JPS6196773A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6196773A
JPS6196773A JP59216329A JP21632984A JPS6196773A JP S6196773 A JPS6196773 A JP S6196773A JP 59216329 A JP59216329 A JP 59216329A JP 21632984 A JP21632984 A JP 21632984A JP S6196773 A JPS6196773 A JP S6196773A
Authority
JP
Japan
Prior art keywords
junction
laser
type layer
layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59216329A
Other languages
Japanese (ja)
Other versions
JPH065780B2 (en
Inventor
Sunao Matsubara
松原 直
Tadashi Saito
忠 斉藤
Juichi Shimada
嶋田 寿一
Shinichi Muramatsu
信一 村松
Haruo Ito
晴夫 伊藤
Nobuo Nakamura
信夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59216329A priority Critical patent/JPH065780B2/en
Publication of JPS6196773A publication Critical patent/JPS6196773A/en
Publication of JPH065780B2 publication Critical patent/JPH065780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To impart ohmic characteristic by heat treating only a P-N junction portion by a laser of short wavelength to reduce the electric resistance of the P-N junction. CONSTITUTION:A glass plate 1 formed with a transparent electrode 2 is used as a substrate, and an N type layer 3 and a P type layer 4 are formed by a plasma CVD method used for a glow discharge on the substrate. Then, an excima laser having 350nm of wavelength is simultaneously emitted to the P type layer and the N type layer which include the P-N junction to improve the ohmic characteristic of the low resistance film and the P-N junction of the P type layer 7 and the N type layer 6. Eventually, aluminum electrode 5 are deposited on both. As a result that the laser is emitted, the ohmic characteristic is improved, and the series resistance of a P-N diode decreases to improve the ohmic characteristic of the P-N junction.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体装置の製造方法に関し、詳しくは、オ
ーミック性が良いpn接合又はnp接合を有する半導体
部を含有する半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a method of manufacturing a semiconductor device containing a semiconductor portion having a pn junction or an np junction with good ohmic properties.

〔発明の背景〕[Background of the invention]

オーミック性が良いpn接合又はnp接合が要求される
ものの例として、いわゆるタンデム型のアモルファスシ
リコン太陽電池がある(特公昭55−125680およ
び同58−116779参照)。
An example of a device that requires a pn junction or an np junction with good ohmic properties is a so-called tandem type amorphous silicon solar cell (see Japanese Patent Publications No. 55-125680 and No. 58-116779).

この太陽電池の構造は、通常、ガラス基板/透明電極/
pin/pin/・・・・・・/金属電極から構成され
、pinの光電変換素子が二段以上に積層され電気的に
直列接続となっている。このため、p及びn層の低抵抗
化とともに、pn接合部のオーミック性の向上が重要で
ある。従来用いられているp層は約10Ω・cm、n層
は10〜1Ω・cmと高く、直列抵抗やオーミック性不
良の為、太陽電池の出力特性の性能に問題があった。
The structure of this solar cell is usually a glass substrate/transparent electrode/
It is composed of pin/pin/.../metal electrodes, and the pin photoelectric conversion elements are stacked in two or more stages and electrically connected in series. Therefore, it is important to reduce the resistance of the p and n layers and to improve the ohmic properties of the pn junction. The conventionally used p-layer has a high resistance of about 10 Ω·cm, and the n-layer has a high resistance of 10 to 1 Ω·cm, which causes problems in the output characteristics of solar cells due to series resistance and poor ohmic properties.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、かかる従来の問題点を解決し、pn接
合層の低抵抗化とpn接合部のオーミック性向上を形成
できる半導体装置の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that solves the conventional problems and can lower the resistance of the pn junction layer and improve the ohmic properties of the pn junction.

〔発明の概要〕[Summary of the invention]

従来、半導体膜の低抵抗化を実現し、かつpn接合部の
オーミック性を向上させる方法として熱処理法がある。
Conventionally, there is a heat treatment method as a method for realizing lower resistance of a semiconductor film and improving ohmic properties of a pn junction.

しかし、アモルファス膜の場合、通常の電気炉を用いる
長時間熱処理では、活性層であるノンドープ層が変質し
、太陽電池性能が劣化してしまう。この点を解決するた
め、本発明では、熱処理時間が1秒以下のレーザを用い
た短時間熱処理法を用いる。レーザとして、パルスレー
ザとCWレーザがあり、CWの場合、走査速度を早くす
れば実質的に短時間の熱処理が可能である。
However, in the case of an amorphous film, long-term heat treatment using a normal electric furnace causes the non-doped active layer to change in quality and deteriorate the solar cell performance. In order to solve this problem, the present invention uses a short-time heat treatment method using a laser in which the heat treatment time is 1 second or less. Lasers include pulsed lasers and CW lasers, and in the case of CW, heat treatment can be performed in a substantially short time if the scanning speed is increased.

かかるレーザの例として次のものがある。パルスレーザ
として、エキシマレーザ(波長157〜3511m)、
ルビーレーザ(694nm)、ネオジウムYAG(26
6,532,1064nm)、ガラスレーザ(5a 1
nm)やアレキサンドライトレーザ(700〜818 
nm)などがある。OWレーザとして、Arイオンレー
ザ(257nm)やHeNev−ザ(633nm)など
がある。今迄、アモルファスシリコンのレーザアニール
としてQスイッチのNd: YAGL/−ザ(1064
nm)が用いられた例は知られていたが、このような長
波長光では、アモルファスシリコン模の吸収係数が小さ
く、膜全体に光が吸収されるため、極めて薄いp、n膜
のみを処理することは出来なかった。従って、良好な太
陽電池性能は得られていない。
Examples of such lasers include: As a pulse laser, excimer laser (wavelength 157 to 3511 m),
Ruby laser (694 nm), neodymium YAG (26
6,532,1064nm), glass laser (5a 1
nm) or alexandrite laser (700-818 nm)
nm) etc. Examples of the OW laser include an Ar ion laser (257 nm) and a HeNev laser (633 nm). Until now, Q-switch Nd:YAGL/-The(1064
There were known examples in which amorphous silicon was used for such long wavelength light, but since the absorption coefficient of the amorphous silicon model was small and the light was absorbed by the entire film, it was difficult to treat only extremely thin p and n films. I couldn't do it. Therefore, good solar cell performance has not been obtained.

アモルファスシリコン太陽電池において、レーザアニー
ルするpn接合部を含めたp層とn層の全膜厚は20〜
4 Q nmである。このため、上記各種レーザ光の中
で、波長400 nm以下のレーザ光を用いれば吸収係
数IQcm−”  となシ光の吸収深さは約IQnmで
、縦方向の上部半導体層のみ熱処理できるなどの利点を
有する。これに適したレーザとして、エキシマレーザ(
波長二重型で266nm)がある。特に、エキシマレー
ザは励起ガスの種類を変えて、発振波長を変えることが
可能である。例えば、F2(157nm)、AnF(1
93nm)、Kr01 (222nm)、l(IP(2
48nm’)、XeBr(282nm)、Xe01 (
308nm)とXeF (351nm)で出力も数十W
迄の大出力で大口径のレーザが得られる。
In amorphous silicon solar cells, the total thickness of the p layer and n layer including the pn junction to be laser annealed is 20~
4 Q nm. Therefore, among the various laser beams mentioned above, if a laser beam with a wavelength of 400 nm or less is used, the absorption coefficient of the light will be IQcm-''. The excimer laser (
There is a wavelength dual type (266 nm). In particular, the oscillation wavelength of excimer lasers can be changed by changing the type of excitation gas. For example, F2 (157 nm), AnF (1
93 nm), Kr01 (222 nm), l(IP(2
48nm'), XeBr (282nm), Xe01 (
308nm) and XeF (351nm) with an output of several tens of W.
A large diameter laser with high output can be obtained.

本発明は、かかる波長が400 nm以下の短波長のレ
ーザを用い、pn接合部分のみを熱処理することによシ
、pn接合の電気抵抗を下げ、オーミックな特性を与え
ることを特徴としている。半導体膜として、B又はAI
!などのp形不純物、P、又Si膜中に含有させる工程
として、プラズマOVDなどの膜形成中にガスから導入
する方法とノンドープ又は低濃度ドープ層中にイオン打
込み法で導入する方法などがある。
The present invention is characterized by using a laser having a short wavelength of 400 nm or less and heat-treating only the pn junction, thereby lowering the electrical resistance of the pn junction and giving it ohmic characteristics. As a semiconductor film, B or AI
! There are two methods for incorporating p-type impurities such as P and P into the Si film: a method of introducing them from a gas during film formation such as plasma OVD, and a method of introducing them into a non-doped or lightly doped layer by ion implantation. .

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1 第1図に示したように、ガラス板1に透明電極2が形成
されたものを基板として用い、該基板上にグロー放電を
用いるプラズマOVD法によln形層3、p形M4を形
成した。第1図の(b)は、その後、波長350 nm
のエキシマレーザでpn接合を含むp層とn層の二層を
同時に照射し、9層7と0層6の低抵抗膜とpn接合の
オーミック性の向上を図った。最後に、第1図(al及
び第1図(b)の両方にAI!電極5を蒸着した。第2
図は、第1図のレーザ照射が@(第1図(s) )及び
有(第1図(b))の時のpn形ダイオードの直列抵抗
及びオーミック性を調べた電流−電圧特性である。第2
図(a)の曲線は、レーザ照射が無い時の曲線で、第2
図(b)の曲線は、レーザ照射が有る時の曲線である。
Example 1 As shown in FIG. 1, a glass plate 1 on which a transparent electrode 2 is formed is used as a substrate, and an ln-type layer 3 and a p-type M4 are deposited on the substrate by a plasma OVD method using glow discharge. was formed. (b) of FIG. 1 is then shown at a wavelength of 350 nm.
The two layers, the p layer and the n layer, including the pn junction, were simultaneously irradiated with an excimer laser to improve the ohmic properties of the low resistance films of the 9th layer 7 and 0th layer 6 and the pn junction. Finally, the AI! electrode 5 was deposited on both FIG. 1(al) and FIG. 1(b).
The figure shows the current-voltage characteristics obtained by examining the series resistance and ohmic properties of the pn-type diode when the laser irradiation in Figure 1 is @ (Figure 1 (s)) and with (Figure 1 (b)). . Second
The curve in figure (a) is the curve when there is no laser irradiation, and the second
The curve in Figure (b) is the curve when laser irradiation is present.

レーザ照射した結果、オーミック性が向上した。これに
より、pn形ダイオードの直列抵抗が低下し、pn接合
部のオーミック性が改善された。
As a result of laser irradiation, ohmic properties improved. This reduced the series resistance of the pn type diode and improved the ohmic properties of the pn junction.

実施例2 タンデム型のアモルファスシリコン太陽電池の製造方法
を示す。第3図(C)は、ガラス板11に透明電極12
が形成されたものを基板として用い、該基板上にプラズ
マOVD法によ、9p形層工3、n形層14、n形層1
5、p形層16、n形層17、そしてn形層18を順次
@層し、最後にA4電極19を蒸着し、光電変換素子p
in層が二段になったタンデム型太@電池である。第3
図(d)は、2g3図(C)の1層14及び9層15の
ptt接合部を含有するpn層の二層をエキシマレーザ
で照射し、その後、1層17.1層18を順次積層し、
最後に1電極19を蒸着したタンデム型太陽電池である
。第4図は、第3図(C)及び第3図(d)のタンデム
型太陽電池の電流−電圧特性を示した。
Example 2 A method for manufacturing a tandem type amorphous silicon solar cell is shown. FIG. 3(C) shows a transparent electrode 12 on a glass plate 11.
A 9p-type layer 3, an n-type layer 14, and an n-type layer 1 are formed on the substrate by plasma OVD method.
5. The p-type layer 16, the n-type layer 17, and the n-type layer 18 are layered one after another, and finally the A4 electrode 19 is deposited to form the photoelectric conversion element p.
It is a tandem type thick @ battery with two layers of inner layers. Third
Figure (d) shows that the two pn layers containing the PTT junctions of layer 1 14 and layer 9 15 in Figure 2g3 (C) are irradiated with an excimer laser, and then layer 1 17 and layer 1 18 are sequentially laminated. death,
This is a tandem solar cell in which one electrode 19 is finally deposited. FIG. 4 shows the current-voltage characteristics of the tandem solar cells shown in FIGS. 3(C) and 3(d).

第4図(C)は、pn接合部をレーザアニールしていな
い太陽電池曲線で、第4図(d)はレーザアニールをし
た太陽電池曲線である。レーザアニールした(d)の曲
線が、太陽電池のシリーズ抵抗が減少し、かつオーミッ
ク性が改善された。このため、太陽電池の曲線因子が0
.45から0.57と大幅に改善し、光電変換効率も5
.6チから6.89gと向上した。
FIG. 4(C) is a solar cell curve without laser annealing the pn junction, and FIG. 4(d) is a solar cell curve with laser annealing. The laser annealed curve (d) shows that the series resistance of the solar cell is reduced and the ohmic properties are improved. Therefore, the fill factor of the solar cell is 0.
.. Significant improvement from 45 to 0.57, and photoelectric conversion efficiency was also 5.
.. It improved from 6 inches to 6.89g.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、pn接合(又はnp接合)を有するp
層及びn層の二層をレーザアニール処理で、同時に低抵
抗なp層及びn層を作製でき、かつpn接合(又はnp
接合)部のオーミック性を改善できる。そして極めて薄
い上層部半導体層のみを処理できるため、活性層である
ノンドープ層。     が変質することがない。
According to the present invention, p having a pn junction (or np junction)
By laser annealing two layers, the p-layer and the n-layer, it is possible to simultaneously create a low-resistance p-layer and n-layer, and to form a p-n junction (or np-layer).
The ohmic properties of the joint) can be improved. And since only the extremely thin upper semiconductor layer can be processed, the active layer is a non-doped layer. will not change in quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第3図は本発明の異なる実施例を示す工程図
であり、第2図及び第4図は本発明の詳細な説明するた
めの図である。 1.11・・・カラス板、2,12・・・透F93電極
、3゜6・・・n形層、4,7・・・p形層、5,19
・・・Al電極、13,16・・・p形層、14.17
・・・n形層、15.18・・・n形層。
1 and 3 are process diagrams showing different embodiments of the present invention, and FIGS. 2 and 4 are diagrams for explaining the present invention in detail. 1.11... Glass plate, 2,12... Transparent F93 electrode, 3゜6... N-type layer, 4,7... P-type layer, 5,19
...Al electrode, 13,16...p-type layer, 14.17
... n-type layer, 15.18... n-type layer.

Claims (1)

【特許請求の範囲】[Claims] 1、n形もしくはp形不純物を含有するシリコンを主体
とする非単結晶相で構成されたnp接合またはpn接合
を有する半導体膜に、波長400nm以下の光を照射す
ることにより、低抵抗でオーミックなnp接合またはp
n接合を得ることを特徴とする半導体装置の製造方法。
1. By irradiating a semiconductor film with an np junction or pn junction, which is composed of a non-single crystal phase mainly composed of silicon containing n-type or p-type impurities, with light of a wavelength of 400 nm or less, it becomes ohmic with low resistance. np junction or p
A method for manufacturing a semiconductor device characterized by obtaining an n-junction.
JP59216329A 1984-10-17 1984-10-17 Method for manufacturing semiconductor device Expired - Lifetime JPH065780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59216329A JPH065780B2 (en) 1984-10-17 1984-10-17 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59216329A JPH065780B2 (en) 1984-10-17 1984-10-17 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS6196773A true JPS6196773A (en) 1986-05-15
JPH065780B2 JPH065780B2 (en) 1994-01-19

Family

ID=16686824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59216329A Expired - Lifetime JPH065780B2 (en) 1984-10-17 1984-10-17 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH065780B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133578A (en) * 1986-11-25 1988-06-06 Semiconductor Energy Lab Co Ltd Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681981A (en) * 1979-09-21 1981-07-04 Messerschmitt Boelkow Blohm Semiconductor forming element for converting light to electric energy
JPS5745980A (en) * 1980-09-02 1982-03-16 Mitsubishi Electric Corp Amorphous solar battery and manufacture thereof
JPS5799729A (en) * 1981-10-20 1982-06-21 Shunpei Yamazaki Manufacture of semi-amorphous semiconductor
JPS58122783A (en) * 1982-01-14 1983-07-21 Sanyo Electric Co Ltd Photovoltaic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681981A (en) * 1979-09-21 1981-07-04 Messerschmitt Boelkow Blohm Semiconductor forming element for converting light to electric energy
JPS5745980A (en) * 1980-09-02 1982-03-16 Mitsubishi Electric Corp Amorphous solar battery and manufacture thereof
JPS5799729A (en) * 1981-10-20 1982-06-21 Shunpei Yamazaki Manufacture of semi-amorphous semiconductor
JPS58122783A (en) * 1982-01-14 1983-07-21 Sanyo Electric Co Ltd Photovoltaic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133578A (en) * 1986-11-25 1988-06-06 Semiconductor Energy Lab Co Ltd Semiconductor device

Also Published As

Publication number Publication date
JPH065780B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
EP1727211B1 (en) Method of fabricating a thin-film solar cell, and thin-film solar cell
US4668840A (en) Photovoltaic device
US20050272175A1 (en) Laser structuring for manufacture of thin film silicon solar cells
TW201349547A (en) Method for forming a solar cell with a selective emitter
RU2555212C2 (en) Heterojunction photovoltaic cell having back contact
KR20090110022A (en) Method for forming selective emitter of solar cell using laser annealing and Method for manufacturing solar cell using the same
JPWO2006087786A1 (en) Manufacturing method of solar cell
CN115188837B (en) Back contact solar cell, preparation method and cell assembly
JPS60202931A (en) Manufacture of semiconductor device
JPS6196773A (en) Manufacture of semiconductor device
JP2585403B2 (en) Solar cell manufacturing method
JPH0529638A (en) Manufacture of photoelectric transducer
KR102214451B1 (en) Method of forming local back surface field of solar cell using pulsed laser and solar cell including local back surface field formed thereby
JP3281760B2 (en) Method for manufacturing photovoltaic device
JPS5810872A (en) Manufacture of solar battery
JPS6184073A (en) Manufacture of semiconductor device
JPS63170976A (en) Manufacture of a-si photodiode
JP2771812B2 (en) Method for manufacturing semiconductor device
JPS61231772A (en) Manufacture of semiconductor device
JPH0515073B2 (en)
JPH0682856B2 (en) Semiconductor device manufacturing method
JPS6158278A (en) Manufacture of semiconductor device
JPS63133578A (en) Semiconductor device
JPS6158277A (en) Semiconductor device
JPH0685292A (en) Manufacture of amorphous silicon solar cell

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term