JPH041071B2 - - Google Patents

Info

Publication number
JPH041071B2
JPH041071B2 JP3330584A JP3330584A JPH041071B2 JP H041071 B2 JPH041071 B2 JP H041071B2 JP 3330584 A JP3330584 A JP 3330584A JP 3330584 A JP3330584 A JP 3330584A JP H041071 B2 JPH041071 B2 JP H041071B2
Authority
JP
Japan
Prior art keywords
plating
phosphate
content
coating
plated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3330584A
Other languages
Japanese (ja)
Other versions
JPS60177187A (en
Inventor
Itsusho Kyono
Shigeo Kurokawa
Hajime Kimura
Toshio Irie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3330584A priority Critical patent/JPS60177187A/en
Priority to CA000453964A priority patent/CA1255246A/en
Priority to ES532354A priority patent/ES8605868A1/en
Priority to DE8484105374T priority patent/DE3473477D1/en
Priority to EP84105374A priority patent/EP0125658B1/en
Priority to US06/609,751 priority patent/US4629659A/en
Priority to AU27998/84A priority patent/AU553714B2/en
Priority to KR1019840002608A priority patent/KR900000794B1/en
Publication of JPS60177187A publication Critical patent/JPS60177187A/en
Publication of JPH041071B2 publication Critical patent/JPH041071B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、リン酸塩化成処理性、カチオン電着
塗装性などにすぐれた自動車用としての高耐食性
表面処理鋼板に関するものである。 自動車に多用されるプライマー塗装としての電
着塗装は、電着時に被塗装物表面でカチオン塗料
粒子が電析すると同時に、媒体である水の電気分
解によりH2ガスが併行して発生し易いため、H2
ガスによつて既に電析した塗膜が破壊され、塗膜
欠陥を生ずる。この塗膜欠陥(クレーターと称す
る)現象は、特に亜鉛または亜鉛を主体とする1
亜鉛系合金めつき鋼板に特異的に認められる。 また、亜鉛または亜鉛を主体とする亜鉛系合金
めつき鋼板は、カチオン電着塗装−中塗り−上塗
りを施した3コート後の塗膜二次密着性が悪い。 塗膜二次密着性とは、何等かの方法で塗膜劣化
させた後の密着性で、その試験方法としては、3
コート塗装後、40℃の温水中に10日間浸漬し、引
き上げ直後にゴバン目剥離試験によつて密着性を
判定する方法がある。 この塗膜二次密着性とカチオン電着塗装時のク
レーター発生を防止する方法として、既にFeめ
つき処理法(特願昭55−141773、同56−82179、
同56−131757号)が開示されているが、純粋な
Feめつき処理ではリン酸塩化成処理が悪い。純
粋なFeめつき面はリン酸塩の核発生数も少なく、
粗いリン酸結晶が生成する。また、リン酸塩処理
液によつてはリン酸塩皮膜にスケが発生したり、
二次密着性が改善されないことがる。特に、スプ
レータイプのリン酸塩処理において改善効果の見
られないことが多い。 そこで、本発明は、上述したような従来技術の
欠点を解消するため、Feめつき中に適量のPを
含有させることによつて、リン酸塩化成処理性、
カチオン電着塗装性を改良したFe−Pめつき鋼
板を提供しようとするにある。 本発明は、少なくとも一方の面に、P含有率が
0.5wt%超15.0wt%以下なるFe−Pめつき層を
0.01g/m2以上形成してなるFe−Pめつき鋼板を
提供する。 本発明は、少なくとも一方の面に、P含有率が
0.5wt%超15.0wt%以下なるFe−Pめつき層を
0.01g/m2以上形成し、このFe−Pめつき層上に
Ni、Zn、Mn、Tiのいずれかを5〜50mg/m2
着させてなるFe−Pめつき鋼板を提供する。 本発明はまた、内層としてZnまたはZn系合金
めつき層を、外層としてP含有率が0.5wt%超
15.0wt%以下で、付着量が0.5g/m2以上のFe−
Pめつき層を少なくとも一方の面に形成してなる
Fe−Pめつき鋼板を提供する。 本発明はさらに、内層としてZnまたはZn系合
金めつき層を、外層としてP含有率が0.5wt%超
15.0wt%以下で、付着量が0.5g/m2以上のFe−
Pめつき層を少なくとも一方の面に形成し、この
Fe−Pめつき層上にNi、Zn、Mn、Tiのいずれ
かを5〜50mg/m2付着させてなるFe−Pめつき
鋼板を提供する。 以下、本発明のFe−Pめつき鋼板を詳細に説
明する。 本発明の四態様において施されるFe−Pめつ
き中には、0.5wt%超15.0wt%以下のPを含有さ
せることを特徴とする。純粋なFeめつきでは表
面に形成される酸化膜が安定なため、リン酸塩化
成処理の初期反応が遅れるとともに結晶が粗くな
る。 しかし、少量のPを含有させると初期反応が著
しく促進され、初期結晶核数が多くなる。 その一例として、特願昭58−84585号にP含有
率が0.0003〜0.5wt%のFe−Pめつきを挙げ、こ
のP含有率では5秒後の初期結晶核数が極めて多
くなることを示している。 リン酸塩処理に際して、リン酸塩化成処理の5
秒処理後の初期結晶核数が少ない場合でも、引き
続き結晶核発生が続くのであり、5秒後初期結晶
核数で、評価することは厳しすぎて不適当な場合
が多々ある。 化成処理性は一般には120秒処理後に生成した
リン酸塩結晶で評価されており、通常の場合は生
成した皮膜が重視される。 本発明においては、最終的な皮膜の性質を、当
業者で最も重視されるP比率および結晶サイズで
評価せんとするものである。 P含有率が0.5wt%を超えるFe−Pめつきは化
成処理の5秒後の初期結晶核数な少ない場合もあ
るが、その後結晶核数の生成があり、最終的には
良質のすなわち結晶サイズが小さく、緻密でかつ
ポロシテイのない皮膜が得られるもので、それが
本願発明である。 P含有率が増加するとFe−Pめつきの陰極折
出効率が次第に低下するので経済性に劣る。ま
た、あまりにP含有率の高いFe−Pめつきは非
晶質傾向のめつきであり、リン酸塩処理時の反応
性が低下する場合がある。 そのため、P含有率の上限は15wt%以下に制
限されるが、好ましくは10wt%以下、さらに好
ましくは5wt%以下がよい。 このようなFe−Pめつきを鋼板上に直接施す
場合には、Fe−Pめつきの付着量は0.01g/m2
上必要である。これが0.01g/m2未満であると、
鋼板表面をFe−Pめつきで均一に被膜すること
ができないので、その効果は少ない。0.01g/m2
以上の付着量で効果を発揮するのは、リン酸塩化
成処理時にリン酸塩皮膜をZn2Fe(PO42・4H2O
(Phosphophyllite)に改質する際、Feは素地鋼
より供給されるからである。 また、亜鉛または亜鉛を主体とする亜鉛系合金
めつき鋼板にリン酸塩化成処理を施すと、生成す
るリン酸塩皮膜は、Zn3(PO42・4H2O(Hopeite)
となり、カチオン電着塗装を含めた3コート塗装
後の塗膜の耐水二次密着性が悪く、かつカチオン
電着塗装時の耐クレーター性が悪いことは周知の
事実である。そこで、亜鉛または亜鉛を主体とす
る亜鉛系合金めつき鋼板の表面に本発明のFe−
Pめつきを施せば、リン酸塩化成処理時に形成さ
れるリン酸塩皮膜をZn2Fe(PO42・4H2O
(Phosphophyllite)に改質することができ、カチ
オン電着塗装時の耐クレーター性向上および塗膜
の耐水二次密着性に有効である。 亜鉛または亜鉛を主体とする亜鉛係合金めつき
鋼板に施すべきFe−Pめつき量は0.5g/m2以上
が好ましいが、その限定理由は次の通りである。
塗膜の耐水二次密着性およびカチオン電着塗装時
の耐クレーター性を向上させるためには、リン酸
塩化成処理皮膜をZn2Fe(PO42・4H2O
(Phosphophyllite)にすることが重要である。
Fe−Pめつきの量が0.5g/m2未満では
Phosphophylliteの形成量が少なく、効果がない。 また、鋼板上に直接あるいは亜鉛または亜鉛を
主体とする亜鉛系合金めつき鋼板上に施したFe
−Pめつき層上に、Ni、Zn、Mn、Tiのいずれ
か一種を5〜50mg/m2付着させると、表面に微細
なマイクロセルが形成され、より一層リン酸塩化
成処理性が向上する。表面付着量が5mg/m2未満
ではその効果がなく、50mg/m2を超えると表面を
均一に覆うようになり、マイクロセルを形成しな
いばかりか、リン酸塩化成皮膜中にリン酸塩とし
て残存する量が多くなり、Phosphophyllite/
(Phosphophyllite+Hopeite)比を下るため、好
ましくない。なお。Fe−Pめつきにおいて、P
の代りにPと同族のAs、Sb、Biを入れても同様
の効果を奏する。 以下、本発明を実施例につき具体的に説明す
る。 常法に従い電解脱脂、酸洗した冷延鋼板に次の
条件でFe−Pめつきを施した。その一部のもの
について、Fe−Pめつき上にフラツシユめつき
法によりNi、Zn、Mn、Tiのいずれかを被覆し
た。 得られたFe−P系めつき鋼板について下記の
種々の試験を行つた。その結果を表1および第1
図の写真に示す。 (1) Fe−Pめつき (1‐1) 浴組成 FeCl2 150g/ KCl 200g/ クエン酸 10g/ NaH2PO2 0.001〜10g/ (1‐2) めつき条件 PH=3.0、浴温50℃、電流密度10〜150A/d
m2 浴中のNaH2PO2濃度と電流密度を変化さ
せてP含有率をコントロールした。 (2) フラツシユめつき (2‐1) Niめつき 浴組成 NiSO4 250g/ NiCl2 45g/ ホウ酸 30g/ めつき条件 PH=3.5 浴温60℃ 陽極Ni板 電気量28クーロン/m2 (2‐2) Znめつき 浴組成 ZnCl2 210g/ KCl 360g/ めつき条件 PH=5.0 浴温50℃ 陽極Zn板 電気量60クーロン/m2 (2‐3) Mnめつき 浴組成 MnSO4・4H2O 150g/ (NH42SO4 100g/ Na2SO3 2g/ グリシン 15g/ めつき条件 PH=3.0 浴温20℃ 陽極 不溶性カーボン 電気量110クーロン/m2 (2‐4) Tiめつき K3TiO3 0.001mol/を含む浴に常温で5
秒浸漬してめつきした。 さらに、一般的な方法で電気めつきしたZn、
Zn−Ni合金、Zn−Fe複合めつき鋼板上に、次の
条件でFe−Pめつきを施した。 その一部のものについて、Fe−Pめつき上に
フラツシユめつきによりNi、Zn、Mn、Tiのい
ずれかを付着させた。得られたFe−P系めつき
鋼板について下記の種々の試験を行つた。その結
果を表2に示す。 (1) Fe−Pめつき (1‐1) 浴組成 FeCl2 200g/ KCl 200g/ クエン酸 20g/ NaH2PO2 0.001〜10g/ (1‐2) めつき条件 PH=3.0、浴温50℃ 電流密度10〜60A/dm2 浴中のNaH2PO2濃度と電流密度を変化さ
せてP含有率をコントロールした。 (2) フラツシユめつき 前述したと同じようにして行つた。 これらの結果を示す表1、表2および第1図の
写真から明らかなように、本発明によるFe−P
めつき鋼板は、Feめつき中に0.5wt%超15.0wt%
以下のPを含有させることにより、鋼上に直接あ
るいはZnまたはZn系めつき鋼板上にFe−Pめつ
きを施した場合について、リン酸塩化成処理性が
優れていることがわかる。 (1) リン酸塩化成処理 各処理液に合つた標準条件で脱脂、水洗、表
面調整後、リン酸塩化成処理を行い、水洗乾燥
した。化成処理液としては、ボンデライト3030
(日本パーカーライジング製のデイツプタイ
プ)、ボンデライト3128(日本パーカーライジン
グ製のスプレータイプ)、グラノジンSD2000
(日本ペイント製のデイツプタイプ)を用いた。 (2) 結晶サイズ 通常の化成処理後、SEM(Scanning
electron microscope)観察を行い、結晶サイ
ズを測定した。結晶の最大長の平均値を求め
た。 第1a図および第1b図にそれぞれ本発明例
および比較例に基くSEM写真を示す。 (3) 皮膜量 5%クロム酸溶液による溶解除去法によつて
測定した。 (4) P比率 フオスフオフイライトのX線ピーク高さ/フオス
フオフイライトのX線ピーク高さ+ホペイトのX線ピー
ク高さ×100(%) 上式により求めた。 (5) 耐水二次密着性 リン酸塩化成処理後、カチオン電着塗装20μ
m、中塗り、上塗り塗装をして総合塗膜厚90〜
100μmとし、40℃の温水に10日間浸漬後、直
ちに2mm角の素地鋼板に達するゴバン目を100
個描き、セロテープで剥離した時の剥離数で示
した。 (6) 耐ブリスター性 耐水二次密着性試験時と同じ90〜100μmの
塗装後、素地鋼板に達するクロスカツトを描い
て塗膜に傷をつけた後、5%食塩水に15分浸漬
し、次いで室温で75分間乾燥し、その後、49
℃、相対湿度85%の湿潤箱に22.5時間放置する
サイクルを100サイクル繰り返し、傷部のふく
れ幅(mm)を観察した。 (7) 耐クレーター性 カチオン系電着塗料、U−30(日本ペイント
(株)製)を調合後、1週間撹拌した後、極間距離
4cm、電圧350V、ソフトタツチなしで電着時
間180secにて塗装した。評価は下表の通りであ
る。
The present invention relates to a highly corrosion-resistant surface-treated steel sheet for use in automobiles, which has excellent properties such as phosphate chemical conversion treatment properties and cationic electrodeposition coating properties. Electrodeposition painting, which is often used as a primer coating for automobiles, is a process in which cationic paint particles are deposited on the surface of the object to be coated during electrodeposition, and at the same time H2 gas is likely to be generated due to the electrolysis of water, which is the medium. , H2
The gas destroys the coating that has already been deposited, resulting in coating defects. This coating film defect (referred to as a crater) phenomenon is particularly caused by zinc or zinc-based coatings.
It is specifically observed in zinc-based alloy plated steel sheets. Further, steel sheets coated with zinc or zinc-based alloys mainly containing zinc have poor secondary coating adhesion after three coats of cationic electrodeposition coating, intermediate coating, and top coating. Secondary paint film adhesion is the adhesion after the paint film has been deteriorated by some method, and the test method is 3.
After coating, there is a method of immersing the material in warm water at 40°C for 10 days, and immediately after pulling it out, the adhesion is determined by a grain peel test. As a method to improve the secondary adhesion of the coating film and to prevent the occurrence of craters during cationic electrodeposition coating, the Fe plating treatment method (Japanese Patent Applications 1986-141773, 56-82179,
56-131757), but pure
Phosphate conversion treatment is bad for Fe plating treatment. The pure Fe-plated surface has fewer phosphate nuclei,
Coarse phosphate crystals form. Also, depending on the phosphate treatment solution, sagging may occur on the phosphate film, or
Secondary adhesion may not be improved. In particular, no improvement effect is often seen in spray-type phosphate treatment. Therefore, in order to solve the above-mentioned drawbacks of the prior art, the present invention improves phosphate chemical treatment properties by incorporating an appropriate amount of P into Fe plating.
The object of the present invention is to provide an Fe--P plated steel sheet with improved cationic electrodeposition coating properties. The present invention has a P content on at least one side.
Fe-P plating layer of more than 0.5wt% and less than 15.0wt%
To provide a Fe--P plated steel sheet having a thickness of 0.01 g/m 2 or more. The present invention has a P content on at least one side.
Fe-P plating layer of more than 0.5wt% and less than 15.0wt%
0.01g/m2 or more is formed on this Fe-P plating layer.
To provide an Fe--P plated steel sheet on which 5 to 50 mg/m 2 of Ni, Zn, Mn, or Ti is deposited. The present invention also includes a Zn or Zn-based alloy plating layer as an inner layer and a P content of more than 0.5 wt% as an outer layer.
Fe- less than 15.0wt% and with an adhesion amount of more than 0.5g/ m2
A P plating layer is formed on at least one surface.
Provides Fe-P plated steel sheets. The present invention further includes a Zn or Zn-based alloy plating layer as an inner layer and a P content of more than 0.5 wt% as an outer layer.
Fe- less than 15.0wt% and with an adhesion amount of more than 0.5g/ m2
A P plating layer is formed on at least one surface, and this
To provide an Fe--P plated steel sheet in which 5 to 50 mg/ m2 of Ni, Zn, Mn, or Ti is deposited on the Fe--P plated layer. Hereinafter, the Fe-P plated steel sheet of the present invention will be explained in detail. The Fe-P plating performed in the fourth embodiment of the present invention is characterized by containing P in an amount of more than 0.5 wt% and not more than 15.0 wt%. With pure Fe plating, the oxide film formed on the surface is stable, so the initial reaction of phosphate chemical treatment is delayed and the crystals become coarse. However, when a small amount of P is contained, the initial reaction is significantly accelerated and the number of initial crystal nuclei increases. As an example, Patent Application No. 1984-84585 lists Fe-P plating with a P content of 0.0003 to 0.5 wt%, and shows that at this P content, the number of initial crystal nuclei after 5 seconds becomes extremely large. ing. During phosphate treatment, 5 points of phosphate chemical treatment
Even if the initial number of crystal nuclei after the second treatment is small, crystal nuclei continue to be generated, and evaluation based on the initial number of crystal nuclei after 5 seconds is often too harsh and inappropriate. Chemical conversion treatment properties are generally evaluated using the phosphate crystals formed after 120 seconds of treatment, and usually the film formed is important. In the present invention, the properties of the final film are evaluated by the P ratio and crystal size, which are most important to those skilled in the art. Fe-P plating with a P content of more than 0.5wt% may have a small number of initial crystal nuclei 5 seconds after chemical conversion treatment, but after that, the number of crystal nuclei is generated, and eventually good quality crystals are formed. A film that is small in size, dense, and free of porosity can be obtained, and that is the present invention. As the P content increases, the cathode deposition efficiency of Fe--P plating gradually decreases, resulting in poor economic efficiency. In addition, Fe--P plating with an excessively high P content tends to be amorphous, and the reactivity during phosphate treatment may decrease. Therefore, the upper limit of the P content is limited to 15 wt% or less, preferably 10 wt% or less, more preferably 5 wt% or less. When applying such Fe-P plating directly onto a steel plate, the amount of Fe-P plating required is 0.01 g/m 2 or more. If this is less than 0.01g/ m2 ,
Since the surface of the steel plate cannot be uniformly coated with Fe-P plating, its effect is small. 0.01g/ m2
The method that is effective with a coating amount above is that the phosphate film is treated with Zn 2 Fe (PO 4 ) 2・4H 2 O during phosphate chemical conversion treatment.
This is because Fe is supplied from the base steel when reforming to (Phosphophyllite). In addition, when phosphate chemical conversion treatment is applied to zinc or zinc-based alloy-plated steel sheets that mainly contain zinc, the phosphate film that is formed is Zn 3 (PO 4 ) 2・4H 2 O (Hopeite).
Therefore, it is a well-known fact that the water-resistant secondary adhesion of the paint film after three coats including cationic electrodeposition is poor, and the crater resistance during cationic electrodeposition is poor. Therefore, the Fe-
If P plating is applied, the phosphate film formed during phosphate chemical treatment can be replaced with Zn 2 Fe (PO 4 ) 2・4H 2 O.
(Phosphophyllite), which is effective in improving crater resistance during cationic electrodeposition coating and water-resistant secondary adhesion of paint films. The amount of Fe--P plating to be applied to a steel plate plated with zinc or a zinc-based alloy mainly composed of zinc is preferably 0.5 g/m 2 or more, and the reason for this limitation is as follows.
In order to improve the water resistant secondary adhesion of the coating film and the crater resistance during cationic electrodeposition coating, the phosphate chemical conversion coating should be treated with Zn 2 Fe (PO 4 ) 2 4H 2 O.
(Phosphophyllite) is important.
If the amount of Fe-P plating is less than 0.5g/ m2
The amount of Phosphophyllite formed is small and has no effect. In addition, Fe coated directly on a steel plate or on a steel plate plated with zinc or a zinc-based alloy mainly composed of zinc.
- When 5 to 50 mg/m 2 of any one of Ni, Zn, Mn, and Ti is deposited on the P plating layer, fine microcells are formed on the surface, further improving phosphate chemical treatment properties. do. If the amount of surface adhesion is less than 5 mg/ m2 , there is no effect, and if it exceeds 50 mg/ m2 , the surface will be covered uniformly, and not only will microcells not be formed, but phosphates will be present in the phosphate conversion coating. The amount remaining increases, and Phosphophyllite/
(Phosphophyllite+Hopeite) ratio is lower, so it is not preferable. In addition. In Fe-P plating, P
The same effect can be obtained by replacing P with As, Sb, and Bi, which are similar to P. Hereinafter, the present invention will be specifically explained with reference to examples. A cold-rolled steel sheet that had been electrolytically degreased and pickled according to a conventional method was subjected to Fe-P plating under the following conditions. Some of them were coated with Ni, Zn, Mn, or Ti on the Fe--P plating by flash plating. The following various tests were conducted on the obtained Fe-P based plated steel sheet. The results are shown in Table 1 and
Shown in the photo in fig. (1) Fe-P plating (1-1) Bath composition FeCl 2 150g / KCl 200g / citric acid 10g / NaH 2 PO 2 0.001-10g / (1-2) Plating conditions PH = 3.0, bath temperature 50℃ , current density 10~150A/d
The P content was controlled by changing the NaH 2 PO 2 concentration in the m 2 bath and the current density. (2) Flash plating (2-1) Ni plating bath composition NiSO 4 250g / NiCl 2 45g / Boric acid 30g / Plating conditions PH = 3.5 Bath temperature 60℃ Anode Ni plate electricity amount 28 coulombs / m 2 (2 -2) Zn plating bath composition ZnCl 2 210g / KCl 360g / Plating conditions PH = 5.0 Bath temperature 50℃ Anode Zn plate electricity amount 60 coulombs / m 2 (2-3) Mn plating bath composition MnSO 4・4H 2 O 150g/ (NH 4 ) 2 SO 4 100g/ Na 2 SO 3 2g/ Glycine 15g/ Plating conditions PH=3.0 Bath temperature 20℃ Anode Insoluble carbon electricity quantity 110 coulombs/m 2 (2-4) Ti plating K 3 5 at room temperature in a bath containing 0.001 mol of TiO 3
I dipped it for a second and plated it. In addition, Zn electroplated using a common method,
Fe-P plating was applied to Zn-Ni alloy and Zn-Fe composite plated steel sheets under the following conditions. For some of them, one of Ni, Zn, Mn, and Ti was deposited on the Fe--P plating by flash plating. The following various tests were conducted on the obtained Fe-P based plated steel sheet. The results are shown in Table 2. (1) Fe-P plating (1-1) Bath composition FeCl 2 200g / KCl 200g / Citric acid 20g / NaH 2 PO 2 0.001-10g / (1-2) Plating conditions PH = 3.0, bath temperature 50℃ Current density: 10 to 60 A/dm 2 The P content was controlled by changing the NaH 2 PO 2 concentration in the bath and the current density. (2) Flashing This was done in the same way as described above. As is clear from Tables 1 and 2 showing these results and the photograph in Figure 1, Fe-P according to the present invention
The plated steel plate has a Fe plating of more than 0.5wt% and 15.0wt%.
It can be seen that by containing the following P, the phosphate chemical conversion treatment properties are excellent when Fe--P plating is applied directly on steel or on Zn or Zn-based plated steel sheets. (1) Phosphate chemical treatment After degreasing, washing with water, and surface conditioning under standard conditions suitable for each treatment solution, phosphate chemical treatment was performed, followed by washing with water and drying. Bonderite 3030 is used as a chemical conversion treatment liquid.
(Deep type manufactured by Nippon Parker Rising), Bonderite 3128 (Spray type manufactured by Nippon Parker Rising), Granozin SD2000
(deep type manufactured by Nippon Paint) was used. (2) Crystal size After normal chemical conversion treatment, SEM (Scanning
The crystal size was measured by observation using an electron microscope. The average value of the maximum length of the crystals was determined. FIG. 1a and FIG. 1b show SEM photographs based on the inventive example and the comparative example, respectively. (3) Film amount Measured by the dissolution method using a 5% chromic acid solution. (4) P ratio X-ray peak height of phosphorus fluorite/X-ray peak height of phosphorus fluorite + X-ray peak height of hopite x 100 (%) Calculated using the above formula. (5) Water resistant secondary adhesion After phosphate chemical treatment, cationic electrodeposition coating 20μ
m, total coating thickness 90~ with intermediate coating and top coating.
100μm, and after soaking in 40℃ hot water for 10 days, immediately cut 100 gobans to reach a 2mm square base steel plate.
It is indicated by the number of peels when peeled off with cellophane tape. (6) Blister resistance After painting with a thickness of 90 to 100 μm, the same as in the water resistance secondary adhesion test, the paint film was scratched by drawing a cross cut that reached the base steel plate, and then immersed in 5% saline solution for 15 minutes, and then Dry for 75 minutes at room temperature, then 49
℃ and 85% relative humidity for 22.5 hours was repeated 100 times, and the swelling width (mm) of the wound was observed. (7) Crater resistance Cationic electrodeposition paint, U-30 (Nippon Paint
Co., Ltd.) was mixed for one week, and then coated with an electrode distance of 4 cm, a voltage of 350 V, and an electrodeposition time of 180 seconds without soft touch. The evaluation is as shown in the table below.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1a図および第1b図は、鋼板上に形成した
化成処理皮膜の結晶の構造を表わす電子顕微鏡写
真であつて、それぞれ本発明鋼板(冷延鋼板上に
P含有率1.5wt%のFe−Pめつきを2.5g/m2施し
たもの)と比較例(SPCC)の化成処理(グラノ
ジンSD−2000)120秒後の750倍SEM写真であ
る。
FIG. 1a and FIG. 1b are electron micrographs showing the crystal structure of the chemical conversion coating formed on the steel sheet. It is a 750x SEM photograph of the chemical conversion treatment (Granozin SD-2000) of Comparative Example (SPCC) and 2.5 g/ m2 plating after 120 seconds.

Claims (1)

【特許請求の範囲】 1 少なくとも一方の面に、P含有率が0.5wt%
超15.0wt%以下なるFe−Pめつき層を0.01g/m2
以上具えることを特徴とするリン酸塩化成処理性
にすぐれたFe−Pめつき鋼板。 2 少なくとも一方の面に、P含有率が0.5wt%
超15.0wt%以下なるFe−Pめつき層を0.01g/m2
以上形成し、このFe−Pめつき層上にNi、Zn、
Mn、Tiのいずれかを5〜50mg/m2付着させてな
ることを特徴とするリン酸塩化成処理にすぐれた
Fe−Pめつき鋼板。 3 内層としてZnまたはZn系合金めつき層を、
外層としてP含有率が0.5wt%超15.0wt%以下で、
付着量が0.5g/m2以上のFe−Pめつき層を少な
くとも一方の面に形成してなることを特徴とする
リン酸塩化成処理にすぐれたFe−Pめつき鋼板。 4 内層としてZnまたはZn系合金めつき層を、
外層としてP含有率が0.5wt%超15.0wt%以下で、
付着量が0.5g/m2以上のFe−Pめつき層を少な
くとも一方の面に形成し、このFe−Pめつき層
上にNi、Zn、Mn、Tiのいずれかを5〜50mg/
m2付着させてなることを特徴とするリン酸塩化成
処理にすぐれたFe−Pめつき鋼板。
[Claims] 1. At least one surface has a P content of 0.5 wt%.
Fe-P plating layer of less than 15.0wt% at 0.01g/m 2
An Fe-P plated steel sheet with excellent phosphate chemical conversion treatment properties, which is characterized by having the above properties. 2 At least one side has a P content of 0.5wt%
Fe-P plating layer of less than 15.0wt% at 0.01g/m 2
Ni, Zn,
Excellent phosphate chemical treatment characterized by depositing either Mn or Ti at 5 to 50 mg/m 2
Fe-P plated steel plate. 3 Zn or Zn-based alloy plating layer as the inner layer,
As the outer layer, the P content is more than 0.5wt% and less than 15.0wt%,
An Fe-P plated steel sheet excellent in phosphate chemical conversion treatment, characterized in that an Fe-P plated layer with a deposited amount of 0.5 g/m 2 or more is formed on at least one surface. 4 Zn or Zn-based alloy plating layer as the inner layer,
As the outer layer, the P content is more than 0.5wt% and less than 15.0wt%,
A Fe-P plating layer with an adhesion amount of 0.5 g/m 2 or more is formed on at least one side, and 5 to 50 mg/m of any of Ni, Zn, Mn, or Ti is applied on this Fe-P plating layer.
A Fe-P plated steel sheet excellent in phosphate chemical conversion treatment characterized by being coated with m2 .
JP3330584A 1983-05-14 1984-02-23 Fe-p plated steel sheet with superior suitability to phosphating Granted JPS60177187A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP3330584A JPS60177187A (en) 1984-02-23 1984-02-23 Fe-p plated steel sheet with superior suitability to phosphating
CA000453964A CA1255246A (en) 1983-05-14 1984-05-09 Corrosion resistant surface-treated steel strip and process for making
ES532354A ES8605868A1 (en) 1983-05-14 1984-05-10 Corrosion resistant surface-treated steel strip and process for making.
DE8484105374T DE3473477D1 (en) 1983-05-14 1984-05-11 Corrosion resistant surface-treated steel strip and process for making
EP84105374A EP0125658B1 (en) 1983-05-14 1984-05-11 Corrosion resistant surface-treated steel strip and process for making
US06/609,751 US4629659A (en) 1983-05-14 1984-05-14 Corrosion resistant surface-treated steel strip and process for making
AU27998/84A AU553714B2 (en) 1983-05-14 1984-05-14 Fe-p on steel - pretreatment
KR1019840002608A KR900000794B1 (en) 1983-05-14 1984-05-14 Corrosion resistant surface-treated steel strip and process for making

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3330584A JPS60177187A (en) 1984-02-23 1984-02-23 Fe-p plated steel sheet with superior suitability to phosphating

Publications (2)

Publication Number Publication Date
JPS60177187A JPS60177187A (en) 1985-09-11
JPH041071B2 true JPH041071B2 (en) 1992-01-09

Family

ID=12382838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3330584A Granted JPS60177187A (en) 1983-05-14 1984-02-23 Fe-p plated steel sheet with superior suitability to phosphating

Country Status (1)

Country Link
JP (1) JPS60177187A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253397A (en) * 1985-05-01 1986-11-11 Kawasaki Steel Corp Alloyed hot dip galvanized steel sheet for painting by cationic electrodeposition
JPH0713317B2 (en) * 1988-09-20 1995-02-15 川崎製鉄株式会社 Zinc-based alloy electroplated steel sheet with excellent powdering resistance and crater resistance
JP2000160316A (en) 1998-11-27 2000-06-13 Isuzu Motors Ltd Joined structure of panel material for automotive outer or inner board

Also Published As

Publication number Publication date
JPS60177187A (en) 1985-09-11

Similar Documents

Publication Publication Date Title
EP0047987B2 (en) Cationic electrodeposition lacquer-coated steel material
KR910002103B1 (en) Zn-based composite-plated metallic material and plating method
US4541903A (en) Process for preparing Zn-Fe base alloy electroplated steel strips
US4629659A (en) Corrosion resistant surface-treated steel strip and process for making
JPH03138389A (en) Zn-mg alloy plated steel sheet having excellent plating adhesion and corrosion resistance and its production
US5082748A (en) Fe-mn alloy plated steel sheet and manufacturing method thereof
JPH041071B2 (en)
JPS6343479B2 (en)
JP2787365B2 (en) Organic thin film coated Cr-containing zinc-based multi-layer rust-proof steel sheet having excellent long-term adhesion of organic thin film and cationic electrodeposition coating property, and method for producing the same
US4490438A (en) Steel sheet with multilayer electroplating and method of producing same
JPH0116919B2 (en)
JP2712924B2 (en) Zinc-nickel-chromium alloy electroplated steel sheet with excellent corrosion resistance, plating adhesion, chemical conversion treatment and coating film adhesion
KR920010778B1 (en) Excellant coating adhesive phosphate coating and water proof adhesive plating steel sheets and process for making
JPH0676675B2 (en) Method for producing galvanized steel sheet with excellent chemical conversion treatability and post-painting performance
JP2619440B2 (en) Surface-treated steel sheet with excellent workability and paintability
JPH0125393B2 (en)
KR920010777B1 (en) Electroplating steel sheet with two layer being of alloy metal and process for making
JPS60131977A (en) Surface treated steel sheet having superior suitability to chemical conversion treatment
JPS6345383A (en) Production of zinc electroplated steel sheet having excellent chemical conversion treatability
JPH02118096A (en) Production of zn alloy electroplated steel sheet having superior chemical convertibility
JPH0713317B2 (en) Zinc-based alloy electroplated steel sheet with excellent powdering resistance and crater resistance
JPH02104695A (en) Black surface-treated steel material and production thereof
JPS6199691A (en) Steel sheet electroplated with combined layer
JPH01159398A (en) Surface treated steel sheet having superior suitability to phosphating
JPH11106940A (en) Zinc-nickel plated steel sheet having excellent waterproof secondary adhesiveness

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees