CN215186637U - Photovoltaic board wire jumper wiring structure - Google Patents

Photovoltaic board wire jumper wiring structure Download PDF

Info

Publication number
CN215186637U
CN215186637U CN202121166146.5U CN202121166146U CN215186637U CN 215186637 U CN215186637 U CN 215186637U CN 202121166146 U CN202121166146 U CN 202121166146U CN 215186637 U CN215186637 U CN 215186637U
Authority
CN
China
Prior art keywords
photovoltaic
photovoltaic panel
lead
panels
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202121166146.5U
Other languages
Chinese (zh)
Inventor
王贵忠
李志杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaneng Qingtongxia New Energy Power Generation Co ltd
Original Assignee
Huaneng Qingtongxia New Energy Power Generation Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaneng Qingtongxia New Energy Power Generation Co ltd filed Critical Huaneng Qingtongxia New Energy Power Generation Co ltd
Priority to CN202121166146.5U priority Critical patent/CN215186637U/en
Application granted granted Critical
Publication of CN215186637U publication Critical patent/CN215186637U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A jumper wire connection structure of a photovoltaic panel comprises a photovoltaic panel external positive lead, a photovoltaic panel external negative lead, a photovoltaic panel self-contained negative lead and a photovoltaic panel self-contained positive lead; the photovoltaic panel is connected with the inverter through the photovoltaic panel self-contained cathode lead and the photovoltaic panel self-contained anode lead; sequencing the photovoltaic panels, wherein the inverter is connected with the anode of the first photovoltaic panel through an external anode lead of the photovoltaic panel and is connected with the cathode of the second photovoltaic panel through an external cathode lead of the photovoltaic panel; the photovoltaic panel is provided with a negative lead, the photovoltaic panel is provided with a positive lead, the photovoltaic panels with odd numbers and even numbers are respectively connected in a mode that the positive electrode is connected with the negative electrode, and the two adjacent photovoltaic panels at the tail end are independently connected. The utility model discloses can reduce the loss of electric energy in the cable, save material, reduce construction cost, improve the generated energy.

Description

Photovoltaic board wire jumper wiring structure
Technical Field
The utility model belongs to the photovoltaic power generation field, concretely relates to photovoltaic board wire jumper wiring structure.
Background
In order to adapt to development and requirements, an environment-friendly and energy-saving road is taken, and photovoltaic energy is increasingly constructed and popularized. The application of the photovoltaic energy can realize energy conservation, reduce energy consumption and meet the urgent requirement of protecting the ecological environment.
Photovoltaic power generation is a technology of directly converting light energy into electric energy by using the photovoltaic effect of a semiconductor interface. The solar energy power generation system mainly comprises a solar panel (assembly), a controller and an inverter. The solar cell panels are connected in series and then are packaged and protected to form a large-area solar cell module, and then the solar cell module is matched with components such as a power controller to form the photovoltaic power generation device. When the photovoltaic panel leaves a factory, the back of each photovoltaic panel is provided with a positive outgoing line and a negative outgoing line. The photovoltaic panels are connected through the positive and negative lead-out wires, and the external cables are led into the inverter to complete power generation. However, when wiring is carried out between the photovoltaic panels, the change of the wiring modes of the positive electrode and the negative electrode directly influences the use quantity of the external cables in construction.
SUMMERY OF THE UTILITY MODEL
An object of the utility model is to the problem that the external cable quantity is big among the above-mentioned prior art in the photovoltaic direct current cable construction, electric energy loss is high in the cable, provide a photovoltaic board wire jumper wiring structure, use wire jumper wiring mode, reduce the loss of electric energy in the cable, save material, reduction construction cost improve the generated energy.
In order to achieve the above object, the present invention provides the following technical solutions:
a jumper wire connection structure of a photovoltaic panel comprises a photovoltaic panel external positive lead, a photovoltaic panel external negative lead, a photovoltaic panel self-contained negative lead and a photovoltaic panel self-contained positive lead; the photovoltaic panel is connected with the inverter through the photovoltaic panel self-contained cathode lead and the photovoltaic panel self-contained anode lead; sequencing the photovoltaic panels, wherein the inverter is connected with the anode of the first photovoltaic panel through an external anode lead of the photovoltaic panel and is connected with the cathode of the second photovoltaic panel through an external cathode lead of the photovoltaic panel;
the photovoltaic panel is provided with a negative lead and a positive lead, the photovoltaic panels with odd numbers and even numbers are connected in a mode that the positive and negative electrodes are connected respectively, and two adjacent photovoltaic panels at the tail end are connected independently.
As the utility model discloses photovoltaic board wire jumper wiring structure's an preferred scheme, the external positive lead wire of photovoltaic board, the external negative pole lead wire of photovoltaic board, the photovoltaic board from taking negative pole lead wire and photovoltaic board from taking anodal lead wire and all connecting at the back of photovoltaic board, the anodal and negative pole hookup location setting of photovoltaic board are in both sides.
As the utility model discloses a photovoltaic board wire jumper wiring structure's an preferred scheme, a plurality of photovoltaic board negative pole and negative pole next-door neighbour, positive pole and anodal close proximity of two adjacent photovoltaic boards in the range process.
As the utility model discloses a preferred scheme of photovoltaic board wire jumper wiring structure, if the quantity of photovoltaic board is the even number, and the positive pole of terminal photovoltaic board is connected with the negative pole of preceding photovoltaic board.
As the utility model discloses a photovoltaic board wire jumper wiring structure's an preferred scheme, if photovoltaic board quantity be the odd number, the negative pole of terminal photovoltaic board is connected with the positive pole of preceding photovoltaic board.
As the utility model discloses photovoltaic board wire jumper wiring structure's an preferred scheme, the photovoltaic board be provided with a plurality of row, each row is provided with a plurality of photovoltaic board, the dc-to-ac converter is connected with each row photovoltaic board.
As the utility model discloses photovoltaic board wire jumper wiring structure's an preferred scheme, photovoltaic board quantity in the middle of each row photovoltaic board equals, and photovoltaic board quantity in the middle of each row photovoltaic board is even number or odd.
As the utility model discloses a photovoltaic board wire jumper wiring structure's an preferred scheme, photovoltaic board quantity in the middle of each row photovoltaic board varies, and photovoltaic board quantity in the middle of each row photovoltaic board includes even number and odd number.
Compared with the prior art, the utility model discloses following beneficial effect:
the utility model discloses photovoltaic board wire jumper wiring structure adopts the mode of photovoltaic board wire jumper wiring, has improved just, negative pole wiring mode between the traditional photovoltaic board. According to the principle that the positive electrode and the negative electrode of the photovoltaic panel are connected, a jumper wire connection mode is used, namely odd photovoltaic panels are connected, and even photovoltaic panels are connected. The purpose of saving the using amount of the photovoltaic direct-current cable in construction is achieved, and the construction efficiency is improved. The utility model discloses can reduce the loss of electric energy in the cable, reduce construction cost, improve the generated energy.
Drawings
Fig. 1 is a schematic view of a connection structure of an even number of photovoltaic panels according to an embodiment of the present invention;
fig. 2 is a schematic view of a connection structure of two rows of even-numbered photovoltaic panels according to an embodiment of the present invention;
FIG. 3 is a schematic view of a connection structure of an odd number of photovoltaic panels according to an embodiment of the present invention;
fig. 4 is a schematic view of a connection structure of a double row odd-numbered photovoltaic panel according to an embodiment of the present invention;
in the drawings: 1-a photovoltaic panel; 2, connecting the photovoltaic panel with an anode lead; 3-the photovoltaic panel is externally connected with a negative lead; 4, the photovoltaic panel is provided with a negative lead; 5, the photovoltaic panel is provided with a positive electrode lead; 6-inverter.
Detailed Description
The technical solutions in the embodiments of the present invention will be described clearly and completely with reference to the accompanying drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only some embodiments of the present invention, not all embodiments. Based on the embodiments in the present invention, all other embodiments obtained by a person skilled in the art without creative efforts belong to the protection scope of the present invention.
It should be noted that in the description of the present invention, the terms "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer", etc. indicating the directions or positional relationships are based on the directions or positional relationships shown in the drawings, which are only for convenience of description, and do not indicate or imply that the device or element must have a specific orientation, be constructed and operated in a specific orientation, and thus, should not be construed as limiting the present invention. Furthermore, the terms "first," "second," "third," and "fourth" are used for descriptive purposes only and are not to be construed as indicating or implying relative importance.
Furthermore, it should be noted that, in the description of the present invention, unless otherwise explicitly specified or limited, the terms "constructed," "installed," and "connected" are to be construed broadly, and may be, for example, fixedly connected, detachably connected, or integrally connected; can be mechanically or electrically connected; they may be connected directly or indirectly through intervening media, or they may be interconnected between two elements. The specific meaning of the above terms in the present invention can be understood by those skilled in the art according to specific situations.
The utility model discloses a photovoltaic board wire jumper wiring structure, which comprises a photovoltaic board external positive lead 2, a photovoltaic board external negative lead 3, a photovoltaic board self-contained negative lead 4 and a photovoltaic board self-contained positive lead 5; the photovoltaic panel is connected with the photovoltaic panel 1 through the negative lead 4 and the positive lead 5, and the photovoltaic panel is connected with the inverter 6 through the external positive lead 2 and the external negative lead 3. During connection, the photovoltaic panels 1 are sequenced, then the inverter 6 is connected with the anode of the first photovoltaic panel 1 through the photovoltaic panel external anode lead 2, and is connected with the cathode of the second photovoltaic panel 1 through the photovoltaic panel external cathode lead 3, the photovoltaic panel 1 can be provided with a plurality of rows, each row is provided with a plurality of photovoltaic panels 1, and the inverter 6 is simultaneously connected with each row of photovoltaic panels 1 in the same way. Photovoltaic panels with odd serial numbers and photovoltaic panels with even serial numbers are connected with the photovoltaic panels 1 with the odd serial numbers and the photovoltaic panels with the even serial numbers respectively according to the mode that the positive electrodes are connected with the negative electrodes through the negative electrode lead wires 4 and the positive electrode lead wires 5, and two adjacent photovoltaic panels 1 at the tail ends are connected independently. In the embodiment, a photovoltaic panel external positive lead 2, a photovoltaic panel external negative lead 3, a photovoltaic panel self negative lead 4 and a photovoltaic panel self positive lead 5 are all connected to the back of the photovoltaic panel 1, and the positive and negative connection positions of the photovoltaic panel 1 are arranged on both sides. The negative electrodes and the negative electrodes of the two adjacent photovoltaic panels 1 are adjacent to each other, and the positive electrodes of the two adjacent photovoltaic panels 1 are adjacent to each other in the arrangement process of the plurality of photovoltaic panels 1. If the number of photovoltaic panels 1 is even, the positive pole of the last photovoltaic panel 1 is connected to the negative pole of the previous photovoltaic panel 1. If the number of the photovoltaic panels 1 is odd, the negative electrode of the photovoltaic panel 1 at the tail end is connected with the positive electrode of the previous photovoltaic panel 1. Optionally, the number of the photovoltaic panels 1 in each row of the photovoltaic panels 1 is equal, and the number of the photovoltaic panels 1 in each row of the photovoltaic panels 1 is even or odd. Alternatively, the number of photovoltaic panels 1 in each row of photovoltaic panels 1 is different, and the number of photovoltaic panels 1 in each row of photovoltaic panels 1 includes even numbers and odd numbers.
The first embodiment is as follows: referring to fig. 1, the photovoltaic panel jumper wiring structure can be realized in such a way that a photovoltaic panel with a negative lead 4 and a photovoltaic panel with a positive lead 5 are connected to the back of a photovoltaic panel 1, the photovoltaic panel with the negative lead 4 and the photovoltaic panel with the positive lead 5 are arranged on two sides of the photovoltaic panel 1, an external positive lead 2 of the photovoltaic panel is connected with an inverter 6 through the photovoltaic panel 1 arranged on a first position, and an external negative lead 3 of the photovoltaic panel is connected with the inverter 6 through the photovoltaic panel 1 arranged on a second position. The two photovoltaic panels 1 at the extreme positions are connected through a negative lead 4 of the photovoltaic panel and a positive lead 5 of the photovoltaic panel.
Example two: as can be seen from fig. 1 and 2, when the arrangement of the photovoltaic panels 1 on the photovoltaic support is a double-row arrangement, the photovoltaic panel jumper connection structure in the first embodiment may also be used for connection.
Example three: as shown in fig. 1 and fig. 3, when the number of the connection blocks of the photovoltaic panel 1 is odd, the connection can also be performed by using the jumper connection structure of the photovoltaic panel according to the first embodiment.
Example four: as shown in fig. 3 and 4, when the number of the connection blocks of the photovoltaic panel 1 is odd and the connection blocks are arranged in two rows, the connection can be performed by using the jumper connection structure of the photovoltaic panel in the third embodiment.
The utility model discloses according to the positive principle that is connected with the negative pole of photovoltaic board, use the wire jumper wiring mode, make odd number photovoltaic board be connected, even number photovoltaic board is connected. The purpose of saving the using amount of the photovoltaic direct-current cable in construction is achieved, and the construction efficiency is improved. The loss of electric energy in the cable can be reduced, the construction cost is reduced, and the generating capacity is improved.
The present invention has been described in detail with reference to the specific embodiments and examples, but these should not be construed as limitations of the present invention. Numerous variations and modifications can be made by those skilled in the art without departing from the principles of the invention, which should also be considered as falling within the scope of the invention.

Claims (8)

1. The utility model provides a photovoltaic board wire jumper wiring structure which characterized in that: the photovoltaic panel self-contained cathode lead wire comprises a photovoltaic panel external anode lead wire (2), a photovoltaic panel external cathode lead wire (3), a photovoltaic panel self-contained cathode lead wire (4) and a photovoltaic panel self-contained anode lead wire (5); the photovoltaic panel is connected with the photovoltaic panels (1) through the negative electrode lead (4) and the positive electrode lead (5), and the photovoltaic panels (1) are connected with the inverter (6) through the external positive electrode lead (2) and the external negative electrode lead (3);
sequencing the photovoltaic panels (1), wherein the inverter (6) is connected with the anode of a first photovoltaic panel (1) through a photovoltaic panel external positive lead (2) and is connected with the cathode of a second photovoltaic panel (1) through a photovoltaic panel external negative lead (3); photovoltaic board from taking negative pole lead wire (4), photovoltaic board from taking positive pole lead wire (5) to be connected the photovoltaic board (1) that the serial number is the odd number and serial number is the even number according to anodal continuous mode with the negative pole respectively, two terminal adjacent photovoltaic board (1) are connected alone.
2. The photovoltaic panel jumper wiring structure of claim 1, wherein: the photovoltaic panel external positive lead (2), the photovoltaic panel external negative lead (3), the photovoltaic panel from taking negative lead (4) and the photovoltaic panel from taking positive lead (5) all to connect at the back of photovoltaic panel (1), the positive and negative pole hookup location setting of photovoltaic panel (1) are in both sides.
3. The photovoltaic panel jumper wiring structure of claim 2, wherein: the cathodes and the cathodes of the two adjacent photovoltaic panels (1) are adjacent to each other, and the anodes of the two adjacent photovoltaic panels (1) are adjacent to each other in the arrangement process of the photovoltaic panels (1).
4. The photovoltaic panel jumper wiring structure of claim 3, wherein: if the number of the photovoltaic panels (1) is even, the anode of the photovoltaic panel (1) at the tail end is connected with the cathode of the previous photovoltaic panel (1).
5. The photovoltaic panel jumper wiring structure of claim 3, wherein: if the number of the photovoltaic panels (1) is odd, the negative electrode of the photovoltaic panel (1) at the tail end is connected with the positive electrode of the previous photovoltaic panel (1).
6. The photovoltaic panel jumper wiring structure of claim 1, wherein: the photovoltaic panel (1) be provided with a plurality of row, each row is provided with a plurality of photovoltaic panel (1), inverter (6) are connected with each row photovoltaic panel (1).
7. The photovoltaic panel jumper wiring structure of claim 6, wherein: the number of the photovoltaic panels (1) in each row of photovoltaic panels (1) is equal, and the number of the photovoltaic panels (1) in each row of photovoltaic panels (1) is even or odd.
8. The photovoltaic panel jumper wiring structure of claim 6, wherein: the number of the photovoltaic panels (1) in each row of photovoltaic panels (1) is different, and the number of the photovoltaic panels (1) in each row of photovoltaic panels (1) comprises an even number and an odd number.
CN202121166146.5U 2021-05-28 2021-05-28 Photovoltaic board wire jumper wiring structure Active CN215186637U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202121166146.5U CN215186637U (en) 2021-05-28 2021-05-28 Photovoltaic board wire jumper wiring structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202121166146.5U CN215186637U (en) 2021-05-28 2021-05-28 Photovoltaic board wire jumper wiring structure

Publications (1)

Publication Number Publication Date
CN215186637U true CN215186637U (en) 2021-12-14

Family

ID=79372966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202121166146.5U Active CN215186637U (en) 2021-05-28 2021-05-28 Photovoltaic board wire jumper wiring structure

Country Status (1)

Country Link
CN (1) CN215186637U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115829168A (en) * 2023-02-16 2023-03-21 苏州洪昇新能源科技有限公司 Remote coordination operation and maintenance management system for new energy equipment based on data analysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115829168A (en) * 2023-02-16 2023-03-21 苏州洪昇新能源科技有限公司 Remote coordination operation and maintenance management system for new energy equipment based on data analysis
CN115829168B (en) * 2023-02-16 2023-09-08 长峡数字能源科技(湖北)有限公司 New energy equipment remote coordination operation and maintenance management system based on data analysis

Similar Documents

Publication Publication Date Title
CN204243140U (en) A kind of easy electrokinetic cell module
CN208422933U (en) Photovoltaic module
CN108258065A (en) Photovoltaic cell assembly with integrated circuit board
CN108281499A (en) Novel circuit design's photovoltaic cell subassembly
WO2018210348A1 (en) Solar cell module and solar cell panel
CN208835082U (en) Double generator unit imbrication photovoltaic modulies
CN215186637U (en) Photovoltaic board wire jumper wiring structure
CN214956906U (en) Laminated photovoltaic building integrated assembly with fully-serial side outgoing lines
CN207896931U (en) Photovoltaic cell assembly
CN211350749U (en) Battery PACK of electricity core monomer cluster and parallel combination
CN207834317U (en) Photovoltaic cell assembly with integrated circuit board
CN115347865A (en) Special junction box for parallel connection and series connection of photovoltaic cell assemblies
CN214956907U (en) Photovoltaic module welded on full back of half-cut battery
CN202930411U (en) Miniature split type photovoltaic conjunction box
CN210926036U (en) Board interconnected high-density photovoltaic module circuit
CN209526691U (en) A kind of photovoltaic module structure
CN209881716U (en) Modular energy storage photovoltaic module
CN209896083U (en) Photovoltaic module circuit unit, photovoltaic module circuit and photovoltaic module
CN111697682A (en) String type high-power MPPT solar charging controller
CN111710741A (en) Photovoltaic power generation device
CN111755550A (en) Circuit arrangement mode of solar photovoltaic module
CN216625605U (en) Multi-level inverter based on PSM technology
CN212342647U (en) Photovoltaic power generation device
CN215771184U (en) Photovoltaic module
CN110098795A (en) A kind of photovoltaic module structure

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant