부응하여 아연-철 및 아연-니켈 합금전기도금강판이 개발되어 실용화되고 있으며, 최근에는 아연-크롬 합금도금강판이 개발되고 있다. 그러나 아연-철 합금도금강판은 도금층에 철이 함유되어 있기 때문에 강판이 부식분위기에 노출되었을때 도금층이 희생방식작용에 의해 소지인 철판을 보호하기는 하지만, 도금층이 용해되면서 도금층중의 철이 산화되어 붉은 색의 부식 생성물을 만들기 때 문에 최종 제품을 사용하는 고객들이 보기에는 강판에 녹이 생긴 것으로 인식하기 때문에 아연-철 합금도금강판의 사용을 기피하는 경우가 많다. 또한 아연-철 합금도금강판을 제조할 때 도금용액중의 제일철이온이 제이철이온으로 산화된 후 슬러지를 생성하기 때문에 도금작업성이 나쁜 단점이 있다.  In response to these demands, zinc-iron and zinc-nickel alloy electroplated steel sheets have been developed and put into practice, and recently, zinc-chromium alloy plated steel sheets have been developed. However, the zinc-iron alloy plated steel sheet contains iron in the plating layer, but when the steel plate is exposed to the corrosion atmosphere, the plating layer protects the steel plate by sacrificial anticorrosive action, but as the plating layer is dissolved, the iron in the plating layer is oxidized and reddish. The use of zinc-iron alloy plated steel sheet is often avoided because customers who use the final product make the steel plate rust because it produces corrosion products. In addition, when manufacturing the zinc-iron alloy plated steel sheet, since the first iron ions in the plating solution is oxidized to ferric ions to produce sludge, plating workability is bad.

아연-니켈 합금도금강판의 경우 내식성이 우수하여 자동차용 소재로서 많이 사용되고 있으나, 니켈이 인체에 알레르기(Allergy)반응을 일으키기 때문에 유럽에서는 니켈이 도금된 제품의 사용을 금지하고 있으며, 이러한 추세는 전세계적으로 확산되고 있다. 또한 도금층에 비싼 니켈을 10% 이상 합금화시키기 때문에 경제적으로도 불리한 단점이 있다.Zinc-nickel alloy plated steel sheet is widely used as a automotive material because of its excellent corrosion resistance. However, since nickel causes an allergy reaction to the human body, the use of nickel plated products is prohibited in Europe. It is spreading all over the world. In addition, since 10% or more of alloying expensive nickel in the plating layer is disadvantageous economically disadvantage.

또한 가전제품 케이스용도로 사용되는 표면처리강판은 표면외관이 중시되기 때문에 합금함량의 미소한 변화에도 표면색상이 변하기 때문에 합금도금강판을 사용하기가 어려워 순수 아연도금강판에 크로메이트처리를 실시하여 내식성을 향상시킨 강판을 주로 사용한다. 그러나 크롬이 환경에 해롭기 때문에 최근에는 크롬을 사용하지 않고도 내식성이 우수한 강판의 개발이 요구되고 있다.  In addition, the surface treated steel sheet used for home appliance case is important to the surface appearance, so the surface color changes even with the slight change of alloy content. Therefore, it is difficult to use the alloy coated steel sheet. The improved steel sheet is mainly used. However, since chromium is harmful to the environment, it is recently required to develop a steel sheet having excellent corrosion resistance without using chromium.

인체에 덜 해로우면서도 높은 내식성을 확보할 목적으로 개발된 표면처리강판으로는 대한민국 특허 공개 제 2000-62855에 공개된 것으로서, Zn-Mg합금전기도금강판이 있다. Zn도금층에 Mg이 합금되면 내식성이 크게 증가한다. 따라서 현재 용융도금법에 의해 제조된 Zn-Mg합금도금강판이 실용화되고 있다. Surface treatment steel sheet developed for the purpose of securing high corrosion resistance while being less harmful to the human body, as disclosed in Korean Patent Publication No. 2000-62855, includes Zn-Mg alloy electroplating steel sheet. If Mg is alloyed on the Zn plating layer, the corrosion resistance is greatly increased. Therefore, Zn-Mg alloy plated steel sheet produced by the hot-dip plating method has been put into practical use.

그러나 수용액계에서 Mg의 표준전극전위가 매우 낮기 때문에 전기도금법에 의해 Mg 의 석출이 매우 어렵다. 따라서 상기 특허의 경우 도금용액중에 비이온성 또는 양이온성 계면활성제를 추가로 첨가하여 Zn-Mg합금도금을 실시하고 있다. 그러나 도금용액중에 계면활성제가 첨가되면 도금과정에서 음극에 물리적으로 흡착되어 금속물질의 전착을 방해하기 때문에 낮은 전류밀도에서는 도금이 되지 않는다. 따라서 상기 특허에서도 도금전류밀도를 100~800A/dm2으로 제한하고 있다. 통상 강판이 도금조에 연속적으로 통과하면서 도금되는 연속도금공정에서는 통전롤과 강판과의 접촉저항이 크기 때문에 강판에 큰 전류를 통전시키기가 어려워 통상적으로 30~100A/dm2의 전류밀도로 도금하며, 그 이상의 전류를 통전시킬 경우 전도롤과 강판사이에서 아크(arc)가 발생할 수 있기 때문에 연속도금설비에서는 적용하기가 어렵다.However, precipitation of Mg is very difficult by electroplating method because the standard electrode potential of Mg is very low in aqueous solution. Therefore, in the case of the patent, Zn-Mg alloy plating is performed by further adding a nonionic or cationic surfactant to the plating solution. However, when surfactant is added to the plating solution, it is physically adsorbed to the negative electrode during the plating process, which prevents the electrodeposition of metallic materials. Therefore, plating is not performed at low current density. Therefore, the patent also limits the plating current density to 100 ~ 800A / dm 2 . In the continuous plating process in which the steel plate is plated while passing continuously through the plating bath, it is difficult to conduct a large current to the steel plate because of high contact resistance between the current roll and the steel plate, and is usually plated at a current density of 30 to 100 A / dm 2 , It is difficult to apply it in continuous plating equipment because an arc may be generated between the conductive roll and the steel sheet if more current is applied.

이에 본 발명의 목적은 낮은 전류밀도에서 도금가능하고 후처리에 의해 도금층의 마그네슘이 손실되지 않는 내식성이 우수한 아연도금강판을 제공하는 것이다.
Accordingly, an object of the present invention is to provide a galvanized steel sheet excellent in corrosion resistance which can be plated at a low current density and does not lose magnesium in the plated layer by post treatment.

본 발명의 다른 목적은 낮은 전류밀도에서 도금가능하고 후처리에 의해 도금층의 마그네슘이 손실되지 않는 내식성이 우수한 아연도금강판 제조방법을 제공하는 것이다.
Another object of the present invention is to provide a method for producing a galvanized steel sheet which is capable of plating at a low current density and which does not lose magnesium in the plating layer by post treatment.

본 발명의 제 1 견지에 의하면, According to the first aspect of the present invention,

강판에 마그네슘 도금층과 아연도금층이 복층으로 형성되고, 최외층은 아연도금층으로 최소 2g/㎡이상이며, 전체 도금층은 5g/㎡이상인 내식성이 우수한 표면처리강판이 제공된다. A magnesium plated layer and a galvanized layer are formed on the steel sheet, and the outermost layer is a galvanized layer of at least 2 g / m 2 and the entire plated layer is provided at 5 g / m 2 or more.

본 발명의 제 2 견지에 의하면, According to the second aspect of the present invention,

최소 pH 4이상인 아연도금용액에서 아연도금하여 마그네슘 도금층상에 아연도금층을 형성함을 특징으로 하는 본 발명의 표면처리강판 제조방법이 제공된다. Provided is a method for producing a surface-treated steel sheet according to the present invention, characterized by forming a zinc plating layer on a magnesium plating layer by galvanizing in a zinc plating solution having a minimum pH of 4 or more.

본 발명의 제 3 견지에 의하면, According to the third aspect of the present invention,

수용성 도금용액중에서 음극전해법으로 마그네슘도금층을 형성함을 특징으로 하는 본 발명의 표면처리강판 제조방법이 제공된다. Provided is a method for producing a surface-treated steel sheet according to the present invention, characterized in that a magnesium plated layer is formed by a cathodic electrolysis method in a water-soluble plating solution.

이하, 본 발명에 대하여 상세히 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

염수부식환경에서 아연도금강판은 표층에서부터 서서히 부식되어 표층이 아연의 부식생성물인 아연수산화물로 덮이게 된다. 그러나, 아연수산화물은 다공질이기 때문에 수분이나 염분을 내부로 쉽게 침투시키게 되어 도금층의 부식이 비교적 빠르게 진행된다. 마그네슘의 경우 마그네슘 수산화물이 치밀한 겔(gel)형태로 막을 형성 하여 수분이나 염분이 내부로 침투하는 것을 막아준다. 그러나 Mg수산화물은 다량의 물에 의해 콜로이드 형태로 용해되어 쉽게 떨어져 나가기 때문에 강판을 지속적으로 보호하기 위해서는 Mg수산화물의 두께가 두꺼워야 한다. In a salt water corrosive environment, the galvanized steel sheet is slowly corroded from the surface layer so that the surface layer is covered with zinc hydroxide, a corrosion product of zinc. However, since zinc hydroxide is porous, water or salt easily penetrates into the interior, and corrosion of the plating layer proceeds relatively quickly. In the case of magnesium, magnesium hydroxide forms a membrane in the form of a dense gel to prevent the penetration of moisture or salt into the inside. However, since Mg hydroxide is easily dissolved in colloidal form by a large amount of water, the Mg hydroxide must be thick in order to continuously protect the steel sheet.

그러나 마그네슘 산화물층위에 아연도금층이 존재할 경우 아연도금층이 우선적으로 부식되어 다공질의 아연수산화물을 형성하고 아연수산화물을 통해서 침투한 수분과 염분에 의해 하층의 마그네슘 산화물이 용해되어 겔화 하여 다공질의 아연 수산화물의 기공을 막아 수분과 염분의 침입을 막아 부식을 억제한다. However, if a zinc plating layer is present on the magnesium oxide layer, the zinc plating layer preferentially corrodes to form a porous zinc hydroxide, and the magnesium oxide in the lower layer is dissolved and gelated by water and salt penetrated through the zinc hydroxide to form pores of the porous zinc hydroxide. It prevents the ingress of moisture and salt to prevent corrosion.

또한 최외층의 아연수산화물이 마그네슘수산화물의 용해를 억제하기 때문에 마그네슘산화물에 의한 부식장벽효과가 오랫동안 지속되어 내식성이 크게 향상된다. 따라서 아연도금층과 Mg도금층은 2층 이상 복층으로 존재하면서 최외층에 아연도금층이 존재하는 것이 부식물질이 도금층 내부로 침투하는 것을 가장 효과적으로 차단할 수 있어 우수한 내식성을 나타낸다. In addition, since the zinc hydroxide in the outermost layer inhibits the dissolution of magnesium hydroxide, the corrosion barrier effect caused by magnesium oxide lasts for a long time, thereby greatly improving corrosion resistance. Therefore, the galvanized layer and the Mg plated layer exist in two or more layers, and the presence of the galvanized layer in the outermost layer can most effectively block the penetration of the corrosive material into the plated layer, thereby showing excellent corrosion resistance.

즉, 도금강판에 Mg가 표층에만 존재하는 경우에는 인산염처리등의 후처리시 표층의 Mg가 산성의 인산염용액중에서 대부분 혹은 상당부분 용해된다. 아연도금강판에 인산염처리하는 경우에는 일반적으로 용액중에서 인산염처리될 때 표층의 아연도금층이 약 1~3g/m2 정도 용해되면서 인산아연피막이 형성된다. That is, when Mg is present only in the surface layer of the plated steel sheet, Mg of the surface layer is dissolved in most or a substantial portion of the acidic phosphate solution during post-treatment such as phosphate treatment. In the case of phosphate treatment on a galvanized steel sheet, zinc phosphate coating is formed when the zinc plated layer of the surface layer is dissolved about 1 to 3 g / m 2 when phosphate is treated in solution.

따라서, Mg도금층상에 최외층으로 최소한 2g/m2 정도의 아연도금층을 복층으로 형성하면, 인산염처리에서 최외층에 존재하는 아연도금층 용해되면서 인산아연 피막이 형성하여 중간에 존재하는 Mg도금층이 손상되지 않음으로 인산염처리된 강판에서도 내식성이 우수하다. 최외층에는 아연도금층이 최소 2g/m2 이상으로 존재해야만 자동차사등에서 필수적으로 행하여지는 인산염처리등 후처리에 의해 도금층의 일부가 용해되더라도 내식성이 감소하는 문제가 없으며, 아연도금강판의 고유한 색상을 얻을 수 있다. Therefore, when the zinc plating layer having at least 2 g / m 2 is formed as the outermost layer on the Mg plating layer, a zinc phosphate film is formed while the zinc plating layer existing in the outermost layer is dissolved in the phosphate treatment so that the existing Mg plating layer is not damaged. It is excellent in corrosion resistance even in phosphated steel. In the outermost layer, there is no problem that corrosion resistance decreases even if a part of the plating layer is dissolved by post-treatment treatment such as phosphate treatment, which is mandatory in automobile companies, when the zinc plating layer is present at least 2g / m 2 or more. Can be obtained.

아연도금 방법은 특별히 제약 받지는 않으나, Mg도금층위에 아연도금하기 위한 도금용액의 pH는 최소한 4 이상이 되어야만 한다. 만약 아연도금용액의 pH가 4보다 낮을 경우 먼저 도금된 마그네슘 도금층이 산성인 아연도금용액중에서 일부 혹은 전부가 용해되는 문제가 발생한다.The galvanizing method is not particularly limited, but the pH of the plating solution for galvanizing on the Mg plating layer should be at least 4 or higher. If the pH of the zinc plating solution is lower than 4, a problem occurs that some or all of the first plated magnesium plating layer is dissolved in an acidic zinc plating solution.

아연도금층과 Mg도금층이 복층으로 구성된 강판에서 한 층을 구성하는 Mg도금층은 마그네슘산화물, 마그네슘 수산화물 또는 그 혼합물 형태이며, 금속 마그네슘으로 환산하여 0.01g/m2 미만에서는 내식성 향상효과가 미약하고 부착량이 증가할수록 내식성이 증가하나, 0.7g/m2 를 초과하면 아연도금층과의 밀착력이 감소하여 도금층이 박리되는 문제가 있기 때문에 Mg도금층 한층에 전착된 마그네슘산화물의 부착량 은 금속 마그네슘으로 환산하여 0.01~0.7g/m2 로 한정함이 바람직하다.Mg plating layer to the zinc plated layer and the Mg plating layer makes up a layer of the steel sheet consisting of a multi-layer is in the form of magnesium oxide, magnesium hydroxide or a mixture thereof, in terms of the metal magnesium is less than 0.01g / m 2 the corrosion resistance improving effect is slight and the adhesion amount Corrosion resistance increases with increasing, but if it exceeds 0.7g / m 2 , the adhesion strength with the zinc plating layer decreases and the plating layer is peeled off. Therefore, the adhesion amount of magnesium oxide electrodeposited on the Mg plating layer is 0.01-0.7 in terms of metal magnesium. It is preferable to limit to g / m 2 .

아연도금층과 Mg도금층이 복층으로 존재하는데 있어서, 반드시 아연도금층과 Mg도금층이 교대로 존재해야 하며, 최외층에는 반드시 아연도금층이 존재하여야 하나, 층의 수는 특별히 한정할 필요는 없고, 강판의 한쪽면에 도금된 아연과 마그네슘 전체의 부착량이 5g/m2 이상이 되어야만 표면처리 강판으로서 합당한 내식성을 확보할 수 있다.In the galvanized layer and the Mg plated layer exist in multiple layers, the galvanized layer and the Mg plated layer must exist alternately, and the outermost layer must have a galvanized layer, but the number of layers does not need to be particularly limited. When the total amount of zinc and magnesium plated on the surface is 5g / m 2 or more, proper corrosion resistance can be secured as a surface-treated steel sheet.

나아가, 본 발명의 복층 도금강판위에 인산아연계 화성처리피막 또는 인산아연계 화성처리 피막에 Fe, Ni, Mn, Co, Cu, Mg 또는 Mo 이 1종 혹은 2종 이상 복합 첨가된 변성 인산아연계 화성 처리피막을 0.1 ~ 3g/m2 로 형성하여 자동차사의 도장하지 강판으로 사용할 수 있다. 이들 화성처리 피막형성 방법은 특별히 제한할 필요가 없이 통상적인 아연 및 아연계 합금도금강판의 화성처리 방법과 동일한 방법으로 실시하면 된다.Furthermore, a modified zinc phosphate system in which one, two or more kinds of Fe, Ni, Mn, Co, Cu, Mg, or Mo are added to the zinc phosphate chemical conversion coating or the zinc phosphate chemical conversion coating on the multilayer plated steel sheet of the present invention. The chemical conversion treatment film is formed in 0.1 ~ 3g / m 2 can be used as the uncoated steel sheet of the automobile company. These chemical conversion treatment film formation methods need not be particularly limited and may be carried out by the same method as the conventional chemical conversion treatment method for zinc and zinc-based alloy plated steel sheets.

본 발명에서 아연과 마그네슘 도금층을 복층으로 형성시키는 방법은 각각 아연도금용액과 Mg도금용액이 들어 있는 여러 개의 도금조에 강판을 통과시키면서 순차적으로 도금하여 행한다. 도금도의 형태는 수평형이든 수직형이든 모두 가능하다.In the present invention, the method of forming the zinc and magnesium plating layers in multiple layers is performed by sequentially plating the steel plate through a plurality of plating baths containing zinc plating solution and Mg plating solution, respectively. Plating degree can be either horizontal or vertical.

본 발명에서 기술한 Mg산화물을 전착시키는 방법은 기본적으로 수용액계에서 음극 전해법에 의한다. 도금용액중에 Mg의 공급은 용액의 pH가 3~10범위에서 마그네슘이온이나 콜로이드 상태로 존재할수 있으면 어떤 형태든지 가능하지만, 수용액계에서 비교적 용해도가 우수한 초산마그네슘, 황산마그네슘, 염산마그네슘, 질산마그네슘형태가 용액제조가 쉽기 때문에 이들을 단독 혹은 혼합첨가하여 사용한다. The method for electrodepositing the Mg oxide described in the present invention is basically based on the cathodic electrolytic method in aqueous solution. The supply of Mg in the plating solution can be in any form as long as the pH of the solution can exist in the form of magnesium ions or colloids, but in the form of magnesium acetate, magnesium sulfate, magnesium hydrochloride, and magnesium nitrate, which are relatively solubilized in aqueous solutions. Since the solution is easy to prepare, these are used alone or in combination.

용액중 Mg이온의 농도가 10g/l 미만에서는 목표로한 부착량을 얻는데 시간이 오래 걸리므로 생산성이 하락하고, 100g/l를 초과를 초과하더라도 문제는 없으나, 용액제조비용이 증가하기 때문에 전해액중 Mg이온의 농도는 10~100g/l로 제한함이 바람직하다. 전해온도는 상온(약 20-25℃)에서도 가능하며, 온도가 증가할수록 산화물의 부착량이 약간 증가하지만 60℃를 초과하면 물의 증발량이 증가하여 농도가 쉽게 변하기 때문에 농도관리가 어렵게 된다. Mg도금용액의 pH가 3 미만에서는 전착된 산화물중 일부가 재 용해되어 부착성이 떨어지기 때문에 경제적이지 못하며, pH가 10을 초과하면 도금용액중의 Mg이온중 상당량이 수산화물로 침전되므로 도금용액의 pH는 3~10으로 제한함이 바람직하다. If the concentration of Mg ion in the solution is less than 10g / l, it will take a long time to obtain the target amount of adhesion. Therefore, the productivity decreases, and there is no problem even if it exceeds 100g / l. The concentration of ions is preferably limited to 10 ~ 100g / l. Electrolysis temperature is possible at room temperature (about 20-25 ℃), and as the temperature increases, the amount of oxide adhesion slightly increases, but if it exceeds 60 ℃, the concentration of water is easily changed due to the increased evaporation of water, making it difficult to manage the concentration. If the pH of the Mg plating solution is less than 3, it is not economical because some of the electrodeposited oxides are re-dissolved and inferior in adhesion.If the pH is above 10, a considerable amount of Mg ions in the plating solution precipitates as hydroxide, The pH is preferably limited to 3 to 10.

Mg도금에 있어서 도금전류밀도는 도금물질의 부착속도와 관련이 있어 전류밀도가 낮을 경우 도금반응시간이 오래 걸려 생산성이 하락하고 너무 높을 경우 도금층이 거칠어져 아연도금층과의 밀착력이 떨어지기 때문에 5~100A/dm2 으로 한정하는 것이 바람직하다.In Mg plating, the plating current density is related to the deposition rate of the plating material. If the current density is low, the plating reaction takes a long time, and the productivity decreases. If the current density is too high, the plating layer becomes rough, resulting in poor adhesion to the zinc plating layer. It is preferable to limit to 100A / dm 2 .

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.  Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예 1 Example 1

두께 0.8mm의 통상적인 냉간압연강판에 아연도금은 황산계 아연도금을 실시하였다.In a typical cold rolled steel sheet having a thickness of 0.8 mm, zinc plating was performed by sulfate-based zinc plating.

<아연도금조건>Zinc Plating Conditions

ZnSO 4 : 200g/l, Na2SO4 : 50g/lZnSO 4 : 200g / l, Na 2 SO 4 : 50g / l

전류밀도 : 60A/dm2 Current density: 60A / dm 2

도금액온도 : 60℃Plating solution temperature: 60 ℃

pH : 5pH: 5

유속 : 1.5m/secFlow rate: 1.5m / sec

전극 : IrO2 Electrode: IrO 2

마그네슘도금은 하기 표 1과 같은 조성과 도금조건으로 실시한 후 부착된 금속성분을 정량분석하여 피막부착량으로 표 1에 병기하였다. 또한 Mg도금층의 피막을 분석하기 위하여 일부는 최외층의 아연도금을 실시하지 않고 도금층을 X-선 회절분석한 결과 마그네슘은 금속 산화물과 수산화물로 구성되어 있음을 확인하였다. 도금된 강판중 일부는 인산아연계 화성처리를 실시한 후 그 부착량을 부착 전.후 무게차리 를 측정하여 나타내었다.Magnesium plating was carried out under the composition and plating conditions as shown in Table 1 below, and then quantitatively analyzed the metal components attached thereto. In addition, in order to analyze the film of the Mg plated layer, the X-ray diffraction analysis of the plated layer without performing zinc plating of the outermost layer confirmed that magnesium is composed of metal oxide and hydroxide. Some of the plated steel sheets were subjected to zinc phosphate chemical conversion, and their weights were measured before and after attachment.

도금이 완료된 강판과 화성처리한 강판에 대해 품질평가를 실시하여 표 2에 나타내었다. 내식성 평가는 시편을 알카리 탈지를 실시하고 염수분무시험을 실시하여 강판 표면에 적청 발생면적이 5% 될 때까지의 시간을 측정하였다.Table 2 shows the quality evaluation of the plated steel sheet and the chemically treated steel sheet. Corrosion resistance evaluation was performed by performing alkali degreasing of the specimen and performing a salt spray test to measure the time until the red blue color of the steel sheet was 5%.

도금밀착성 평가는 도금이 완료된 강판에 대하여 강판에 비닐테이프를 부착시킨후 180°절곡하여 테이프를 뜯어내었을 때 테이프에 도금물질이 묻어나오는 정도로서 평가하였으며, 강판의 백색도는 백색도 측정장치를 이용하였다. Plating adhesion evaluation was evaluated as the degree of plating material on the tape when the tape was peeled off by 180 ° bend after attaching the vinyl tape to the steel sheet is completed, the whiteness of the steel sheet was used to measure the whiteness.

[표 1]TABLE 1

Figure 112001034276748-pat00001
Figure 112001034276748-pat00001

* 도금층 층수; 1 층: Mg 도금 -> Zn 도금Number of plated layers; 1 layer: Mg plating-> Zn plating

1.5 층: Zn 도금 -> Mg 도금 -> Zn 도금               1.5 layer: Zn plating-> Mg plating-> Zn plating

2 층: Mg 도금 -> Zn 도금 -> Mg 도금 -> Zn 도금               2 layer: Mg plating-> Zn plating-> Mg plating-> Zn plating

2.5 층: Zn 도금 -> Mg 도금 -> Zn 도금 -> Mg 도금 -> Zn 도금               2.5 layer: Zn plating-> Mg plating-> Zn plating-> Mg plating-> Zn plating

[표 2]TABLE 2

Figure 112001034276748-pat00002
Figure 112001034276748-pat00002

* 도금밀착성: ◎ 우수, × 불량* Plating Adhesion: ◎ Excellent, × Poor

* 백색도차 = 순수 아연도금강판의 백색도(비교예 1의 백색도)* Whiteness difference = whiteness of pure galvanized steel sheet (whiteness of Comparative Example 1)

- 해당 도금강판의 백색도               -Whiteness of the plated steel sheet

상기 표 1 및 2에 나타난 바와 같이, 본 발명에 부합되는 발명예 (1 ~ 11)의 경우 강판표면에 Mg도금과 아연도금을 복층으로 실시한 후 품질평가한 결과가 내식성은 적청발생시간이 70시간 이상으로 비교적 길었으며, 도금밀착성도 우수하였으며, 백색도차도 거의 없었다. 한편 본 발명예 12 및 13은 복층도금강판에 후처리로서 인산염처리를 실시한 경우로서, 후처리를 실시하더라도 내식성 및 도금밀착성이 우수하였다. As shown in Tables 1 and 2, in the case of Inventive Examples (1 to 11) according to the present invention, after performing Mg plating and zinc plating on the surface of the steel sheet in multiple layers, the results of the quality evaluation showed that the corrosion resistance time was 70 hours. It was relatively long, the plating adhesion was excellent, and there was little white difference. On the other hand, Examples 12 and 13 of the present invention were the case where the phosphate treatment was applied to the multilayer coated steel sheet as a post-treatment, which was excellent in corrosion resistance and plating adhesion even after the post-treatment.

한편 비교예 1의 경우 아연도금강판 그대로의 품질을 평가한 것으로서 적청발생시간이 20시간으로 극히 나빴으나, 도금밀착성은 우수하였다. On the other hand, in the case of Comparative Example 1 was evaluated as the quality of the galvanized steel sheet as it was, the red-blue occurrence time was extremely bad (20 hours), but the plating adhesion was excellent.

비교예 2의 경우는 아연도금강판에 인산염처리를 실시한 경우로서 적청발생시간이 22시간으로 짧았다.In the case of Comparative Example 2, when the phosphate treatment was performed on the galvanized steel sheet, the red blue development time was as short as 22 hours.

비교예3은 Mg도금욕의 pH가 2로 본 발명에서 제한한 범위보다 낮아 강판에 부착된 Mg이 도금용액중에서 용해되어 강판에 부착하는 Mg의 부착량이 본 발명에서 한정한 범위보다 낮은 경우로서, 적청발생시간이 17시간으로 극히 짧았다. 비교예4의 경우에는 Mg부착량은 본 발명에서 한정한 범위내라 하더라도 Mg도금에서 전류밀도가 본 발명에서 한정한 범위를 초과한 경우로서, 내식성은 우수하나, 도금층이 거칠어 아연도금층과의 밀착력이 감소하여 결국 도금밀착성이 열등하였다.Comparative Example 3 is a case where the pH of the Mg plating bath is 2, which is lower than the range limited in the present invention, and the Mg attached to the steel sheet is dissolved in the plating solution so that the amount of Mg attached to the steel sheet is lower than the range defined in the present invention. The red blue development time was very short (17 hours). In the case of Comparative Example 4, even if the Mg deposition amount is within the range defined in the present invention, the current density in the Mg plating exceeds the range defined in the present invention, but the corrosion resistance is excellent, but the plating layer is rough, so that the adhesion to the zinc plated layer is reduced. As a result, the plating adhesion was inferior.

한편 비교예5의 경우 도금조건은 본 발명의 범위를 만족하지만, Mg도금층의 Mg부착량이 본 발명에서 한정한 범위보다 적은 경우로서 내식성 향상효과가 적었다. 비교예6의 경우 Mg도금층의 한 층당 Mg부착량이 본 발명에서 한정한 범위를 초과한 경우로서, 내식성은 극히 우수하지만, 도금밀착성이 불량하였다.On the other hand, in the case of Comparative Example 5, the plating conditions satisfy the scope of the present invention, but the Mg deposition amount of the Mg plated layer was less than the range defined in the present invention, and the effect of improving corrosion resistance was small. In Comparative Example 6, when the Mg deposition amount per layer of the Mg plating layer exceeded the range defined in the present invention, the corrosion resistance was extremely excellent, but the plating adhesion was poor.

비교예7의 경우에는 Mg도금조건, 도금층 층수 및 Mg도금층 한층당 Mg부착량은 본 발명에서 한정한 범위를 만족하지만, 최외층의 아연도금부착량이 본 발명에서 한정한 범위보다 낮은 경우로서, 백색도차가 5.5로 비교적 커서 내지문강판용으로 사용되기 어렵다. 비교예 8의 경우 Mg도금용액의 pH가 본발명에서 한정한 범위를 초과한 경우로서, 도금용액중에서 Mg가 수산화물을 형성하여 침전하기 때문에 Mg부착이 어려워 도금층 한면당 Mg부착량이 본 발명에서 한정한 범위보다 낮아 내식성 향상효과가 미약하였다. In Comparative Example 7, the Mg plating conditions, the number of plating layers and the Mg deposition amount per layer of the Mg plating layer satisfy the range defined in the present invention, but the zinc plating deposition of the outermost layer is lower than the range defined in the present invention. It is relatively large at 5.5 and is difficult to use for steel plate. In the case of Comparative Example 8, the pH of the Mg plating solution exceeded the range defined in the present invention. Since Mg forms a hydroxide in the plating solution and precipitates, Mg adhesion is difficult and the amount of Mg deposition per plated layer is limited in the present invention. Lower than the range, the effect of improving the corrosion resistance was weak.

본 발명에 의해서 강판에 표면에 아연도금층과 마그네슘 도금층을 복층으로 형성시키되 최외층에는 반드시 아연도금층이 최소 2g/m2 이상 존재해 인산염처리시에 인산염용액중에서 마그네슘의 손실을 방지하고 또한 강판의 색상이 아연도금강판과 차이가 거의 없어 내지문강판으로 사용이 가능한 내식성이 우수한 표면처리강판을 경제적으로 생산할 수 있다.According to the present invention, a galvanized layer and a magnesium plated layer are formed on the surface of the steel sheet in multiple layers, but the galvanized layer is present at least 2 g / m 2 or more in the outermost layer to prevent the loss of magnesium in the phosphate solution during phosphate treatment and also the color of the steel sheet. There is little difference between the galvanized steel sheet and can produce economically treated surface treated steel sheet that can be used as a steel plate.

본 발명의 Mg도금층과 Zn 도금층이 복층으로 형성되고 최외층은 2g/m2 의 아연도금층으로된 표면처리강판은 인산염처리 등의 후처리를 실시하더라도 중간층에 존재하는 Mg도금층은 손상을 받지 않아 내식성이 한층 우수하며, 강판의 색상이 아연도금강판과 동일하기 때문에 색상이 중시되는 가전제품용으로도 사용가능하다. The Mg plated layer and the Zn plated layer of the present invention are formed in multiple layers, and the outermost layer is a surface-treated steel sheet made of a zinc plated layer of 2 g / m 2 , even after performing a post-treatment such as phosphate treatment. This is more excellent, and the color of steel sheet is the same as galvanized steel sheet, so it can be used for home appliances where color is important.

또한, 의장이 중시되는 가전제품 케이스로 사용될 경우, 아연도금강판에 투명한 내지문 수지를 코팅하여 페인트를 칠하지 않은 그 상태로 사용하는 내지문강판이 많 이 사용되고 있다. 따라서, 내지문수지처리용 강판의 색상은 아연도금강판과 동일한 색상이 요구되고 있다. 만약, 최외층에 Mg도금을 실시할 경우 강판의 색상이 아연도금강판과 다르게 어둡고 광택이 없기 때문에 가전제품케이스로 사용되는 내지문강판 제조용으로는 사용할 수 없다. 그러나, 최외층에 최소한 2g/m2의 정도 아연도금을 복층으로 실시하면 강판의 색상이 아연도금강판과 동일하기 때문에 내지문강판 제조용으로도 사용이 가능하다.













In addition, when used as a case of home appliances where the design is important, many are used in the non-painted steel plate coated by coating a transparent anti-fingerprint resin on the galvanized steel sheet. Therefore, the color of the anti-fingerprint steel sheet is required to be the same color as the galvanized steel sheet. If Mg plating is performed on the outermost layer, the color of the steel sheet is dark and gloss, unlike the galvanized steel sheet, and thus it cannot be used for the production of the anti-fingerprint steel sheet used as the case of home appliances. However, when the outermost layer is galvanized at least about 2 g / m 2 in multiple layers, the color of the steel sheet is the same as that of the galvanized steel sheet.













Claims (8)

강판에 마그네슘 도금층과 아연 도금층이 복층으로 형성되고, 최외층은 아연도금층으로 최소 2g/㎡이상이며, 전체 도금층은 5g/㎡이상인 내식성이 우수한 표면처리강판. A magnesium plated layer and a zinc plated layer are formed on the steel plate, and the outermost layer is a zinc plated layer of at least 2 g / m 2 and the entire plated layer is 5 g / m 2 or more. 제 1항에 있어서, 상기 마그네슘 도금층은 마그네슘 산화물, 마그네슘 수산화물 또는 그 혼합물 형태로 존재함을 특징으로 하는 표면처리강판. The surface-treated steel sheet according to claim 1, wherein the magnesium plating layer is present in the form of magnesium oxide, magnesium hydroxide or a mixture thereof. 제 1항에 있어서, 상기 마그네슘 도금층은 한층에서 마그네슘 도금량은 금속 Mg로 환산하여 0.01 ~ 0.7g/m2 임을 특징으로 하는 표면처리강판. The surface-treated steel sheet according to claim 1, wherein the magnesium plating layer has a magnesium plating amount of 0.01 to 0.7 g / m 2 in terms of metal Mg. 제 1항에 있어서, 상기 복층으로 형성되는 마그네슘 도금층과 아연도금층은 교대로 존재하며, 최외층은 아연도금층임을 특징으로 하는 표면처리강판. The surface-treated steel sheet according to claim 1, wherein the magnesium plating layer and the zinc plating layer formed of the multilayer layer are alternately present, and the outermost layer is a zinc plating layer. 제 1항에 있어서, 나아가, 상기 표면처리강판상에 인산아연계 화성처리피막 또는 인산아연계 화성처리 피막에 Fe, Ni, Mn, Co, Cu, Mg 또는 Mo 이 1종 혹은 2종 이상 복합 첨가된 변성 인산아연계 화성처리 피막이 0.1 ~ 3g/m2 로 형성됨을 특징으로 하는 표면처리강판. According to claim 1, Further, one or two or more of Fe, Ni, Mn, Co, Cu, Mg or Mo is added to the zinc phosphate chemical conversion coating or zinc phosphate chemical conversion coating on the surface-treated steel sheet Surface-treated steel sheet, characterized in that the modified zinc phosphate chemical conversion coating is formed in 0.1 ~ 3g / m 2 . 최소 pH 4이상인 아연도금용액에서 아연도금하여 마그네슘도금층상에 아연도금층을 형성함을 특징으로 하는 청구항 1항 내지 5항중 어느 한항의 표면처리강판 제조방법. The method for producing a surface-treated steel sheet according to any one of claims 1 to 5, wherein a zinc plating layer is formed on the magnesium plating layer by zinc plating in a zinc plating solution having a minimum pH of 4 or more. 수용성 도금용액중에서 음극전해법으로 마그네슘도금층을 형성함을 특징으로 하는 청구항 1항 내지 5항중 어느 한항의 표면처리강판 제조방법.The method for producing a surface-treated steel sheet according to any one of claims 1 to 5, wherein a magnesium plated layer is formed by a cathode electrolytic method in a water-soluble plating solution. 제 7항에 있어서, 도금용액중에 Mg가 초산마그네슘, 황산마그네슘, 염산마그네슘, 질산마그네슘형태로 단독 혹은 혼합첨가 되어 Mg이온이 10~100g/l으로 함유된 도금용액중에서, 상온~60℃, pH 3~10, 전류밀도 5~100A/d㎡의 조건으로 마그네슘도금층을 형성함을 특징으로 하는 표면처리강판 제조방법8. The plating solution according to claim 7, wherein Mg in the plating solution is added alone or mixed in the form of magnesium acetate, magnesium sulfate, magnesium hydrochloride, magnesium nitrate, and Mg ion in a range of 10 to 100 g / l, at room temperature to 60 ° C, pH. Method for producing a surface-treated steel sheet, characterized in that to form a magnesium plated layer under the conditions of 3 ~ 10, current density of 5 ~ 100A / ㎡
KR1020010083845A 2001-12-24 2001-12-24 Surface Treated Steel Sheet Having Excellent Corrosion Resistance And Manufacturing Method Thereof KR100544646B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010083845A KR100544646B1 (en) 2001-12-24 2001-12-24 Surface Treated Steel Sheet Having Excellent Corrosion Resistance And Manufacturing Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010083845A KR100544646B1 (en) 2001-12-24 2001-12-24 Surface Treated Steel Sheet Having Excellent Corrosion Resistance And Manufacturing Method Thereof

Publications (2)

Publication Number Publication Date
KR20030053830A KR20030053830A (en) 2003-07-02
KR100544646B1 true KR100544646B1 (en) 2006-01-24

Family

ID=32212494

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010083845A KR100544646B1 (en) 2001-12-24 2001-12-24 Surface Treated Steel Sheet Having Excellent Corrosion Resistance And Manufacturing Method Thereof

Country Status (1)

Country Link
KR (1) KR100544646B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI613324B (en) * 2015-03-31 2018-02-01 Nippon Steel & Sumitomo Metal Corp Zinc plated steel plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141588A (en) * 1988-11-22 1990-05-30 Kobe Steel Ltd Metal vapor deposition-plated with highly corrosion resistant zn-mg alloy having excellent adhesive property
KR930010230A (en) * 1991-11-07 1993-06-22 백덕현 Manufacturing method of magnesium and zinc alloyed two-layer plated steel sheet excellent in corrosion resistance and adhesion
JPH05311374A (en) * 1992-05-11 1993-11-22 Nippon Steel Corp Hot dip plated steel sheet excellent in adhesion
JPH10265941A (en) * 1997-03-25 1998-10-06 Nisshin Steel Co Ltd Zn-mg-based plated steel sheet excellent in adhesive strength of coated film and its manufacture
KR100378878B1 (en) * 1999-03-15 2003-04-07 가부시키가이샤 고베 세이코쇼 Zn-Mg electroplated metal sheet and fabrication process therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141588A (en) * 1988-11-22 1990-05-30 Kobe Steel Ltd Metal vapor deposition-plated with highly corrosion resistant zn-mg alloy having excellent adhesive property
KR930010230A (en) * 1991-11-07 1993-06-22 백덕현 Manufacturing method of magnesium and zinc alloyed two-layer plated steel sheet excellent in corrosion resistance and adhesion
JPH05311374A (en) * 1992-05-11 1993-11-22 Nippon Steel Corp Hot dip plated steel sheet excellent in adhesion
JPH10265941A (en) * 1997-03-25 1998-10-06 Nisshin Steel Co Ltd Zn-mg-based plated steel sheet excellent in adhesive strength of coated film and its manufacture
KR100378878B1 (en) * 1999-03-15 2003-04-07 가부시키가이샤 고베 세이코쇼 Zn-Mg electroplated metal sheet and fabrication process therefor

Also Published As

Publication number Publication date
KR20030053830A (en) 2003-07-02

Similar Documents

Publication Publication Date Title
KR910002103B1 (en) Zn-based composite-plated metallic material and plating method
US3816082A (en) Method of improving the corrosion resistance of zinc coated ferrous metal substrates and the corrosion resistant substrates thus produced
CA1209947A (en) Chromate composition and process for treating zinc- nickel alloys
KR100544646B1 (en) Surface Treated Steel Sheet Having Excellent Corrosion Resistance And Manufacturing Method Thereof
KR100614025B1 (en) Resin coated steel sheet, cartridge cap and cartridge barrel using it
JP2000355790A (en) Electrogalvanized steel sheet having excellent white rust resistance and its production
JP2005105321A (en) Method for manufacturing surface treated steel sheet of excellent appearance, surface treated steel sheet, film-covered surface-treated steel sheet
JPH07278875A (en) Zinc-manganese alloy alkaline plating bath and plating method using this plating bath
KR100590406B1 (en) surface treated steel sheet having excellent corrosion resistance and welding property and its manufacturing of the same
JPH08218158A (en) Posttreatment of hot dip galvanized or hot dip galvannealed steel plate
KR100786971B1 (en) Electroplated steel sheets with excellent corrosion resistance and electrolyte thereof
KR920010778B1 (en) Excellant coating adhesive phosphate coating and water proof adhesive plating steel sheets and process for making
JPS6134520B2 (en)
KR920010776B1 (en) High corrosion resistant steel sheets with two layer being of alloy metal and process for making
KR920010777B1 (en) Electroplating steel sheet with two layer being of alloy metal and process for making
JPH02104695A (en) Black surface-treated steel material and production thereof
JPH0340116B2 (en)
JPS6296691A (en) Zn-ni alloy plating method
JPH0125393B2 (en)
JPH0543799B2 (en)
KR930007927B1 (en) Two-layer plating alloy steel sheet of high corrosion resistance and method for producing the same
JPS63250496A (en) Chromated zinc or zinc alloy plated steel sheet having superior resistance to blackening on standing and production thereof
JPH08277497A (en) Production of surface-treated galvanized metallic sheet
JPS6254198B2 (en)
JPS619599A (en) Manufacture of galvanized steel sheet excellent in resistance to black discoloring properties

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130103

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee