JPS592360B2 - How to dispose of radioactive waste liquid - Google Patents

How to dispose of radioactive waste liquid

Info

Publication number
JPS592360B2
JPS592360B2 JP11770078A JP11770078A JPS592360B2 JP S592360 B2 JPS592360 B2 JP S592360B2 JP 11770078 A JP11770078 A JP 11770078A JP 11770078 A JP11770078 A JP 11770078A JP S592360 B2 JPS592360 B2 JP S592360B2
Authority
JP
Japan
Prior art keywords
waste liquid
radioactive waste
concentration
radioactive
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11770078A
Other languages
Japanese (ja)
Other versions
JPS5543478A (en
Inventor
和英 宮崎
淳和 佐藤
英治 四方
正人 石井
治人 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP11770078A priority Critical patent/JPS592360B2/en
Publication of JPS5543478A publication Critical patent/JPS5543478A/en
Publication of JPS592360B2 publication Critical patent/JPS592360B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】 本発明は放射性廃液の処理方法に関する。[Detailed description of the invention] The present invention relates to a method for treating radioactive waste liquid.

より詳細に述べれば、本発明は、含有される放射性物質
濃度が極めて低いため従来の廃液処理方法では処理する
ことが困難な放射性廃液中の放射性物質を除去する方法
に関する。
More specifically, the present invention relates to a method for removing radioactive substances from radioactive waste liquid, which is difficult to treat by conventional waste liquid treatment methods because the concentration of radioactive substances contained therein is extremely low.

放射性廃液の処理方法としては、従来 (イ)蒸発処理 (ロ)イオン交換処理 (ハ)凝集沈澱処理 に)脱水ろ過処理 (ホ)・ 凍結再融解処理 および (へ)泡沫分離処理 等が採用されている。Conventional methods for treating radioactive waste liquid include (b) Evaporation treatment (b) Ion exchange treatment (c) Coagulation sedimentation treatment ) Dehydration filtration treatment (e) Freeze-re-thaw treatment and (f) Foam separation treatment etc. have been adopted.

これら従来の処理方法の場合除染係数(注1)が一般に
低くて1〜2けた程度である。
In the case of these conventional treatment methods, the decontamination coefficient (Note 1) is generally low, on the order of one to two digits.

又、蒸発処理の場合の除染係数は103〜105ないし
はそれ以上が期待出来るが、他方コストが高いという欠
点がある。
Further, in the case of evaporation treatment, a decontamination coefficient of 103 to 105 or more can be expected, but it has the drawback of high cost.

(Decontamination Factor:D
F)除染係数が1〜2けた程度という低い従来技術は、
有害元素の濃度範囲がppm程度である一般産業廃水に
は適用できでも、含有される放射性物質を10 p
pm程度まで除染して廃棄することが法令により要求さ
れている放射性廃液に対しては効果が期待出来ない。
(Decontamination Factor: D
F) Conventional technology has a low decontamination coefficient of 1 to 2 digits,
Although it can be applied to general industrial wastewater where the concentration range of harmful elements is about ppm,
It cannot be expected to be effective against radioactive waste liquids, which are required by law to be decontaminated to a level of pm before being disposed of.

即ち、放射性廃液中に含有される放射性物質の物質濃度
は充分に低くても、放射能濃度〔単位容積あたりの放射
能量(μCi/crtす] という観点からは、生体
系に極めて危険な場合があるのが放射性廃液の特徴だか
らである。
In other words, even if the concentration of radioactive substances contained in radioactive waste liquid is sufficiently low, it may be extremely dangerous to biological systems in terms of radioactivity concentration [amount of radioactivity per unit volume (μCi/crt)]. This is because this is a characteristic of radioactive waste liquid.

例えば、58Coの場合、液中の含量が110−6pp
という低濃度であっても、放射能濃度は0.03μCi
〆琥という危険(中レベル)な廃液である。
For example, in the case of 58Co, the content in the liquid is 110-6pp.
Even at such a low concentration, the radioactivity concentration is 0.03μCi.
It is a dangerous (medium level) waste liquid called 〆琥.

(科学技術庁告示22号による水中許容濃度は9xlO
’μCi雇である。
(According to Science and Technology Agency Notification No. 22, the permissible concentration in water is 9xlO.
'μCi is employed.

告示22号別表1)通常の産業廃水の処理技術は、廃水
に含有される有害物質濃度が数ppmから110−3p
pの場合を対象とするものであって、10−4〜110
10ppという極微量の放射性物質の除去を目的とする
放射性廃液の処理技術とは本質的に技術思想を異にする
ものである。
Notification No. 22 Attached Table 1) Normal industrial wastewater treatment technology reduces the concentration of harmful substances contained in wastewater from several ppm to 110-3p.
It is aimed at the case of p, and is 10-4 to 110
The technical idea is essentially different from the radioactive waste liquid treatment technology whose purpose is to remove extremely small amounts of radioactive substances of 10 pp.

一般に極低濃度の溶液中では、含有される物質が同一種
類であってもマクロ量とは異なる複雑な挙動をとる。
In general, in extremely low concentration solutions, even if the substances contained are of the same type, they exhibit complex behavior that differs from macroscopic amounts.

従って、従来の一般産業廃水の処理技術が原理的に全ぐ
適用出来なくなる場合が多い。
Therefore, in many cases, conventional general industrial wastewater treatment techniques cannot be applied at all in principle.

従って、従来原子力発電所を中心とする原子力産肩分野
においては、放射性廃液を全量蒸発させて凝縮水を一般
環境に放出し、蒸発して残ったスラリー中に放射性元素
を濃縮する方法を採用していた。
Therefore, conventionally in the field of nuclear power production, centered on nuclear power plants, a method has been adopted in which the radioactive waste liquid is completely evaporated, the condensed water is released into the general environment, and the radioactive elements are concentrated in the slurry that evaporates and remains. was.

前述した如く、この処理技術は、高い除染係数を有する
うえ、広汎な種類の放射性廃液に対して安定した運転が
可能であるが、他方コストが高いという欠点があり、事
実、燃料費等の経済性を無視して採用しているのが現状
である。
As mentioned above, this treatment technology has a high decontamination coefficient and is capable of stable operation for a wide variety of radioactive waste liquids, but it also has the disadvantage of high costs, and in fact, it reduces fuel costs and other costs. The current situation is that they are adopted without considering economic efficiency.

本発明者等は鋭意研究の結果、放射性廃液をアルミニウ
ム又はアルミニウム合金を陽極として用い直流電解する
ことにより、下記の式の様に陽極ではアルミニウムが溶
解して水と反応して水酸化アルミニウムの沈澱が生成し
陰極では水素ガスが発生する。
As a result of extensive research, the present inventors have found that by subjecting radioactive waste to direct current electrolysis using aluminum or aluminum alloy as an anode, aluminum dissolves at the anode and reacts with water to precipitate aluminum hydroxide, as shown in the following equation. is generated and hydrogen gas is generated at the cathode.

陽極 陰極 AZ+3 H20−+At(OH) 3.!、+3 H
2生成した水酸化アルミニウムは活性が強いので廃液中
の極低濃度の有害核種を吸着させ、除去することが出来
る。
Anode Cathode AZ+3 H20-+At(OH) 3. ! ,+3H
2 The aluminum hydroxide produced is highly active and can adsorb and remove extremely low concentrations of harmful nuclides in waste liquid.

アルミニウム単元素陽極の場合でもこの陽極反応は進行
するが、長時間電解を継続していると不動態化現象を起
こすことがあるのでインジウム、ガリウム、ナトリウム
又はリチウム等との合金を陽極として使用することがよ
り好ましい。
This anodic reaction proceeds even with a single-element aluminum anode, but if electrolysis continues for a long time, passivation may occur, so alloys with indium, gallium, sodium, lithium, etc. are used as the anode. It is more preferable.

合金として使用する場合その組成は、インジウム又はガ
リウムの場合0.1〜1重量%、ナトリウムの場合0.
01〜0.1重量多含有させることが出来る。
When used as an alloy, its composition is 0.1 to 1% by weight in the case of indium or gallium, and 0.1% by weight in the case of sodium.
The content can be increased by 0.01 to 0.1% by weight.

従って、本発明の目的は、10〜10 ppmという
極低濃度の有害放射性核種を含む放射性廃液から該有害
核種を効率よく経済的に除去する新規な方法を提供する
ことである。
Therefore, an object of the present invention is to provide a new method for efficiently and economically removing harmful radionuclides from a radioactive waste liquid containing extremely low concentrations of 10 to 10 ppm.

本発明による方法で効率よく分離除去が可能な放射性核
種は (A) 51Cr、58Co、60Co等重金属元素、
(B> ] 4°La、”3Ce等ランタイド元素、
(C) 23”P u + ””9Np等アクチノイ
ド元素、等である。
Radionuclides that can be efficiently separated and removed by the method according to the present invention include (A) heavy metal elements such as 51Cr, 58Co, and 60Co;
(B> ) Lantide elements such as 4°La, 3Ce,
(C) Actinide elements such as 23"P u + ""9Np, etc.

なかでもクロム、コバルト等重金属放射性核種は102
〜104程度の除染係数でもって極めて効率よく分離除
去出来る。
Among them, heavy metal radionuclides such as chromium and cobalt are 102
With a decontamination coefficient of ~104, it can be separated and removed extremely efficiently.

又、本発明による処理方法は、放射性廃液のpHに依存
して高レベルから低レベル、即ち放射能濃度が106μ
CiΔmlから10−6μCi肩 の放射性廃液に適用
出来ろ。
Furthermore, the treatment method according to the present invention varies from a high level to a low level depending on the pH of the radioactive waste liquid, that is, the radioactivity concentration is 106μ.
It can be applied to radioactive waste liquids ranging from CiΔml to 10-6μCi.

即ち、本発明を適用する場合、放射性廃液のpHを2〜
9程度に調整することが必要であって、強酸性および強
アルカリ性の放射性廃液に対してはそれ程の期待は出来
ない。
That is, when applying the present invention, the pH of the radioactive waste liquid is
It is necessary to adjust the concentration to about 9, and this cannot be expected for strongly acidic and strongly alkaline radioactive waste liquids.

又、本発明次 リチウム、ナトリウム、カリウム等アル
カリ♀属およびマグネシウム、カルシウム等アルカリ土
類金属の放射性核種に対しては効果が期待出来ないがア
ルカリ土類金属の中でもストロンチウムに対しては効果
がある。
In addition, although it cannot be expected to be effective against radionuclides of alkali metals such as lithium, sodium, and potassium, and alkaline earth metals such as magnesium and calcium, it is effective against strontium among alkaline earth metals. .

以下、実施例を掲げて本発明の構成および効果を具体的
に説明する。
Hereinafter, the structure and effects of the present invention will be specifically explained with reference to Examples.

尚、実施例は、本発明の作用効果が最も顕著に発揮され
る態様を掲げたものであって、本発明はこれら実施例に
限定されない。
It should be noted that the Examples list the modes in which the effects of the present invention are most prominently exhibited, and the present invention is not limited to these Examples.

尚、実施例において放射能濃度はμCi潟含有量はpp
mで表す。
In addition, in the examples, the radioactivity concentration is μCi, and the lagoon content is pp.
Represented by m.

実施例 I UO21TIIiを原子炉で照射し、HNO3に溶解乾
固後100ydの水に溶解し、NaOHでpHを7に調
整した液を処理すべき放射性廃液として使用した。
Example I UO21TIIi was irradiated in a nuclear reactor, dissolved in HNO3, dried and dissolved in 100 yd of water, and the pH was adjusted to 7 with NaOH.The solution was used as a radioactive waste liquid to be treated.

陽極としてインジウムを0.5重量多含有するアルミニ
ウム合金、陰極としてステンレス板を使用し、直流電流
濃度0.5人/l、電解時間90分でこの放射性廃液を
電気分解した。
This radioactive waste liquid was electrolyzed using an aluminum alloy containing 0.5 weight of indium as an anode and a stainless steel plate as a cathode at a direct current concentration of 0.5 people/l and an electrolysis time of 90 minutes.

電解処理後廃液中に浮遊した沈澱を東洋ろ紙A5Cで炉
別した液の放射能濃度(tt Ci/7′)Elび含有
量(ppm)を電解前の値と比較し、除染係数(DF)
を求めた。
The radioactive concentration (tt Ci/7') El content (ppm) of the precipitate suspended in the waste liquid after electrolytic treatment was separated by furnace using Toyo Filter Paper A5C, and the decontamination factor (DF) was compared with the value before electrolysis. )
I asked for

結果は表−1に示す通りである。The results are shown in Table-1.

実施例 2 ステンレス鋼17711!を原子炉で照射し、王水に溶
解、蒸発乾固後、100−の水に溶解し、NaOHでp
Hを7に調整した液を処理すべき放射性廃液としてfi
し、リチウムを0.05重量係含有するアルミニウム合
金を陽極として使用した以外には実施例1と同じ方法を
くり返した。
Example 2 Stainless steel 17711! was irradiated in a nuclear reactor, dissolved in aqua regia, evaporated to dryness, dissolved in 100-g water, and purified with NaOH.
The liquid with H adjusted to 7 is fi as the radioactive waste liquid to be treated.
However, the same method as in Example 1 was repeated except that an aluminum alloy containing 0.05% by weight of lithium was used as the anode.

実験の結果を表−2に示す。The results of the experiment are shown in Table-2.

実施例 3 ニッケルシート1m11を原子炉で照射し、HNO3で
溶解し、イオン交換樹脂で58Coを分離し、NaOH
でpHを7に調整した液を処理すべき放射性廃液として
使用し、アルミニウム単元素の陽極を匣用した以外には
実施例1の方法をくり返した。
Example 3 1 ml of nickel sheet was irradiated in a nuclear reactor, dissolved with HNO3, 58Co was separated with an ion exchange resin, and NaOH
The method of Example 1 was repeated except that the solution whose pH was adjusted to 7 was used as the radioactive waste solution to be treated, and a single-element aluminum anode was used.

実験の結果を表−3に示す。表−3 実施例 4 日本原子力研究所の使用済核燃料再処理施設Pu廃液(
〜4NHNO3)を約60倍に希釈しだ液を処理すべき
放射性廃液として使用した以外には実施例1の方法をく
り返した。
The results of the experiment are shown in Table 3. Table 3 Example 4 Pu waste liquid from spent nuclear fuel reprocessing facility of Japan Atomic Energy Research Institute (
The procedure of Example 1 was repeated, except that the effluent was diluted approximately 60 times with ~4NHNO3) and used as the radioactive waste fluid to be treated.

結果を表−4に示す。The results are shown in Table 4.

表−4 実施例1〜4の結果から明らかな様に、本発明によれば
放射性廃液から多くの放射性核種を除去することが出来
る。
Table 4 As is clear from the results of Examples 1 to 4, many radionuclides can be removed from radioactive waste liquid according to the present invention.

例えば239Npについては、含有量が1.7 X 1
0O−7ppという程度の低濃度であっても、放射能濃
度としては41. OX 10−2μC1肩とかなり危
険である放射性廃液が本発明法で処理した結果600以
上の高い除染係数で239 Npか除去された。
For example, for 239Np, the content is 1.7 x 1
Even if the concentration is as low as 00-7pp, the radioactivity concentration is 41. As a result of treating radioactive waste liquid, which is quite dangerous with an OX of 10-2μC1, by the method of the present invention, 239 Np was removed with a high decontamination coefficient of over 600.

又140LaKついては、含有量3.4X10−9pp
m、放射能濃度1.9X 10−3μC1肩 の放射性
廃液が本発明法で処理した結果160以上の高い除染係
数で140Laが除去された。
Also, for 140LaK, the content is 3.4X10-9pp
As a result of treating a radioactive waste liquid with a radioactivity concentration of 1.9×10 −3 μC1 by the method of the present invention, 140 La was removed with a high decontamination coefficient of 160 or more.

58Coについては、含有量3.15X10−6p p
rn、放射能濃度0.1μCi Al11の放射性廃液
が本発明法で処理した結果230という高い除染係数で
58c。
For 58Co, the content is 3.15X10-6p p
rn, a radioactive waste liquid with a radioactivity concentration of 0.1 μCi Al11 was treated with the method of the present invention, resulting in a high decontamination coefficient of 230 and 58c.

が除去された。has been removed.

又、近8#特に有害と目されて問題となっている239
puについても含有量4.9xlO−3ppm1 放射
能濃度3.6 X 10− ’μCi/Tllの放射性
廃液が本発明法で処理した結果200という高い除染係
数で239Puが除去された。
In addition, 239, which is considered to be particularly harmful, has become a problem.
As for Pu, 239Pu was removed with a high decontamination coefficient of 200 when a radioactive waste liquid with a content of 4.9xlO-3ppm1 and a radioactivity concentration of 3.6x10-'μCi/Tll was treated by the method of the present invention.

211−211-

Claims (1)

【特許請求の範囲】[Claims] 1 放射性核種を含む廃液をアルミニウム又はアルミニ
ウム合金を陽極として電気分解を行い、これによって生
成された活性の強い水酸化アルミニウムにより該廃液中
の放射性核種を吸着させ除去することを特徴とする放射
性廃液の処理方法。
1. A waste liquid containing radioactive nuclides is subjected to electrolysis using aluminum or an aluminum alloy as an anode, and the radioactive nuclides in the waste liquid are adsorbed and removed by the highly active aluminum hydroxide produced thereby. Processing method.
JP11770078A 1978-09-25 1978-09-25 How to dispose of radioactive waste liquid Expired JPS592360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11770078A JPS592360B2 (en) 1978-09-25 1978-09-25 How to dispose of radioactive waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11770078A JPS592360B2 (en) 1978-09-25 1978-09-25 How to dispose of radioactive waste liquid

Publications (2)

Publication Number Publication Date
JPS5543478A JPS5543478A (en) 1980-03-27
JPS592360B2 true JPS592360B2 (en) 1984-01-18

Family

ID=14718131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11770078A Expired JPS592360B2 (en) 1978-09-25 1978-09-25 How to dispose of radioactive waste liquid

Country Status (1)

Country Link
JP (1) JPS592360B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139251U (en) * 1985-02-16 1986-08-29

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2562313B1 (en) * 1984-04-03 1989-04-07 Cogema PROCESS FOR DECONTAMINATION OF URANIUM AND RADIUM OF ACID URANIFER SOLUTIONS BY ADDITION OF AN ALUMINUM SALT
FR2721042B1 (en) * 1994-06-14 1997-01-31 Commissariat Energie Atomique Consumable anode, electrodissolution process applied to the decontamination of weakly radioactive liquid effluents, and device for implementing this process.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139251U (en) * 1985-02-16 1986-08-29

Also Published As

Publication number Publication date
JPS5543478A (en) 1980-03-27

Similar Documents

Publication Publication Date Title
CN108911102A (en) A kind of method that high-efficiency electrochemical restores uranium in enriching and recovering uranium-containing waste water and underground water
KR101883895B1 (en) Decontamination and Rad-waste treatment method and a kit therefor reducing the radioactive waste remarkably
JPH07280998A (en) Method for decontaminating transition metal
JP2015160888A (en) Treatment method and treatment equipment of used ion exchange resin
JPS592360B2 (en) How to dispose of radioactive waste liquid
US4622176A (en) Method of processing radioactive liquid wastes containing radioactive ruthenium
JP2009036617A (en) Uranium dissolution and separation method using ionic liquid and uranium recovery method using it
Avramenko et al. Implementation of the continuous-flow hydrothermal technology of the treatment of concentrated liquid radioactive wastesat nuclear power plants
JP2019001855A (en) Treatment method and treatment device of used ion exchange resin decomposition waste liquid
US3658714A (en) Method of decontaminating radioactive wastes
RU2748055C1 (en) Method of electrochemical decontamination of spent radioactive ion-exchange resins
JPH01196599A (en) Treatment of chemical decontamination waste liquid
JPS6020720B2 (en) Decontamination method for metal materials contaminated with radioactivity
JPH0868893A (en) Processing method for waste liquid including various radioactive materials and heavy metal elements
CN108986947B (en) Combined type uranium-containing low-level wastewater purification treatment system and treatment method
JPH01287286A (en) Method and device for preventing corrosion in highly corrosive liquid
JPS6195295A (en) Water treatment device for nuclear power plant
JPH0720285A (en) Removing method of underwater radioactive substance
Ghaffar et al. A rapid method for decontamination of low and intermediate level liquid radioactive wastes by amalgamation
Tsunoda et al. EFFECT OF SULPHURIC ACID AND CHROMIC ACID MIXTURE TREATMENTS OF PLASTICS ON THEIR WETTABILITY AND RADIOACTIVE CONTAMINATION
BG96718A (en) Method of treatment of a water pressure reactor primary cooling agent
Samanta Hydrated titanium (IV) oxide as a granular inorganic sorbent for removal of radiostrontium: II. Column experiment using simulated reprocessing plant waste
McBride TECHNICAL PROGRAMS AND PROJECTS AT THE IDAHO CHEMICAL PROCESSING PLANT
Byalobzheskii et al. CORROSION OF METALS IN AN EXPERIMENTAL CHANNEL IN THE IRT REACTOR
Slyusarev et al. Studies on contamination of coolant water in the first atomic electric power station