JPS6196094A - Electrolytic decomposition apparatus - Google Patents

Electrolytic decomposition apparatus

Info

Publication number
JPS6196094A
JPS6196094A JP59217821A JP21782184A JPS6196094A JP S6196094 A JPS6196094 A JP S6196094A JP 59217821 A JP59217821 A JP 59217821A JP 21782184 A JP21782184 A JP 21782184A JP S6196094 A JPS6196094 A JP S6196094A
Authority
JP
Japan
Prior art keywords
solar cell
electrolyte
cell
electrolytic
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59217821A
Other languages
Japanese (ja)
Other versions
JPH0631453B2 (en
Inventor
Takeshi Takahama
豪 高濱
Masao Isomura
雅夫 磯村
Hisaki Tarui
久樹 樽井
Shinya Tsuda
津田 信哉
Michitoshi Onishi
大西 三千年
Yukinori Kuwano
桑野 幸徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59217821A priority Critical patent/JPH0631453B2/en
Publication of JPS6196094A publication Critical patent/JPS6196094A/en
Publication of JPH0631453B2 publication Critical patent/JPH0631453B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To reduce the scale of whole electrolytic equipment, and to eliminate useless power loss due to lean wire, by providing solar cell in electrolytic cell in said equipment using solar cell as electric source. CONSTITUTION:The electric source 13 contg. solar cell of almost half circle arc state in longitudinal sectional shape is provided on the surface of an electrolyte 12, in the electrolytic cell 11 contg. electrolyte 12. Top end layer of the source 13 is made of light transmissive and insulating substrate 14, and both ends thereof are protruded from surface of the electrolyte 12. Amorphous photodetecting surface of the solar cell 15 is piled to underside of the substrate 14, and the underside is covered with an electrolyte resistant and insulating protective sheet 16. The under surface of the sheet 16 is covered with electrode sheets 17, 17 made of metal such as Pt, Au without corroded by electrolyte, and the sheet are connected to a positive pole 15a and a negative pole 15b of the cell 15 respectively. Since lead wire for connecting electrode and solar cell is unnecessary, power is not consumed at all by lead wire and the source 13 is assembled in the cell 11, the scale of equipment can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電解液槽内に電源装置を設けることによって装
置全体を小型化できる太陽電池利用の電気分解装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrolysis device using solar cells, which can downsize the entire device by providing a power supply device in an electrolytic solution tank.

〔従来技術〕[Prior art]

一般に電解液の電気分解が工業的に行われる場合には電
解槽内に電解液を満たし、ここに電解電極をさしこんで
該電極に電解液槽外部に設けられた電源より直流電流を
通流することによって行われる。
Generally, when electrolysis of an electrolytic solution is carried out industrially, an electrolytic tank is filled with the electrolytic solution, an electrolytic electrode is inserted into the tank, and a direct current is passed through the electrode from a power source installed outside the electrolytic tank. It is done by flowing.

ところで実際に使用し易い電源は交流電源であるから電
源装置に整流器を設けて整流する必要があり、電源設備
も大がかりなものとなる。
However, since the power source that is actually easy to use is an AC power source, it is necessary to provide a rectifier in the power supply device for rectification, and the power supply equipment becomes large-scale.

以上のような点に鑑み省エネルギー化、設備の簡素化の
考えから太陽光エネルギーを利用した太陽電池あ電気分
解装置の電源として用いる方法が考えられてきている。
In view of the above points, and from the viewpoint of energy saving and equipment simplification, methods have been considered for using solar cells as a power source for electrolyzers that utilize solar energy.

従来このような電気分解装置としては特公昭59−27
391号に示されているようなものがあった。第3図は
その装置を示し、図においてlは電解液槽であり、この
中には電解液2が満たされている。
Conventionally, such an electrolysis device was manufactured by the Special Publication Publication No.
There was something like the one shown in No. 391. FIG. 3 shows the apparatus, and in the figure, l is an electrolytic solution tank, which is filled with an electrolytic solution 2.

電解液槽1内には陽極板3と陰極板4とが電解液2中に
離隔されて設けられている。そして電解液槽1の外部に
は太陽電池5が設けられており、該太陽電池5の正極5
a及び負極5bは各々陽極板3及び陰極板4とリード線
7.7で接続されている。
In the electrolytic solution tank 1, an anode plate 3 and a cathode plate 4 are provided in an electrolytic solution 2 and separated from each other. A solar cell 5 is provided outside the electrolyte tank 1, and a positive electrode 5 of the solar cell 5 is provided.
a and the negative electrode 5b are connected to the anode plate 3 and the cathode plate 4, respectively, by lead wires 7.7.

以上のような電気分解装置においては、太陽光が太陽電
池5の受光面にあたり、ここで光エネルギーが直流起電
力に変換され、これによる直流電流はリード線7、陽極
板3から電解液2を経て陰極板4、リード線7を通って
負極6bへ流れる。このようにして陽極板3、陰極板4
の外面付近で電解液の電気分解がなされることになる。
In the electrolyzer as described above, sunlight hits the light-receiving surface of the solar cell 5, where the light energy is converted into DC electromotive force, and the resulting DC current flows through the lead wire 7 and the anode plate 3 to the electrolyte 2. Then, it flows through the cathode plate 4 and lead wire 7 to the negative electrode 6b. In this way, the anode plate 3, the cathode plate 4
The electrolyte will be electrolyzed near the outer surface of the tube.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上述のような従来の太陽電池を電源とした
電気分解装置においても電源を電解液槽の外部に設ける
必要があり、従ってそのための設置空間が必要となると
ともにリード線で電力消失を生じることになる。
However, even in the conventional electrolyzer that uses solar cells as a power source, as described above, the power source must be installed outside the electrolyte tank, which requires installation space and causes power loss in the lead wires. Become.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は以上のような従来の問題点に鑑みてなされたも
のであって、太陽電池の電源を電解液槽内に設けること
によって設備を小型化できるとともにリード線による電
力損失のない電気分解装置を提供することを目的として
いる。
The present invention has been made in view of the above-mentioned conventional problems, and provides an electrolyzer that can downsize the equipment by providing the power source of the solar cell in the electrolyte tank and eliminates power loss due to lead wires. is intended to provide.

本発明に係る電気分解装置は太陽電池を電源とする電気
分解装置において太陽電池を電解液から保護する耐電解
液性の絶縁性保護層が太陽電池の少なくとも一側に積層
形成されている電源装置と、前記太陽電池の両電極の各
々に接続され、相互に絶縁されている電極板とを電解液
槽内に設けてなることを特徴としている。
The electrolyzer according to the present invention is an electrolyzer that uses a solar cell as a power source, and is a power supply device in which an electrolyte-resistant insulating protective layer that protects the solar cell from the electrolyte is laminated on at least one side of the solar cell. and electrode plates connected to each of the two electrodes of the solar cell and insulated from each other are provided in an electrolytic solution tank.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面によって説明する。 The present invention will be explained below with reference to drawings showing embodiments thereof.

第1図ば本発明を水の電気分解に利用した場合の一実施
例を示す電気分解装置の概略側断面図である。図におい
て11は電解液槽であり、電解液槽11にはイオン化傾
向の大きいイオンを含んだ水例えばINのNa2504
熔液等からなる電解液12が満たされている。電解液1
2の表面部には縦断面形状が略半円弧状の3層構造とな
った電源装置13が設けられている。該電源装置13の
最上層は透光性の絶縁性基板14となっており、該絶縁
性基板14の両側端は電解液120表面より少し突出さ
せてその上面を電解液12外に露出させである。
FIG. 1 is a schematic side sectional view of an electrolyzer showing an embodiment in which the present invention is utilized for water electrolysis. In the figure, 11 is an electrolytic solution tank, and the electrolytic solution tank 11 contains water containing ions with a strong ionization tendency, such as IN Na2504.
It is filled with an electrolytic solution 12 made of a molten liquid or the like. Electrolyte 1
A power supply device 13 having a three-layer structure with a substantially semi-circular longitudinal cross-sectional shape is provided on the surface of the power supply device 2 . The top layer of the power supply device 13 is a translucent insulating substrate 14, and both ends of the insulating substrate 14 are made to protrude slightly from the surface of the electrolyte 120 so that the upper surface thereof is exposed outside the electrolyte 12. be.

また絶縁性基板14の下側には非晶質の太陽電池15が
受光面を絶縁性基板14側に向けて積層形成されている
。さらに太陽電池15の下側には耐電解液性の絶縁性保
護層16が被着形成されている。電源装置13の前後の
端部(図面の表裏方向端部)は耐電解液性の物体で塞が
れていて電解液12が絶縁性基板14の上面に進入しな
いようになっている。
Further, an amorphous solar cell 15 is stacked on the lower side of the insulating substrate 14 with its light-receiving surface facing the insulating substrate 14 side. Further, an electrolyte-resistant insulating protective layer 16 is formed on the lower side of the solar cell 15 . The front and rear ends of the power supply device 13 (ends in the front and back directions in the drawing) are covered with electrolyte-resistant objects to prevent the electrolyte 12 from entering the upper surface of the insulating substrate 14.

そして絶縁性保護層16の下面には、これに沿うように
耐Na2504熔液性のある金属例えばPt、Au等か
らなる電極板17.17が被着形成しである。電極板1
7.17の幅寸法は絶縁性基板の幅寸法のほぼ1/3で
あって適当な距離を隔てて絶縁されている。そして電極
板17.17が太陽電池15の正、負極15a、15b
の各々に接続されている。
On the lower surface of the insulating protective layer 16, an electrode plate 17.17 made of a metal resistant to Na2504 solution, such as Pt, Au, etc., is adhered along the lower surface. Electrode plate 1
The width dimension of 7.17 is approximately 1/3 of the width dimension of the insulating substrate, and is insulated at an appropriate distance. The electrode plates 17.17 are the positive and negative electrodes 15a and 15b of the solar cell 15.
are connected to each of the

次にこのように形成された電気分解装置の作用について
説明する。第1図に白抜矢符で示すように投射された太
陽光が透光性の絶縁性基板14を透過して非晶質太陽電
池15の受光面に入射され、これによって太陽電池15
に起電力が発生する。該起電力によって生じる電流は太
陽電池15の正極15aから電極板17、電解液12、
電極板17、を経て負極15bに流れる。そうすると電
極板17.17の下面付近の電解液12に電気分解反応
が生し正極の電VF8坂に水素が発生し、また負極の電
極板に酸素が発生することになる。
Next, the operation of the electrolyzer formed in this manner will be explained. As shown by the white arrow in FIG.
An electromotive force is generated. A current generated by the electromotive force flows from the positive electrode 15a of the solar cell 15 to the electrode plate 17, the electrolytic solution 12,
It flows to the negative electrode 15b via the electrode plate 17. Then, an electrolytic reaction occurs in the electrolytic solution 12 near the lower surface of the electrode plate 17, 17, hydrogen is generated on the positive electrode VF8 slope, and oxygen is generated on the negative electrode plate.

第2図は本発明の他の実施例を示す。この実施例におけ
る電気分解装置は上記実施例における絶縁性基板、非晶
質太陽電池、絶縁性保護層をすべて平板状として、電解
液中に完全に浸漬したものであり、従って上側の絶縁性
保護層26も耐電解液性のものとしている。即ち第2図
において、三層状の電源装置23が電解液槽21内の底
部に設けられており、該電源装置23は下側から耐電解
液性の絶縁性基板24.非晶質太陽電池25.透光性の
絶縁性保護ff126をこの順で積層してなるものであ
る。
FIG. 2 shows another embodiment of the invention. The electrolysis device in this example has the insulating substrate, amorphous solar cell, and insulating protective layer in the above example all in the form of a flat plate, completely immersed in the electrolytic solution, and therefore the upper insulating protective layer is completely immersed in the electrolytic solution. The layer 26 is also made resistant to electrolyte. That is, in FIG. 2, a three-layer power supply device 23 is provided at the bottom of the electrolyte tank 21, and the power supply device 23 is connected from the bottom to an electrolyte-resistant insulating substrate 24. Amorphous solar cell 25. It is formed by laminating light-transmitting insulating protection ff126 in this order.

そしてこの三層構造の電源装置23の両側端部は板内方
に向かって段上りの階段状に形成され、この端部から絶
縁性保護1’ti26の縁部を覆うように電極板27.
27が被着形成され太陽電池25の端縁部及び上記正、
負極25a、25bを覆うと共に太陽電池25の正、負
極25a 、 25bの各々に接続されている。
Both ends of the power supply device 23 having a three-layer structure are formed in the shape of a step rising toward the inside of the plate, and the electrode plate 27.
27 is deposited on the edge of the solar cell 25 and the above positive,
It covers the negative electrodes 25a and 25b and is connected to each of the positive and negative electrodes 25a and 25b of the solar cell 25.

以上のように構成された本実施例の装置においては上方
よりの投射光が透光性の絶縁性保護層26を通り太陽電
池25の受光面に入射されることにより前記実施例と同
様にして電極板27 、27の上面付近の電解液22に
電気分解反応が生じる。
In the device of this embodiment configured as described above, the projected light from above passes through the transparent insulating protective layer 26 and enters the light-receiving surface of the solar cell 25, in the same manner as in the previous embodiment. An electrolytic reaction occurs in the electrolytic solution 22 near the upper surfaces of the electrode plates 27 , 27 .

なお以上の実施例における非晶質太陽電池は板状の太陽
電池複数個を直列又は並列に接続したものであってもよ
い。これにより太陽電池の個数に応じた所望の電圧又は
電流容量を得ることができる。
Note that the amorphous solar cell in the above embodiments may be one in which a plurality of plate-shaped solar cells are connected in series or in parallel. Thereby, a desired voltage or current capacity can be obtained depending on the number of solar cells.

また上記電源装置は太陽電池をその受光面が相反する方
向を向くように積層形成し、該受光面上に透光性の絶縁
性保護層を被着形成させ、太陽光が上記受光面に両方向
から投射されるようにしてもよい。
In addition, in the above power supply device, solar cells are stacked so that their light-receiving surfaces face in opposite directions, and a light-transmitting insulating protective layer is formed on the light-receiving surface, so that sunlight can be directed toward the light-receiving surface in both directions. It may also be projected from.

さらにまた上記太陽電池は結晶性の太陽電池であっても
よい。
Furthermore, the solar cell may be a crystalline solar cell.

〔効果〕〔effect〕

動作電圧0.6■、動作電流15m^/c112の非晶
質太陽電池3個を直列に接続し動作電圧1.8 V、動
Three amorphous solar cells with an operating voltage of 0.6■ and an operating current of 15 m^/c112 are connected in series, and the operating voltage is 1.8 V.

作電流5a+^/口2のものとした場合には水素の発生
量は下記(11式のようになる。
When the operating current is 5a+^/port 2, the amount of hydrogen generated is as shown below (Equation 11).

(〔電流密度)X (1m2の面積(aj) )X(l
hrの時間(秒))X(1蒙01の体積〕)/+(1つ
の水素分子発生に必要な電子数〕×〔電子の電荷〕×〔
アボダドロ数) ) = (5xlO−3x10’ x
3600x22.4) / (2xl、6 xlO’9
 x6.02X 1023= 20.94! / hr
−rtr    −illここで光エネルギーから水素
の燃焼熱エネルギーへの変換効率を求めると下記の(2
)式のようになる。
([Current density)X (Area of 1 m2 (aj))X(l
hr time (seconds)) x (volume of 1 mm) / + (number of electrons required to generate one hydrogen molecule) x [electron charge] x [
Avodadoro number) ) = (5xlO-3x10' x
3600x22.4) / (2xl, 6xlO'9
x6.02X 1023=20.94! /hr
-rtr -illHere, the conversion efficiency from light energy to hydrogen combustion heat energy is calculated as follows (2
) is as follows.

(〔式(1)の水素発生量〕×〔水素の分子量〕×〔水
素の燃焼熱(cal 7g ) ) x [変換計数]
)/臼molの気体の体積)X(lhrの時間(秒)〕
×〔太陽光エネルギー) ) = (20,9X 2 
X33888X4.19) / (22,4x3600
X103) =0.0736  ・・・(2)従って上
記変換効率は7.36%となり、太陽電池について光エ
ネルギーから電気エネルギーへの変換効率が9%である
から本発明による場合の太陽電池の電気エネルギーから
水素の燃焼工ぶルギーへの変換効率は80%と高いもの
が得られることになる。
([Amount of hydrogen generated in formula (1)] x [molecular weight of hydrogen] x [heat of combustion of hydrogen (cal 7g)) x [conversion factor]
)/volume of gas in mol) x (time in lhr (seconds))
× [Solar energy) ) = (20,9X 2
X33888X4.19) / (22,4x3600
X103) = 0.0736 (2) Therefore, the above conversion efficiency is 7.36%, and since the conversion efficiency of the solar cell from light energy to electrical energy is 9%, the electricity of the solar cell in the case of the present invention is The efficiency of converting energy into hydrogen combustion technology will be as high as 80%.

以上のように本発明は1、太陽電池を電源とした装置を
電解液槽内に設ける構成としたので電解液槽の外部に電
源設備を設ける必要がな(電気分解装置を小型化するこ
とができるとともに、外部電源と電極板を接続するリー
ド線が不要となるのでリード線による電力損失をなくす
ことができ、西効率化が図れる等の効果がある。
As described above, the present invention has a configuration in which a device using a solar cell as a power source is installed inside the electrolyte tank, so there is no need to provide power supply equipment outside the electrolyte tank (it is possible to downsize the electrolyzer). This also eliminates the need for lead wires to connect the external power source and the electrode plate, which eliminates power loss due to lead wires and improves efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電気分解装置の実施例を示す略示側断
面図、第2図は本発明の伯の実施例を示す略示側断面図
、第3図は従来の電気分解装置を示す略示例断面図であ
る。 11.21・・・電解液槽 13.23・・・電源装置
 14.24・・・絶縁性基板 15.25・・・太陽
型/11116.26・・・絶縁性保護層 17.27
・・・電極板 時 許 出願人  三洋電機株式会社 代理人 弁理士  河 野  登 夫 4 l 圀 袖 3 図
Fig. 1 is a schematic side sectional view showing an embodiment of the electrolyzer of the present invention, Fig. 2 is a schematic side sectional view showing a further embodiment of the invention, and Fig. 3 is a schematic side sectional view showing an embodiment of the electrolyzer of the present invention. FIG. 11.21... Electrolyte tank 13.23... Power supply device 14.24... Insulating substrate 15.25... Solar type/11116.26... Insulating protective layer 17.27
...Electrode plate time Applicant Sanyo Electric Co., Ltd. Agent Patent attorney Noboru Kono 4 l Kunisode 3 Figure

Claims (1)

【特許請求の範囲】 1、太陽電池を電源とする電気分解装置において太陽電
池を電解液から保護する耐電解液性の絶縁性保護層が太
陽電池の少なくとも一側に積層形成されている電源装置
と、前記太陽電池の両電極の各々に接続され、相互に絶
縁されている電極板とを電解液槽内に設けてなることを
特徴とする電気分解装置。 2、前記電極板は絶縁性保護層に積層形成されている特
許請求の範囲第1項記載の電気分解装置。 3、前記太陽電池は非晶質太陽電池である特許請求の範
囲第1項記載の電気分解装置。 4、太陽電池を電源とする電気分解装置において太陽電
池を電解液から保護する耐電解液性の絶縁性保護層が太
陽電池の一側に、また透光性を有する絶縁性基板が太陽
電池の他側に積層形成されている電源装置と、前記太陽
電池の両電極の各々に接続され、相互に絶縁されている
電極板とを前記絶縁性基板を受光側に位置させて電解液
槽内に設けていることを特徴とする電気分解装置。 5、前記電極板は絶縁性保護層又は絶縁性基板に積層形
成されている特許請求の範囲第4項記載の電気分解装置
。 6、前記太陽電池は非晶質太陽電池である特許請求の範
囲第4項記載の電気分解装置。
[Scope of Claims] 1. A power supply device in an electrolyzer using a solar cell as a power source, in which an electrolyte-resistant insulating protective layer that protects the solar cell from an electrolyte is laminated on at least one side of the solar cell. and an electrode plate connected to each of the two electrodes of the solar cell and insulated from each other in an electrolytic solution tank. 2. The electrolyzer according to claim 1, wherein the electrode plate is laminated on an insulating protective layer. 3. The electrolyzer according to claim 1, wherein the solar cell is an amorphous solar cell. 4. In an electrolysis device using a solar cell as a power source, an electrolyte-resistant insulating protective layer that protects the solar cell from the electrolyte is placed on one side of the solar cell, and a translucent insulating substrate is placed on one side of the solar cell. A power supply device laminated on the other side and an electrode plate connected to each of the two electrodes of the solar cell and insulated from each other are placed in an electrolytic solution tank with the insulating substrate positioned on the light receiving side. An electrolysis device characterized by: 5. The electrolyzer according to claim 4, wherein the electrode plate is laminated on an insulating protective layer or an insulating substrate. 6. The electrolyzer according to claim 4, wherein the solar cell is an amorphous solar cell.
JP59217821A 1984-10-16 1984-10-16 Electrolyzer Expired - Lifetime JPH0631453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59217821A JPH0631453B2 (en) 1984-10-16 1984-10-16 Electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59217821A JPH0631453B2 (en) 1984-10-16 1984-10-16 Electrolyzer

Publications (2)

Publication Number Publication Date
JPS6196094A true JPS6196094A (en) 1986-05-14
JPH0631453B2 JPH0631453B2 (en) 1994-04-27

Family

ID=16710269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59217821A Expired - Lifetime JPH0631453B2 (en) 1984-10-16 1984-10-16 Electrolyzer

Country Status (1)

Country Link
JP (1) JPH0631453B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038215A1 (en) * 1998-01-23 1999-07-29 Josuke Nakata Solar battery module for optical electrolysis device and optical electrolysis device
WO2005083801A1 (en) * 2004-02-18 2005-09-09 General Motors Corporation Hydrogen generator photovoltaic electrolysis reactor system
US7674358B2 (en) 2004-02-18 2010-03-09 Gm Global Technology Operations, Inc. Method and apparatus for hydrogen generation
US7892407B2 (en) 2004-06-18 2011-02-22 GM Global Technology Operations LLC System and sub-systems for production and use of hydrogen
JP2011097083A (en) * 2001-10-12 2011-05-12 Bogensberger Burkhard Solar electricity generating system
CN116046730A (en) * 2023-04-03 2023-05-02 宁德时代新能源科技股份有限公司 Electrolyte monitoring device, method, storage medium, and program product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163285A (en) * 1980-05-19 1981-12-15 Asahi Chem Ind Co Ltd Electrolytic apparatus
JPS59177385A (en) * 1983-03-25 1984-10-08 Daido Gakuen Device for producing gas by solar light power generation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163285A (en) * 1980-05-19 1981-12-15 Asahi Chem Ind Co Ltd Electrolytic apparatus
JPS59177385A (en) * 1983-03-25 1984-10-08 Daido Gakuen Device for producing gas by solar light power generation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038215A1 (en) * 1998-01-23 1999-07-29 Josuke Nakata Solar battery module for optical electrolysis device and optical electrolysis device
US6198037B1 (en) 1998-01-23 2001-03-06 Josuke Nakata Solar battery module for optical electrolysis device and optical electrolysis device
JP2011097083A (en) * 2001-10-12 2011-05-12 Bogensberger Burkhard Solar electricity generating system
WO2005083801A1 (en) * 2004-02-18 2005-09-09 General Motors Corporation Hydrogen generator photovoltaic electrolysis reactor system
US7459065B2 (en) 2004-02-18 2008-12-02 General Motors Corporation Hydrogen generator photovoltaic electrolysis reactor system
US7674358B2 (en) 2004-02-18 2010-03-09 Gm Global Technology Operations, Inc. Method and apparatus for hydrogen generation
US7892407B2 (en) 2004-06-18 2011-02-22 GM Global Technology Operations LLC System and sub-systems for production and use of hydrogen
CN116046730A (en) * 2023-04-03 2023-05-02 宁德时代新能源科技股份有限公司 Electrolyte monitoring device, method, storage medium, and program product

Also Published As

Publication number Publication date
JPH0631453B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
US7241950B2 (en) Solar cell electrolysis of water to make hydrogen and oxygen
US7674358B2 (en) Method and apparatus for hydrogen generation
US4648955A (en) Planar multi-junction electrochemical cell
SU659110A4 (en) Pressing strainer fuel cell
JP2006508253A (en) Integrated photoelectrochemistry with liquid electrolyte and its system
CN113403630B (en) Hydrogen producing device by catalytic electrolysis
CN101527366B (en) Magaluma fuel cell power supply unit
NZ512475A (en) Sheet metal bipolar plate design for polymer electrolyte membrane fuel cells
JP2000192275A (en) Apparatus for electrolysis of water
KR940010444A (en) Membrane flow cell battery
RU2010148663A (en) BACK-UP POWER SUPPLY WITH ELECTRODE PLATES BATTERED WITH AUXILIARY CONDUCTORS
US10767269B2 (en) Electrolysis device
JPS6196094A (en) Electrolytic decomposition apparatus
FI61525C (en) ELEKTROLYSCELL
JP2004307878A (en) Device for generating hydrogen and oxygen
EP2835449A1 (en) Photovoltaic module for the production of hydrogen
CN215186637U (en) Photovoltaic board wire jumper wiring structure
KR101290575B1 (en) Fuel cell stack including volume change material
JP4328069B2 (en) Distributed power generation system
US4160287A (en) Electrolyzer power supply
CN219800860U (en) Back contact battery, battery pack and photovoltaic system
JPH0111722Y2 (en)
JPH02277592A (en) Water quality improving device
KR100424195B1 (en) Fuel cell separator plate comprising bidirectional slot plate
JPH04231301A (en) Device for photolysis of water

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term