JPS6195295A - Water treatment device for nuclear power plant - Google Patents

Water treatment device for nuclear power plant

Info

Publication number
JPS6195295A
JPS6195295A JP59216205A JP21620584A JPS6195295A JP S6195295 A JPS6195295 A JP S6195295A JP 59216205 A JP59216205 A JP 59216205A JP 21620584 A JP21620584 A JP 21620584A JP S6195295 A JPS6195295 A JP S6195295A
Authority
JP
Japan
Prior art keywords
filler
ions
water
nuclear power
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59216205A
Other languages
Japanese (ja)
Inventor
越野 靖夫
徹 斉藤
俊雄 沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP59216205A priority Critical patent/JPS6195295A/en
Publication of JPS6195295A publication Critical patent/JPS6195295A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は原子力プラントの冷却水及び廃水の浄化装置に
係り、原子力プラント水処理装置に関するものである。 〔発明の背景〕 原子力プラントの水処理に電気化学的反応を利用した例
として特開昭58−24897号公報に示されるように
、複極電解槽を用いて炉水を浄化するものが知られてい
る。この方法は高温高圧水の金属イオン、鉄酸化物の除
去に有効であるが、充填材を単に多孔質不溶性粒子とし
ているため、除去成分に限りがあること、高温水でなけ
れば除去効率が低下すること等の問題があった。
[Field of Application of the Invention] The present invention relates to a cooling water and wastewater purification device for a nuclear power plant, and more particularly to a nuclear power plant water treatment device. [Background of the Invention] As an example of using an electrochemical reaction for water treatment in a nuclear power plant, it is known that a bipolar electrolytic cell is used to purify reactor water, as shown in Japanese Patent Application Laid-Open No. 58-24897. ing. This method is effective in removing metal ions and iron oxides from high-temperature, high-pressure water, but since the filler is simply porous insoluble particles, there is a limit to the components that can be removed, and the removal efficiency decreases unless the water is used at a high temperature. There were problems such as what to do.

【発明の目的】[Purpose of the invention]

本発明の目的は、原子力プラントの冷却水及び廃水の浄
化において、各不純物を有効に除去できる充填材を混合
して充填した複極電解部に通電することで各不純物を高
い効率で除去する装置を提供することにある。 (発明の概要〕 原子力プラントの水処理装置には除去成分に限りがある
こと、目づまりが激しく1材の寿命が短いこと、廃棄物
量が多いことという3つの大きな問題がある1本発明で
は5再生可能または焼却が可能な充填材を充填した複極
電解部で浄化することで寿命の延長と廃棄物量の低減を
達成し、充填材に各不純物の性状にあわせて有効に除去
できるものを用いることで除去成分の制限をなくす、こ
れにより、金属イオン、鉄酸化物、ハロゲンイオンを少
ない廃棄物量で効率率よく除去することができる。 〔発明Φ実施例〕  2 以下−発明の原子力ブらントの水処理装置の実施例を第
1図により説!する。装置は陽極1.、陰極2.充填材
3,4,5.充填材の支持体6.外部電源7で構成され
た複極電解槽構造とする。充填材3は銀イオンを添着し
た多孔質粒子、充填材4は多孔質粒子、充填材5は金属
酸化物粒子とする。処理水は水の分解により発生するガ
スが装置内に滞留することなくすみやかに流れるように
下から上に流す。 次に複極電解部の機能について説明する。直流通電に、
+り各充填材3,4.5は陽極部と陰極部に複極化し電
極面積を大きく一部させるた9金属イオン、鉄酸化物、
−)0ゲンイオンを効率よく除去することができる。金
属イオン、鉄酸化物、ハロゲンイオンに有効に働く充填
材がそれぞれ異なるため、各除去対象物に分けて複極電
解部の機能を説明する。まず金属イオンについて説明す
る。 金属イオンの除去機構は電解還元析出とそれに続く細□
孔内への吸蔵である。そのため金属イオンは充填材4.
5の陰極部で電解還元を受は一部は充填材4,5の″表
面に析出し残りは充填材4の細孔内に吸蔵される0次に
、鉄酸化物について説明する。鉄酸化物の除去機構は通
電による凝集と電気的な付着である。このうち特に重要
なのは通電による凝集であり、−この反応は充填材の陰
極部で起こる水素ガスの発生、溶存酸素の還元の結果生
じる水酸化物イオンが鉄酸化物の表面にイオン吸蔵され
ることが原因である。 この凝集は充填材の材質に影響され、二酸化チタン、フ
ェライト等の金属酸化物を充填材層したときこの効果は
顕著に表われる。そのため、鉄酸化物は充填材5の陰極
部で凝集し充填材3,4゜5に付着する。また鉄酸化物
は正の自然電位(表面電位)を持つので、一部は充填材
3,4.5の陰極部に電気的な付着で除去される。最後
にハロゲンイオンについて説明する。ハロゲンイオンの
除去機構は電解酸化によるガス化とそれに続く吸蔵及び
ハロゲン化−としての固定である。ハロゲンイオンは充
填材3,4.5の一極部で電解酸化を受゛けハロゲンガ
スになり、充填材4,5の細孔内に吸蔵される。しかし
ハロゲンガスは水に溶け一ハロゲンイオンにもどり易く
、電解酸化、吸蔵だけではネ充分である。そのため除去
し残したハロゲンイオンを充填材3でハロゲン化銀とし
て固定ぜ1 除去する。   “          □ 。 充填材の支持体6は各充填−材は再生が簡単になるよう
に各充填材を分離させるように設置したが。 必ずしも設置する必要はない、充填材3,4.5の配置
は必ずしもこの通りにする必要はなく、温容状態で充填
すること:も可能であるが、各充填材−機能層再生の容
易さを考゛えるi処理□水入口から金属酸化物、多孔゛
質粒子、銀イーオンを添着した多孔質粒子の順に充瑠ス
るセとが虜ましい、銀イオじi添着した多孔質粒子を用
いる充填材3には必ずしも通電する必要はなく、別の塔
に充填材3の゛みを移して充填電解槽と充填槽の2塔を
直列にして運転するとも可楠である。 次に充總材a;4.Sの再生と廃棄物処理について説明
する。各充填材により処理法が異なるので各充填材ごと
↓こ説明する。まず銀イオンを添着した多孔質粒子であ
る充填材3について説明する。 充填材3は再生不、可、能なのでハロゲンイオン除去性
能が低下した場合は、別の槽に移送し再度銀イオンを添
着して再利用する。次に多孔質粒子である充填材4につ
いて説明する。充填材4は酸により再生することが可能
である。そこで金属イオン除去性能が低下した場合は、
充填材を別の、槽に、移送し希硫酸中で攪拌して再生し
再利用す4る、。金属酸化物である充填材5は寿命が埠
<不純物の除去性能という点では再生する必要はないが
、充填材5に放射性物質が蓄積し浄化装置の放射線線量
率が高くなった場合は、充填材5を別の槽に移送しED
TA等の錯化剤水溶液中で加温しながら攪拌して再生す
る。“なお′鉄酸化物除去性能が低下した場合は、各充
填材を装置に充填したまま空軍バブリングと逆洗を行い
対処する。各充填材の再生により生じた廃水は活性炭で
処理し、使用済み活性炭は焼却して減容化する。なお、
充填材32,4の多孔質粒子に活性炭、活性炭素繊維等
の炭素系物質を用いた場合は、充填材3,4を再生せず
に焼却して減容化することも可能である。 最後に本発明による浄化装置に前記の充填材再生用の付
属設備を設置した系統について説明する6系統の一例を
第2図に示す。本発明による浄化袋!8の充填材再生系
統は、銀イオンを添着した多孔質粒子である充填材3の
銀イオン再添着槽9゜多孔質粒子である充填材4の希硫
酸による再生槽10、金属酸化物である充填材5の錯化
剤による再生槽11.逆洗用の純水槽12及び再生廃液
処理用の活性炭充填塔13で構成する。充填材3゜4は
浄化装置8の上部から、充填材5は浄化装置8の下部か
ら出し入れし、各再生槽9,10゜11に移送し再生後
浄化装置8に再充填する。各充填材3,4.5への鉄酸
化物の蓄積量が増大し鉄酸化物除去率が低下した場合は
、純水槽12内の純水と圧縮空気でバブリングしながら
逆洗する。 再生廃液、逆洗廃水は活性炭充填塔13で処理し。 使用済も活性炭は焼却し減容化する。 次に実機への適用例について説明する。F原子力プラン
ト−次系の復水浄化装置に適用した一例を第3図に示す
、原子炉14.タービン15.復水、器16に続く復水
浄化系に本発明による浄化装置8を設置し、復水中の金
属イオン、鉄酸化物、ハロゲンイオンを除去した後に予
熱し原子炉14に戻す、なお1本発明による浄化袋M8
ではアルカリ金属イオン、アルカリ土類金属イオンは除
去できないので、以前に海水リークが起きたプラント、
または海水リークが起きた場合は1本発明による浄化装
置8で処理した復水を、脱塩1118を設置した脱塩系
統17に通し脱塩した後、原子炉14に戻す、3種の充
填材の充填割合は各原子力プラント復水の水質に応じて
決定することが望ましく、新しい原子力プラントでは復
水器16の材質改良のためほとんど海水リークが起きな
いのでハロゲンイオン除去用の銀イオンを添着した充填
材3は5−fL、4**t!“°“tlkfF)2M(
b3HE”0   、・みを充填しておけばよい、  
     ・次に本発明による浄化装置を原子力プラン
ト機器ドレンの浄化に適用した一例を第4図に示す。 機器ドレンタンク19内に蓄えられた機器ドレンは本発
明による浄化装置8で金属イオン、鉄酸化物、ハロゲン
イオンを除去した後、サンプルタンク20に送られ水質
を確認した後復水貯蔵タンク21で貯蔵される0本系統
でも復水浄化系と同じ理由で脱塩系統17を設置する。 またサンプルタンク20内の水の水質が基準を達成して
いない場合は、脱塩系統17の脱塩器18で再処理を行
う。 現状の機器ドレンの除去対象物は大部分が鉄酸化物であ
る。そのため、鉄酸化物のみを除去しようとする場合は
1本拠明による浄化装置8の充填材は多孔質粒子である
充填材4と金属酸化物である充填材5の2種で構成する
。なお、鉄酸化物のみを除去しようとする場合は通電は
必ずしも直流通電にする必要はなく低周波数の交流通電
でもよい6最後に本発明による浄化装置を原子力プラン
ト燃料プール水の浄化に適用した一例を第5図に示す。 燃料プール22内の水は燃料プール内に使用済み燃料や
、放射能の強い使用済み部品等を長期間保管するため、
水の清澄度の保持と放射性物質の除去、腐食性のハロゲ
ンイオンを除去する必要がある0m料ブール22内の水
はスキマサージタンク23を介して本発明による浄化袋
!8に移送され浄化の後に燃料プール22に戻る0本発
明・による浄化装置8は・不純物除去の際に活性酸素を
生・成するため殺菌効果を持つので、燃料プール・水の
清澄度を保持することができる。また、こ・の場合は水
中にアルカリ金属イオン特にナトリウムイオンが存在し
ても放射性のナトリウム−24の半減期が短く除去する
必要がないので、脱塩系統17を設置する必要はない0
本発明による浄化装置は金属イオンの除去、鉄酸化鑑除
去、ハロゲンイオ・ン除去、殺菌、有機物の分解等の機
能を持つので、前記3適用例以外にも一般産業廃水処理
、下水処理等幅広い分野に、適用することが可能である
。 本発明の効果を実証する実験について述べる。 実際の原子力プラントの冷却水及び廃水を完全に模擬す
ることは困難であるので、金属イオンとしてコバルトイ
オンを、鉄酸化物として酸化鉄(III)を、ハロゲン
イオンとして塩化物イオンを加えた純水を用いて実験を
行った1本発明による浄化方法の各機能に分けて説明す
る。まず金属イオン除去特性について述べる。実験に使
用した充填電解槽を第6図に示す。電解槽の大きさは8
0 X 1100X40で上部に電解部24.下部に攪
拌部25を設けている。電解部24は陽極26及び陰極
27ともにフェライト板(100X100X5m+)を
使用し、この間に多孔質粒子として活性炭素繊維28を
、ナイロン網29をスペーサーとして5層に計5g*填
している。実験は2.2■/Qの塩化コバルト水溶液を
200mQ電解槽に入れ0、I  Aの一定直流電流を
通電した時の通電時間に対するコバルトイオン濃度の変
化を測定して行った。コバルトイオンの濃度分析は原子
吸光分析法で行った。 結果□を第7図に示す、・直流通電により活性炭素繊維
28が複極化し、還元電位の低いコバルトイオンは陰極
部で電解還元析出し細孔内に吸蔵されたものと考えられ
る0次に鉄酸化物除去特性について述べる。鉄酸化物除
去機構は通電による凝集と電気的付着であるが、まず通
電による凝集について述べる。通電による凝集の結果生
じる粒径の変化を測定した。実験装置は100X100
X100Wnの電解槽で両側に陽極及び陰極として10
0X100X5閣のフェライト板を設け、5■/Qの酸
化鉄(m)懸濁液を700mQ入れ    ”70Vで
3層min直流通電した。その後酸化鉄(m)を演過後
乾燥させて試料とし粒径を測定した6粒径の測定には光
透過式の粒径分布計を用いた。結果を第8図に示す0通
電による凝集効果を更に精密に検討した結果から、鉄酸
化物は陰極部で水の分解、溶存酸素の還元により生じた
水酸化物イオンを表面に吸着して凝集するものと考えら
れる。更に鉄酸化物の通電による凝集に及ぼす陰極材材
質の影響を検討した。 実験は上記電解槽に10g/Ωの酸化鉄(m)懸濁液を
700 m Q入れ、70vで30m1n直流通電した
後に懸濁液を沈降瓶に入れ沈降度を観察して行った。実
験に用いた陰極材はフェライト。 二酸化チタン、白金、黒鉛、グラツシーカーボンの5種
である。結果を第9図に示す。これより陰極材として金
属酸化物を用いれば効率よく鉄酸化物を凝集させること
ができることがわかる1次に鉄酸化物の充填材への電気
的付着について述べる。 実験は1■/aの酸化鉄(III)懸濁液を200mg
第6図に示す電解槽に入れ、0.I Aの一定直流電流
を通電した時の通電時間に対する酸化鉄(In)濃度の
変化を測定して行った。酸化鉄(1)の濃度分析は酸化
鉄(m)を塩酸で溶解した後、鉄イオン濃度を原子吸光
分析法で測定して行った。 結果を第10図に示す、純水中では鉄酸化物は自然電位
(表面電位)が正なので充填材の陰極部に電気的に付着
して除去されるものと考えられる。 鉄酸化物に関しては、本発明の浄化装置ではこの電気的
付着の他に通電による凝゛集が起こるので、除去率、除
去量共に更に向上することが期待できる。 最後にハロゲンイオン除去性能について述べる。 実験は2.2g/’aの塩化コバルト水溶液を200m
g第6図に示す電解槽に入れ、0.L  Aの一定直流
電流を通電した時の通電時間に対する塩化物イオン濃度
の変化を測定して行った。塩化物イオンの濃度分析は硫
酸第二水銀法で行った。結果を第11図に示す。塩化物
イオンは充填材の陽極部で電解酸化を受け、塩素ガスと
なり細孔内に吸蔵されたものと考えられる。ハロゲンイ
オンに関しては1本発明の浄化装置ではこのハロゲンガ
スとしての吸蔵の他に、銀・イオンを添着した多孔質粒
子によるハロゲン化銀としての固定除去が起こるので、
除去率、除去量共に更に向上することが判待できる。 〔発明の効果〕 以上記述したように本発明は、金属イオン、鉄酸化物、
ハロゲンイオン等の水中の不純物を高い効率で除去する
ことができる効果を有するものである。
The object of the present invention is to provide a device that removes each impurity with high efficiency in the purification of cooling water and wastewater of a nuclear power plant by energizing a bipolar electrolytic section filled with a mixture of fillers capable of effectively removing each impurity. Our goal is to provide the following. (Summary of the Invention) Water treatment equipment for nuclear power plants has three major problems: limited removal components, severe clogging and short lifespan of each material, and large amount of waste. Extending the service life and reducing the amount of waste by purifying with a bipolar electrolytic section filled with a filler that can be used or incinerated, and using a filler that can effectively remove each impurity depending on the nature of the impurity. This eliminates restrictions on the components to be removed, thereby making it possible to efficiently remove metal ions, iron oxides, and halogen ions with a small amount of waste. An embodiment of the water treatment device will be explained with reference to Fig. 1.The device consists of a bipolar electrolytic cell consisting of an anode 1, a cathode 2, fillers 3, 4, 5, a support for the filler 6, and an external power source 7. The structure of the filler 3 is porous particles impregnated with silver ions, the filler 4 is porous particles, and the filler 5 is metal oxide particles.The treated water has a structure in which gas generated by decomposition of water enters the device. Flow from bottom to top so that it flows quickly without stagnation. Next, we will explain the function of the bipolar electrolyzer.
Each filler 3, 4.5 contains 9 metal ions, iron oxide,
-) 0 gen ions can be efficiently removed. Since the fillers that work effectively on metal ions, iron oxides, and halogen ions are different, the functions of the bipolar electrolytic section will be explained separately for each object to be removed. First, metal ions will be explained. The removal mechanism of metal ions is electrolytic reduction precipitation followed by fine □
This is occlusion into the pore. Therefore, metal ions are fillers 4.
Part of the iron oxide that undergoes electrolytic reduction at the cathode part of 5 is precipitated on the surface of the fillers 4 and 5, and the rest is occluded in the pores of the filler 4. Next, iron oxide will be explained. The removal mechanism of substances is agglomeration due to the application of electricity and electrical adhesion.Of these, the most important is the aggregation due to the application of electricity.-This reaction occurs as a result of the generation of hydrogen gas and the reduction of dissolved oxygen that occurs at the cathode part of the filler. This is caused by ion occlusion of hydroxide ions on the surface of iron oxide. This agglomeration is affected by the material of the filler, and when a metal oxide such as titanium dioxide or ferrite is used as a filler layer, this effect is reduced. Therefore, iron oxide aggregates at the cathode part of the filler 5 and adheres to the filler 3, 4.5.Furthermore, since iron oxide has a positive natural potential (surface potential), some are removed by electrical attachment to the cathode portion of the fillers 3 and 4.5.Finally, we will explain the halogen ions.The removal mechanism of the halogen ions is gasification by electrolytic oxidation, followed by occlusion and halogenation. The halogen ions are electrolytically oxidized at one pole of the fillers 3, 4.5 and become halogen gas, which is occluded in the pores of the fillers 4, 5.However, the halogen gas is absorbed by the water. It is easy to dissolve and return to a single halogen ion, and electrolytic oxidation and occlusion alone are sufficient.Therefore, the remaining halogen ions are fixed as silver halide using a filler 3 and removed. The filler supports 6 were placed so that each filler was separated to facilitate recycling. It is not necessary to install the fillers 3 and 4.5. The arrangement of the fillers 3 and 4.5 does not necessarily have to be as shown, and it is possible to fill them in a warm state, but it is possible to do so depending on the ease of regeneration of each filler and functional layer. □ Porous particles impregnated with silver ions are filled with metal oxide, porous particles, and porous particles impregnated with silver ions in this order from the water inlet. The filling material 3 used does not necessarily need to be energized, and it is also possible to transfer the filling material 3 to another tower and operate the two towers, the packed electrolytic cell and the packed tank, in series. Next, fill material a; 4. This section explains S regeneration and waste treatment. Since the processing method differs depending on each filler, we will explain each filler separately below. First, the filler 3, which is a porous particle impregnated with silver ions, will be explained. Since the filler 3 is non-recyclable, recyclable, and recyclable, if the halogen ion removal performance deteriorates, it is transferred to another tank and reused by impregnating it with silver ions. Next, the filler 4, which is a porous particle, will be explained. The filler 4 can be regenerated with acid. If the metal ion removal performance deteriorates,
The filling material is transferred to another tank and stirred in dilute sulfuric acid to be regenerated and reused. The filling material 5, which is a metal oxide, does not need to be recycled in terms of impurity removal performance, but if radioactive materials accumulate in the filling material 5 and the radiation dose rate of the purification device becomes high, the filling material 5 may have a limited lifespan. Transfer material 5 to another tank and ED
It is regenerated by stirring and heating in an aqueous solution of a complexing agent such as TA. “If the iron oxide removal performance deteriorates, take action by performing air force bubbling and backwashing while each filler is still in the equipment.The wastewater generated from the regeneration of each filler is treated with activated carbon, and the used Activated carbon is incinerated to reduce its volume.
When a carbonaceous material such as activated carbon or activated carbon fiber is used for the porous particles of the fillers 32 and 4, it is also possible to reduce the volume by incinerating the fillers 3 and 4 without regenerating them. Finally, an example of six systems is shown in FIG. 2 to explain the systems in which the above-mentioned accessory equipment for regenerating filler material is installed in the purification apparatus according to the present invention. Purification bag according to the invention! The filler regeneration system No. 8 includes a silver ion re-impregnation tank 9 for filler 3 which is porous particles impregnated with silver ions, a regeneration tank 10 using dilute sulfuric acid for filler 4 which is porous particles, and metal oxide. Regeneration tank 11 using a complexing agent for the filler 5. It consists of a pure water tank 12 for backwashing and an activated carbon packed tower 13 for treating recycled waste liquid. The filler material 3.4 is taken in and taken out from the upper part of the purification apparatus 8, and the filler material 5 is taken out from the lower part of the purification apparatus 8, transferred to each regeneration tank 9, 10.degree. 11, and the purification apparatus 8 is refilled after regeneration. If the amount of iron oxide accumulated in each filler 3, 4.5 increases and the iron oxide removal rate decreases, backwashing is performed while bubbling with pure water in the pure water tank 12 and compressed air. The recycled waste liquid and backwash waste water are treated in an activated carbon packed tower 13. Used activated carbon is also incinerated to reduce its volume. Next, an example of application to an actual machine will be explained. F Nuclear Plant - An example of application to the condensate purification system of the next system is shown in Figure 3, reactor 14. Turbine 15. A purification device 8 according to the present invention is installed in the condensate purification system following the condensate vessel 16, and after removing metal ions, iron oxides, and halogen ions in the condensate, it is preheated and returned to the reactor 14. Purification bag M8 by
Since alkali metal ions and alkaline earth metal ions cannot be removed by
Alternatively, in the event of a seawater leak, the condensate treated with the purification device 8 according to the present invention is desalinated by passing it through the desalination system 17 equipped with a desalination device 1118, and then returned to the reactor 14 using three types of filling materials. It is desirable to determine the filling ratio according to the water quality of condensate in each nuclear power plant.In new nuclear plants, seawater leakage hardly occurs due to the improved material of the condenser 16, so silver ions for removing halogen ions are impregnated. Filler 3 is 5-fL, 4**t! "°"tlkfF)2M(
b3HE”0, ・You only need to fill it.
・Next, FIG. 4 shows an example in which the purification device according to the present invention is applied to purification of nuclear plant equipment drain. The equipment drain stored in the equipment drain tank 19 is sent to the sample tank 20 after removing metal ions, iron oxides, and halogen ions in the purification device 8 according to the present invention, and after checking the water quality, it is sent to the condensate storage tank 21. A desalination system 17 is installed for the same reason as the condensate purification system even in a system where no water is stored. If the quality of the water in the sample tank 20 does not meet the standards, reprocessing is performed in the desalination device 18 of the desalination system 17. Most of the substances currently removed from equipment drains are iron oxides. Therefore, when only iron oxides are to be removed, the purifying device 8 according to the first invention is composed of two types of fillers: filler 4, which is porous particles, and filler 5, which is metal oxide. In addition, when only iron oxides are to be removed, it is not necessary to apply electricity to direct current, and low-frequency alternating current may be used.6Finally, an example in which the purification device according to the present invention is applied to purification of nuclear plant fuel pool water. is shown in Figure 5. The water in the fuel pool 22 is used to store spent fuel, used parts with strong radioactivity, etc. in the fuel pool for a long period of time.
The water in the 0m feed boule 22, which needs to maintain water clarity, remove radioactive substances, and remove corrosive halogen ions, is passed through the skimmer surge tank 23 into the purification bag of the present invention! The purifying device 8 according to the present invention generates active oxygen when removing impurities and has a sterilizing effect, thus maintaining the clarity of the fuel pool and water. can do. In addition, in this case, even if alkali metal ions, especially sodium ions, are present in the water, there is no need to install the desalination system 17 because the half-life of radioactive sodium-24 is short and there is no need to remove them.
Since the purification device according to the present invention has functions such as removing metal ions, removing iron oxides, removing halogen ions, sterilizing, and decomposing organic matter, it can be applied to a wide range of applications such as general industrial wastewater treatment, sewage treatment, etc. It is possible to apply it to the field. An experiment to demonstrate the effects of the present invention will be described. Since it is difficult to completely simulate the cooling water and wastewater of an actual nuclear power plant, pure water is added with cobalt ions as metal ions, iron(III) oxide as iron oxide, and chloride ions as halogen ions. Each function of the purification method according to the present invention will be explained separately. First, the metal ion removal characteristics will be described. Figure 6 shows the filled electrolytic cell used in the experiment. The size of the electrolytic cell is 8
0 x 1100 x 40 with electrolytic section 24. A stirring section 25 is provided at the bottom. The electrolytic section 24 uses ferrite plates (100 x 100 x 5 m+) for both the anode 26 and the cathode 27, between which activated carbon fibers 28 as porous particles and nylon nets 29 as spacers are filled in a total of 5 g* in five layers. The experiment was conducted by placing a cobalt chloride aqueous solution of 2.2/Q in a 200 mQ electrolytic cell and applying a constant DC current of 0.1 A to the electrolyte, and measuring the change in cobalt ion concentration with respect to the current application time. Cobalt ion concentration analysis was performed using atomic absorption spectrometry. The results □ are shown in Figure 7. - The activated carbon fiber 28 becomes bipolar due to direct current, and cobalt ions with a low reduction potential are electrolytically reduced and precipitated at the cathode part, which is thought to be occluded in the pores. The iron oxide removal characteristics will be described. The mechanism for removing iron oxides is aggregation due to energization and electrical adhesion, but first we will discuss aggregation due to energization. Changes in particle size resulting from agglomeration upon application of electricity were measured. Experimental equipment is 100X100
10 as anode and cathode on both sides in a x100Wn electrolytic cell
A ferrite plate of 0x100x5 was installed, 700mQ of iron oxide (m) suspension of 5 / Q was placed, and DC current was applied at 70V for 3 layers.Then, the iron oxide (m) was dried and used as a sample to determine the particle size. A light transmission type particle size distribution analyzer was used to measure the particle size.The results are shown in Figure 8.From the results of a more precise study of the agglomeration effect due to zero current, it was found that iron oxide was present in the cathode section. It is thought that hydroxide ions generated by water decomposition and reduction of dissolved oxygen are adsorbed to the surface and aggregated.Furthermore, the influence of the cathode material on the aggregation of iron oxides due to energization was investigated.The experiment was performed as described above. A 10 g/Ω iron oxide (m) suspension was placed in an electrolytic cell for 700 mQ, and after 30 m1N direct current was applied at 70 V, the suspension was placed in a sedimentation bottle and the degree of sedimentation was observed.Cathode used in the experiment The material was ferrite. There were five types: titanium dioxide, platinum, graphite, and grassy carbon. The results are shown in Figure 9. This shows that iron oxide can be efficiently aggregated by using a metal oxide as the cathode material. First, we will discuss the electrical adhesion of iron oxide to the filler.The experiment was conducted using 200 mg of a 1/a iron oxide (III) suspension.
Place it in the electrolytic bath shown in FIG. The change in iron oxide (In) concentration with respect to the current application time was measured when a constant DC current of IA was applied. Concentration analysis of iron oxide (1) was carried out by dissolving iron oxide (m) in hydrochloric acid and then measuring the iron ion concentration by atomic absorption spectrometry. The results are shown in FIG. 10. Since iron oxide has a positive natural potential (surface potential) in pure water, it is thought that it is electrically attached to the cathode portion of the filler and removed. Regarding iron oxides, in addition to this electrical adhesion, in the purifying apparatus of the present invention, agglomeration occurs due to energization, so it can be expected that both the removal rate and the amount removed will be further improved. Finally, we will discuss the halogen ion removal performance. In the experiment, 2.2 g/'a of cobalt chloride aqueous solution was poured into 200 m
g Place it in the electrolytic bath shown in Fig. 6, and This was done by measuring the change in chloride ion concentration with respect to the current application time when a constant DC current was applied to LA. Chloride ion concentration analysis was performed using the mercuric sulfate method. The results are shown in FIG. It is thought that chloride ions undergo electrolytic oxidation at the anode part of the filler, become chlorine gas, and are occluded within the pores. Regarding halogen ions, in the purification device of the present invention, in addition to occlusion as halogen gas, porous particles to which silver ions are attached fix and remove silver ions as silver halide.
It can be expected that both the removal rate and removal amount will be further improved. [Effects of the Invention] As described above, the present invention provides metal ions, iron oxides,
It has the effect of being able to remove impurities in water, such as halogen ions, with high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原子力プラント水処理装置の実施例の
概略構造図、第2図は第1図の装置の充埋材再生系゛統
を含めた浄化装置の系統図、第3図は第1図の浄化装置
を用いた原子力プラント復水浄化系統図、第4図は第1
図の浄化装置を用いた原子力プラント機器ドレン浄化系
統図、第5図は第1図の浄化装置を用いた原子力プラン
ト燃料プール水浄化系統図、第6図は第1図の装置の実
験装置の説明図、第7図、第8図、第9図、第10゜第
11図はそれぞれ°第6図の装置による実験結果の説明
図である。 1・・・陽極、2・・・陰極、3・・・銀イオンを添着
した多孔質粒子よりなる充填材、4・・・多孔質粒子よ
りな第1 口 第 5 固 茅 2 目 $q 目 般Lfr旬 (に) $IO目 通雷埼町(i)
Fig. 1 is a schematic structural diagram of an embodiment of the nuclear power plant water treatment equipment of the present invention, Fig. 2 is a system diagram of the purification equipment including the filling material regeneration system of the equipment of Fig. 1, and Fig. 3 is Figure 1 is a nuclear power plant condensate purification system diagram using the purification equipment, Figure 4 is the
Figure 5 is a nuclear plant equipment drain purification system diagram using the purification device shown in Figure 1. Figure 6 is a diagram of the nuclear plant fuel pool water purification system using the purification equipment shown in Figure 1. The explanatory drawings, FIG. 7, FIG. 8, FIG. 9, and FIG. DESCRIPTION OF SYMBOLS 1... Anode, 2... Cathode, 3... Filler made of porous particles impregnated with silver ions, 4... 1st hole made of porous particles 5. Hard grass 2nd eye $q General Lfr Shun (ni) $IO Metsu Raisaki Town (i)

Claims (1)

【特許請求の範囲】[Claims] 1、原子力プラントの冷却水及び廃水の複極電解式浄化
装置において、二酸化チタン、フエライト等の金属酸化
物粒子、活性炭等の多孔質粒子、銀イオンを添着した多
孔質粒子を単独あるいは複合で充填材とすることを特徴
とする原子力プラント水処理装置。
1. In bipolar electrolytic purification equipment for cooling water and wastewater in nuclear power plants, metal oxide particles such as titanium dioxide and ferrite, porous particles such as activated carbon, and porous particles impregnated with silver ions are filled singly or in combination. A nuclear power plant water treatment device characterized by being made of wood.
JP59216205A 1984-10-17 1984-10-17 Water treatment device for nuclear power plant Pending JPS6195295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59216205A JPS6195295A (en) 1984-10-17 1984-10-17 Water treatment device for nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59216205A JPS6195295A (en) 1984-10-17 1984-10-17 Water treatment device for nuclear power plant

Publications (1)

Publication Number Publication Date
JPS6195295A true JPS6195295A (en) 1986-05-14

Family

ID=16684917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59216205A Pending JPS6195295A (en) 1984-10-17 1984-10-17 Water treatment device for nuclear power plant

Country Status (1)

Country Link
JP (1) JPS6195295A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122520A1 (en) * 2016-01-12 2017-07-20 三菱電機株式会社 Water treatment device and water treatment method
CN108751355A (en) * 2018-05-31 2018-11-06 江苏理工学院 A kind of granule electrode catalytic filler and preparation method thereof
JP2021087903A (en) * 2019-12-02 2021-06-10 株式会社東芝 Purification apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122520A1 (en) * 2016-01-12 2017-07-20 三菱電機株式会社 Water treatment device and water treatment method
JP6199001B1 (en) * 2016-01-12 2017-09-20 三菱電機株式会社 Water treatment apparatus and water treatment method
US10941056B2 (en) 2016-01-12 2021-03-09 Mitsubishi Electric Corporation Water treatment device and water treatment method
CN108751355A (en) * 2018-05-31 2018-11-06 江苏理工学院 A kind of granule electrode catalytic filler and preparation method thereof
JP2021087903A (en) * 2019-12-02 2021-06-10 株式会社東芝 Purification apparatus

Similar Documents

Publication Publication Date Title
CN103177784B (en) Method for treating radioactive wastewater
CN104389011B (en) Electrochemical decontamination electrolyte
JP2735232B2 (en) Liquid treatment method
PT1487748E (en) Electrochemical process for decontamination of radioactive materials
JPH07280998A (en) Method for decontaminating transition metal
US5439562A (en) Electrochemical decontamination of radioactive metals by alkaline processing
KR20090031483A (en) Regenerative electrochemical polishing decontamination of metallic radioactive wastes and decontamination liquid waste treatment by electro-sorption and electro-deposition
JPS6195295A (en) Water treatment device for nuclear power plant
JP4311811B2 (en) Treatment method of radioactive liquid waste
JP2015081891A (en) Method and apparatus for purifying nuclear-power-generation used fuel pool water, and method and apparatus for treating used fuel pool water
JP2014139530A (en) Regeneration method of eluent and regenerating apparatus therefor
JPS638835B2 (en)
US20220102020A1 (en) Electrolyte for electrochemical decontamination, and preparation method and application thereof
CN111074301A (en) Recovery method and recovery system of gold-containing wastewater
JPH024880B2 (en)
JPS59162493A (en) Method of removing iron oxide adhering to ion exchange resin
KR102273060B1 (en) Method for removing Mn in solution after SP-HyBRID decontamination and SP-HyBRID decontamination comprising the same
JP2938869B1 (en) Treatment of radioactive liquid waste
JP3012795B2 (en) Treatment of radioactive liquid waste
JPH0557560B2 (en)
KR0170017B1 (en) Regenerating method of redioactive waste ion exchanger resins by electrodialysis
JP4026464B2 (en) Treatment method for wastewater containing organic compounds
JPS58180284A (en) Cell for regeneration of reducible solvent and chemical decontamination method using said cell
JPH06273584A (en) Elimination method for radioactive ruthenium compound
JPS592360B2 (en) How to dispose of radioactive waste liquid