JPS6193617A - Manufacture of silicon film - Google Patents

Manufacture of silicon film

Info

Publication number
JPS6193617A
JPS6193617A JP21543784A JP21543784A JPS6193617A JP S6193617 A JPS6193617 A JP S6193617A JP 21543784 A JP21543784 A JP 21543784A JP 21543784 A JP21543784 A JP 21543784A JP S6193617 A JPS6193617 A JP S6193617A
Authority
JP
Japan
Prior art keywords
substrate
silicon
film
vicinity
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21543784A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamazoe
山添 博司
Takashi Hirose
広瀬 貴司
Atsushi Nakagawa
敦 中川
Ichiro Yamashita
一郎 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21543784A priority Critical patent/JPS6193617A/en
Publication of JPS6193617A publication Critical patent/JPS6193617A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Abstract

PURPOSE:To make it possible to manufacture an Si film having a uniform thickness, by exposing a substrate, which is kept at 250 deg.C or more to a gas including a compound, which further includes silicon atoms, reducing the pressure of an atmosphere in the vicinity of the substrate, projecting ultraviolet rays on the surface of the substrate, and repeating the processes, at the temperature of the substrate, which is lower than the conventional temperature. CONSTITUTION:A substrate, which is kept at 250 deg.C or more is exposed to a gas including the compound, which further includes Si atoms. The pressure of an atmosphere in the vicinity of the surface of the substrate is reduced. With the pressure of the atmosphere in said vicinity being reduced, ultraviolet rays are projected on the surface of the substrate. These processes are sequentially repeated. For example, a solenoid valve 15 is opened, and argon Ar of about 10cm<3> including 5% disilane Si2H6 is introduced in the vicinity of a substrate 8. At the same time, a solenoid valve 14 is opened, pure argon Ar of about 30cm<3> is introduced and blown to a window 6. The solenoid valves 15 and 14 are closed in this order. Then the gas is exhausted for about 1.5-5sec. The vacuum degree in a reaction chamber is made to be 10<-4>Torr or less. A shutter 2, which is accompanied by a low voltage mercury light 1, is opened. Converged ultraviolet rays are projected on the substrate 8 for 3sec. This procedure is repeated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、集積回路産業等での基本工程である硅素膜の
製法に関するものでらる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing silicon films, which is a basic process in the integrated circuit industry.

従来例の構成とその問題点 集積回路の製造工程は、硅素(Si)膜の製作、二酸化
硅素(sio□)膜や窒化硅素(Sれド、)膜の製作、
不純物の拡散等の工程からなりている。この硅素(si
)膜の製作においては、通常、化学蒸着法(CVD法)
が採用され、このときには基体温度が少なくとも約SO
O″cS、J、上を要する。蒸着法等で、基体温度を室
温付近に保やて、硅素(S1膜の製作は可能でらるが、
膜質は非常に悪い。すなわち、実質上、硅素(si)膜
の製作は、約eo。
Conventional configurations and their problems The manufacturing process of integrated circuits includes the production of silicon (Si) films, silicon dioxide (SIO□) films, and silicon nitride (S) films.
It consists of processes such as diffusion of impurities. This silicon (si)
) In the production of membranes, chemical vapor deposition (CVD) is usually used.
is employed, when the substrate temperature is at least about SO
It is possible to manufacture a silicon (S1) film by keeping the substrate temperature near room temperature using a vapor deposition method, etc.
The film quality is very poor. That is, the fabrication of a silicon (Si) film is approximately eo.

℃以上の基体温度が要請される。A substrate temperature of ℃ or higher is required.

約aOO℃以上の基体温度は、硅素(Si)膜の製造装
置を複雑、高価にしていると思われる。また、集積回路
の製造工程の柔軟化のためにも、硅素(Si)膜の製造
のさいの基体温度はより低くすることが望まれる。
Substrate temperatures of about aOO° C. or higher appear to make silicon (Si) film manufacturing equipment complicated and expensive. Furthermore, in order to make the manufacturing process of integrated circuits more flexible, it is desirable to lower the substrate temperature during the manufacturing of silicon (Si) films.

また、従来の硅素(si)膜の製造工程においては、た
とえば、4インチ基板では、膜厚の分布はほぼ6チ位が
最良である。ところが、この膜厚のばらつきは、直接、
製品の歩留りや、特性のばらつきに反映する。この膜の
分布も2〜3%位にはする必要がらる。
Further, in the conventional manufacturing process of a silicon (Si) film, for example, for a 4-inch substrate, the best film thickness distribution is approximately 6 inches. However, this variation in film thickness is directly caused by
This is reflected in product yield and property variations. The distribution of this film also needs to be about 2 to 3%.

発明の目的 本発明の目的は、従来よp低い基体温度で、膜質が良好
で、しかも改善された膜厚の均一性を有する硅素(Si
)膜の製法を提供することでらる。
OBJECTS OF THE INVENTION It is an object of the present invention to produce a silicon (Si) material that has a lower substrate temperature than conventional ones, good film quality, and improved film thickness uniformity.
) by providing a method for manufacturing membranes.

発明の構成 本発明の硅素(Sil膜の製法は、順次、250℃以上
に保たれた基体を硅素(Si)原子を含む化合物を含有
するガスに洒す過程と、つぎに基体表面の近傍の雰囲気
を減圧する過程と、つぎに前記近傍の雰囲気を減圧しな
がら前記基体表面に紫外光を照射する過程t、反復する
ように構成したもので6シ、これによシ5従来に比して
、基体の温度を下げた状態で硅素(Sil膜を製造でき
、また、膜厚の分布は、基体の大きさにそれ程依存せず
、はぼ2〜3チ以内にし得るものでおる。
Structure of the Invention The method for producing a silicon (Sil) film of the present invention includes the steps of sequentially exposing a substrate maintained at 250° C. or higher to a gas containing a compound containing silicon (Si) atoms, and then exposing the substrate near the surface of the substrate to a gas containing a compound containing silicon (Si) atoms. The process of reducing the pressure of the atmosphere and the process of irradiating the surface of the substrate with ultraviolet light while reducing the pressure of the atmosphere in the vicinity are repeated. A silicon (Sil) film can be produced with the temperature of the substrate lowered, and the film thickness distribution does not depend so much on the size of the substrate and can be within 2 to 3 inches.

基体としては、表面の平面性がよければ特に制限はない
。基体として最も望ましくは、ガラス基板、フファイア
基板、単結晶硅素(Sl)基板、マクネ・X k’ ネ
ル(MgAffi20. )基板、弗化カルシウム(C
aF2)基板でるる。スバ、/−法や化学蒸着(CYD
)法で、ガラス基板に、硅素(si )膜やマクネ・ス
ピネル(M9AR204) 膜、わるいは弗化カルシウ
ム(CaF2)膜を被着せしめたものも、基体としては
望ましい。
There are no particular limitations on the substrate as long as the surface has good flatness. Most preferably, the substrate is a glass substrate, a fluoride substrate, a single crystal silicon (Sl) substrate, a MgAffi20.
aF2) Ruru board. Suba,/- method and chemical vapor deposition (CYD)
) A glass substrate coated with a silicon (si) film, a Macne Spinel (M9AR204) film, or a calcium fluoride (CaF2) film is also desirable as a substrate.

基体の温度は260℃以上である必要がある。The temperature of the substrate needs to be 260°C or higher.

基体温度を250Cよシ、かなシ低くすると、形成され
た硅素csi)膜の光沢は鈍くなり、膜質も劣るように
なる。基体温度を700℃よt)%かなり上げると、膜
厚の均一性が悪くなる傾向にある。
When the substrate temperature is lowered to 250C or more, the luster of the formed silicon CSI film becomes dull and the film quality becomes poor. When the substrate temperature is significantly increased by 700° C., the uniformity of the film thickness tends to deteriorate.

前記ガスとしては、硅素(is )原子を含む化合物(
気体状)だけからなるか、または、前記化合物(気体状
)と水素(H2)やヘリウム(H・)、またはアルゴン
(ムr)等の非酸化性ガスからなるものでおればよい。
The gas may be a compound containing a silicon (is) atom (
It may consist of the above compound (gaseous) and a non-oxidizing gas such as hydrogen (H2), helium (H.), or argon (Mr).

本発明に係る硅素(S+)膜の製造装置に漏洩があれば
、製造された硅素(si)a[の表面状態が粗となるこ
と等から考えて、rR素(o2)等の酸化性気体の含有
量は著るしく小さいことが必要と推察される。
If there is a leak in the silicon (S+) film manufacturing apparatus according to the present invention, oxidizing gases such as rR element (O2) may It is inferred that the content of is required to be significantly small.

前記化合物としては、ジシラン(5i2H,1% トリ
シラ/(si、!@)が最も望ましかった。但し、トリ
フ2ン〔引5Hs)は沸点が50℃位でるるようでらシ
、常に非酸化性ガスで稀釈された状態で使用する。
As the compound, disilane (5i2H, 1% trisila/(si,!@)) was the most desirable.However, trifine (5Hs) seems to have a boiling point of about 50°C and is always non-oxidizing. It is used diluted with a toxic gas.

ま友、取扱いの安全上、ジシラン(Si2H,lまたは
トリシラ/(sれ’a)t−アルゴン(ムr)や水素(
H2)で稀釈した形で、前記ガスとして使用するのが望
ましい。ジシラ7 (fsi2H4)やトリシラ/(s
isg8)の前記ガスにおける含有量は0.5−程度で
も本発明の目的は達成され念。
Friend, for safety reasons, disilane (Si2H,l or trisilane/(sre'a)t-argon (mr) or hydrogen (
It is preferable to use the gas in diluted form with H2). Disilla 7 (fsi2H4) and Trisilla/(s
It is assumed that the object of the present invention can be achieved even if the content of isg8) in the gas is about 0.5-.

不純物の形成された硅素csi)膜へのドーピングf−
1G記ガスにシボラフ (BzH6) 、ま九はアル7
ン(人1Hs)、また1まホスフィンCPHj)を微量
加える 噸か、または別のパイプからジボラン(B2H
6) 、  またはアルシン(AmHsl 、またはホ
スフィン(PHx lを非酸化性ガスに稀釈した気体を
反応室に導入することによpなされる。
Doping f- into silicon CSI film with impurities formed
Shiboraf (BzH6) for 1G gas, and Al7 for maku
Add a small amount of phosphine (1 Hs) or diborane (B2H) from another pipe.
6), or by introducing a gas prepared by diluting arsine (AmHsl) or phosphine (PHxl) into a non-oxidizing gas into the reaction chamber.

250℃ないしそれ以上の@度に基体を保つのは、ヒー
ター等でなされる。
The substrate is maintained at a temperature of 250° C. or higher using a heater or the like.

基体表面の近傍の雰囲気を減圧する手段は通常、クライ
オ・ポンプ、またはメカニカル・ブースター・ボ/グが
使用される。到達真空度はほぼ16 τorr程度は少
なくとも必要でbる。
A cryo pump or a mechanical booster pump is usually used to reduce the pressure of the atmosphere near the surface of the substrate. The ultimate degree of vacuum must be at least approximately 16 τorr.

紫外光の光源としては、エキシマ−・レーザーや低圧水
銀ランプ、キセノ/・ランプ等がwlましいが、このう
ちでも、取扱いの容易さの点から低圧水銀う/プが最も
望ましい。
Preferred sources of ultraviolet light include excimer lasers, low-pressure mercury lamps, and xeno lamps, but among these, low-pressure mercury lamps are the most desirable from the viewpoint of ease of handling.

前記紫外光の集光等の光学系には、合成石英製のし/ズ
が使用される。また1本発明に係る硅素(St)膜の製
造装置において、前記紫外光を導入する窓は合成石英で
形成される。tた、析出物で曇らないように純水素心る
いは純アルゴンが常に吹きつけられており、かくて、ジ
ンラン(812H,3またはトリシラン(SIxHe)
等が前記急に吸着しなていると推察している。
For the optical system for condensing the ultraviolet light, a glass made of synthetic quartz is used. Furthermore, in the silicon (St) film manufacturing apparatus according to the present invention, the window for introducing the ultraviolet light is formed of synthetic quartz. In addition, pure hydrogen or pure argon is constantly blown to prevent clouding with precipitates.
It is inferred that this is the reason why the above-mentioned substances suddenly stopped adsorbing.

まず、基体をジシラン(st2M、)また1−1トリジ
ラフ (at、!4. )等を含有するガスに・西す過
程においては、基体表面で、ジシラy (Si2!tl
 )分子ないしトリシラン(BL3H83分子等の1〜
数分子層からなるe、NrfIが形成される。
First, in the process of bathing the substrate in a gas containing disilane (st2M,) or 1-1 tridilaph (at,!4.), disilane y (Si2!tl
) molecules or trisilane (BL3H83 molecules, etc.)
e, NrfI consisting of several molecular layers is formed.

つき゛に基体表面の近傍の雰囲気と減圧する過程におい
ては、基体表面の約記吸着層を除いて、基体表面近傍に
あるジン′:)/(8’2H4)またはトリシラン(S
L、HsJを含有するガス成分は排気・除去される。
Therefore, in the process of reducing the pressure in the atmosphere near the substrate surface, the gin':)/(8'2H4) or trisilane (S
Gas components containing L and HsJ are exhausted and removed.

つぎに、基体表面の近傍の雰囲気を減圧しながら・前記
基体表面に紫外光を照射する過程においては、前記吸着
層に1記紫外光が吸収される。この光エネルギーと、基
体加、@に由来する熱エネルギーによって、吸着したジ
シラン(Si2H−分子ないしトリシラン(slsH,
)分子は分解し、硅素(513原子を析出される。なお
このとき、1記紫外jf、は、基体表面の近傍のガスが
減圧・排気されている故に、1記吸着層に効率的に到達
すると思われる。
Next, in the process of irradiating the substrate surface with ultraviolet light while reducing the pressure of the atmosphere near the substrate surface, the ultraviolet light described in item 1 is absorbed by the adsorption layer. This light energy and the thermal energy originating from the substrate add adsorbed disilane (Si2H-molecules or trisilane (slsH,
) molecules are decomposed and 513 atoms of silicon are precipitated. At this time, the ultraviolet jf in 1) efficiently reaches the adsorption layer in 1 because the gas near the substrate surface is depressurized and exhausted. It seems that it will.

実施例の説明 以下本発明の実施列について1図面を参照しながら説明
する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to one drawing.

〔実施例1〕 図は本発明の実施例における硅素(Si)fAの製造装
置の構成I!fi面図である。図において、1は100
Wの低圧水銀灯、2はシャ、ター、3は合成石英製のレ
ンズ、4は紫外光の通路を示し、6は反応室、6は合成
石英製の窓、7はヒーター内蔵の基体担体、8は基体、
eは窓5が0らないように純アルゴンを窓6に吹きつけ
るための配管。
[Example 1] The figure shows the configuration I of a silicon (Si) fA manufacturing apparatus in an example of the present invention! FIG. In the figure, 1 is 100
W low-pressure mercury lamp, 2 is a shutter, 3 is a lens made of synthetic quartz, 4 is a path for ultraviolet light, 6 is a reaction chamber, 6 is a window made of synthetic quartz, 7 is a substrate carrier with a built-in heater, 8 is the base,
e is a pipe for spraying pure argon onto the window 6 so that the window 5 does not open.

1oはジシラ7(812)14)またはト17 ンラy
 (8i3H@1を含有するガスを供給するための配管
、11は硅素(si )膜に不純物を添加するためのシ
ボ2/(B2H41、6るいはホスフィン(PHx)%
らるいはアル7ノ(ム5H3)を含有するガスを供給す
るための配管、12は配管9から供給されたガスを吸引
するための配管、13は配!10.11から供給された
ガスを吸引するための配管、14,155゜16は電磁
弁、17はクライオ・ポンプ、18は冷却用蛇管である
。なお、反応室は配管を含めて外気の内部への漏洩が実
質J:ないよりに厳重に検討し九。
1o is Jishira 7 (812) 14) or To 17
(Piping for supplying gas containing 8i3H@1, 11 is a grain for adding impurities to the silicon (si) film 2/(B2H41, 6 or phosphine (PHx)%)
12 is a pipe for sucking the gas supplied from pipe 9, 13 is a distribution pipe! 10.11 is a pipe for suctioning the gas supplied, 14,155°16 is a solenoid valve, 17 is a cryo pump, and 18 is a cooling coil. In addition, the reaction chamber, including the piping, should be carefully examined to prevent leakage of outside air into the interior.

基体8として%鏡面研磨し乏硅素(St )結晶板と鏡
面研磨した弗化カルシウム(CaF2)単結晶板と鏡面
研磨したサファイア板を用いた。これらを、洗滌し、乾
燥させた後、1記製造装置の反応室内に設置して後、ヒ
ーターで加熱して約600Cに1時間保りた。このとき
、別に設けられた油回転ポンプで反応室を予備排気して
後、クライオ・ポンプで反応室を排気して減圧状態に保
つ。
As the substrate 8, a mirror-polished silicon-poor silicon (St) crystal plate, a mirror-polished calcium fluoride (CaF2) single crystal plate, and a mirror-polished sapphire plate were used. After washing and drying these, they were placed in the reaction chamber of the manufacturing apparatus described in 1 above, heated with a heater, and kept at about 600C for 1 hour. At this time, the reaction chamber is preliminarily evacuated using a separately provided oil rotary pump, and then the reaction chamber is evacuated using a cryo pump to maintain a reduced pressure state.

前記減圧状態のまま、基体8の@度を5oot:に低下
させ、以後、硅素(SL)9[形成の間この温度に保つ
。このときの真空度は約10 Torr程度でありた。
While maintaining the reduced pressure, the temperature of the substrate 8 is lowered to 5oot:, and thereafter this temperature is maintained during the formation of silicon (SL) 9. The degree of vacuum at this time was approximately 10 Torr.

クライオ・ボンダ1アに動作させ、反応室5′ft:常
に排気状態に保りて、以下の工程により、硅素(si)
膜の形成を行う。
The cryo-bonder is operated in a 1-a reaction chamber, and the reaction chamber is kept in an evacuated state at all times. Silicon (Si) is
Perform film formation.

まず、電磁弁16を開け、ジシラン(Si2H4)を6
%含むアルゴン(ムr)約10dを基体8の近傍に導入
する。同時に、電磁弁14を開け、約30cdの純アル
ゴン(ムr)を導入して、窓6に吹きつける。この過程
の所要時間は約0.6秒程度でおる。
First, open the solenoid valve 16 and add 60% of disilane (Si2H4).
About 10 d of argon containing 10% of argon is introduced into the vicinity of the substrate 8. At the same time, the solenoid valve 14 is opened and about 30 cd of pure argon (Mr) is introduced and blown onto the window 6. The time required for this process is approximately 0.6 seconds.

こののち、電磁弁16と14をこの順に閉じる。Thereafter, the solenoid valves 16 and 14 are closed in this order.

つぎに、約1,6〜6秒程度排気する。このとき、反応
室内の真空度は164τorr以下でらりた。
Next, exhaust the air for about 1.6 to 6 seconds. At this time, the degree of vacuum in the reaction chamber was 164τorr or less.

点灯されている1oowの低圧水銀灯1に随伴するシャ
、ター2を開けて、基体8に集光した紫外光t−3秒照
射する。
The shutter 2 associated with the lit 100 low pressure mercury lamp 1 is opened, and the substrate 8 is irradiated with concentrated ultraviolet light for t-3 seconds.

以上の手順を繰シ返して、硅素(31)@を得た。The above procedure was repeated to obtain silicon (31)@.

繰p返し回数を約400回とした場合、基体8に関係な
く、形式された硅素(51)膜の膜厚は約2000人で
らりた。
When the number of repetitions was about 400, the thickness of the formed silicon (51) film was about 2000 times, regardless of the substrate 8.

形成された硅素(St)膜の電子線回折実験の結果、結
晶化していることが判うた。さらに基体Bを弗化カルシ
フ7−(CaF2 )単結晶板、多るいはサファイア板
を用いた場合、その上に形成された硅素(si)膜は単
結晶化に近い回折を示した。基体8を硅素結晶板にした
場合、単結晶化の程度はおとりた。
As a result of an electron beam diffraction experiment of the formed silicon (St) film, it was found that it was crystallized. Furthermore, when a single crystal plate of calcium fluoride 7-(CaF2), a sapphire plate, or a sapphire plate was used as the substrate B, the silicon (si) film formed thereon showed diffraction similar to that of single crystal. When the substrate 8 was made of a silicon crystal plate, the degree of single crystallization was reduced.

従来の方法によれば、たとえば蒸着法等でh基体温度を
少なくともaooc以上にしないと硅素(8i)の多結
晶膜は得られないし、また化学蒸着(CVD 3法によ
れば基体温度を少なくとも600℃以上にしないと形成
された硅素(sB膜は結晶化しないことが知られている
。従りて、本発明による硅素(Si)膜の形成法は憂れ
ていることがわかる。
According to conventional methods, a silicon (8i) polycrystalline film cannot be obtained unless the substrate temperature is raised to at least aooc or higher using a vapor deposition method, and according to the chemical vapor deposition (CVD 3 method) the substrate temperature is raised to at least 600℃. It is known that the silicon (sB) film formed does not crystallize unless the temperature is above .degree.

形成された硅素(Si)膜の膜厚の均一性に関しては、
基体8を弗化カルシウム(CaF2 )単結晶板または
サファイア板の場合基体80種類により、若干変わるが
、1o−離しておいた2個の基体くおいて、膜厚の差は
1チ以内であった。この値は従来法によれば、装置を大
型化すれば可能であるが、これにも限度があり、従りて
、かなシ到達困難な値である。なお膜厚11111定は
段差計と、断面の走査型電子顕微鏡の観察によつた。
Regarding the uniformity of the thickness of the silicon (Si) film formed,
If the substrate 8 is a calcium fluoride (CaF2) single crystal plate or a sapphire plate, it will vary slightly depending on the type of substrate 80, but the difference in film thickness will be within 1 inch when two substrates are placed 1° apart. Ta. According to the conventional method, this value can be achieved by increasing the size of the device, but there is a limit to this, and therefore it is a value that is difficult to reach. The film thickness (11111) was determined by using a step meter and by observing the cross section using a scanning electron microscope.

〔実施例2〕 本実施例は、図の装riIt使りてなされた。基体とし
ては、パイレックス・ガラスと鏡面研磨されたマグネ・
スピネル(Mg AItz O4)単結晶板を使用した
。々お、マグネ・スピネル(Mg12o、 )単結晶は
引き上げ法によりて得られた。これらを洗滌し、乾燥さ
せた後、l!i+紀装置の反応室内に設置して後、ヒー
ターで加熱して約eoo℃に1時間保9た。
[Example 2] This example was made using the equipment shown in the figure. The base material is Pyrex glass and mirror-polished magnetism.
A spinel (Mg AItz O4) single crystal plate was used. Magne spinel (Mg12o) single crystals were obtained by a pulling method. After washing and drying these, l! After placing it in the reaction chamber of the I+ period apparatus, it was heated with a heater and kept at about 00°C for 1 hour.

このとき、別に設けられた油回転ポンプで反応室を予備
排気して後、クライオ・ポンプで反応室を排気して減圧
状態に保つ。
At this time, the reaction chamber is preliminarily evacuated using a separately provided oil rotary pump, and then the reaction chamber is evacuated using a cryo pump to maintain a reduced pressure state.

1記減圧状態のまま、基体8の温度を250℃まで冷却
させ、硅素(si )膜形成の間、この温度に保つ。こ
のときの真?!度は約10 Torτ程度でありた。ク
ライオ・ポンプを動作させ1反応室を常に排気状態に保
9て、実施例1と同じ工程により硅素(sB膜の形成を
行った。但し、基体を晒すガスとしては、6チジンラ/
(812M4)を含むアルゴン(ムτ)約10Cjl使
pた。
1. While maintaining the reduced pressure state, the temperature of the substrate 8 is cooled to 250° C. and maintained at this temperature during the silicon (si) film formation. What is true at this time? ! The temperature was about 10 Torτ. A silicon (sB) film was formed using the same process as in Example 1 by operating the cryo pump and keeping one reaction chamber in an evacuated state. However, the gas used to expose the substrate was
About 10 Cjl of argon (μτ) containing (812M4) was used.

形成された硅素(gi)[の電子線回折実験の結果、基
体8の種類に拘らず非晶質でろることがわかつた。
As a result of an electron beam diffraction experiment of the formed silicon (gi), it was found that it is amorphous and solid regardless of the type of substrate 8.

タングステン・ランプの光を照射した単純な光伝導の効
果の測定の結果、上述と同一基体温度でプラズマ・化学
蒸着法(OVD法)で作られた硅素(Sl)膜よシも1
本実施例における方が優れていることがわかりた。これ
は従来法に比して5本発明による硅素(Sl)膜の方が
膜質が優れていることを示している。
As a result of measuring the effect of simple photoconduction by irradiating light from a tungsten lamp, it was found that silicon (Sl) films made by plasma chemical vapor deposition (OVD) at the same substrate temperature as described above were also 1
It was found that this example was superior. This shows that the silicon (Sl) film according to the present invention has better film quality than the conventional method.

形成された硅素(si)膜の膜厚の均一性に関しては、
走査at子顕微鏡による断面観察によれば、10a++
離しておいた2個の基体において1wX厚の差は1チ以
内でらりた。
Regarding the uniformity of the thickness of the silicon (Si) film formed,
According to cross-sectional observation using a scanning atomic electron microscope, 10a++
The difference in thickness of the two substrates separated by 1 wX was within 1 inch.

〔実施例3〕 本実施例は1図の装置を便りてなされた。但し紫外光源
1としては1KWのキセノン・ランプを使つた。基体と
しては、弗化カルシウム(CaF2)で被覆された溶融
石英板とマグネ・スピネル(M9ムi、o、)で被覆さ
れた溶融石英板を用いた。
[Example 3] This example was made using the apparatus shown in FIG. However, as the ultraviolet light source 1, a 1KW xenon lamp was used. As the substrates, a fused silica plate coated with calcium fluoride (CaF2) and a fused quartz plate coated with magne spinel (M9 mm i, o,) were used.

約記弗化カルシウム(CaF2 )の膜やマグネ・スピ
ネル(v9A4,0. )の膜は、スバ、−−法で形成
される。X線回折実験の結果、これらの膜は結晶化して
いることが判つた。これらの膜の厚みは、はぼ1ooO
人で6−3た。これらを洗滌し、乾燥させた後、約記装
置の反応室内に設置して後、ヒーターで加熱して約so
o’cに1時間保つた。このとき、別に設けられた油回
転ボ/ブで反応室を予備排気して後、クライオ・ポンプ
で反応室を排気して減圧状態に保つ。
Summary Calcium fluoride (CaF2) films and magne spinel (v9A4,0.) films are formed by the Suba method. As a result of X-ray diffraction experiments, it was found that these films were crystallized. The thickness of these films is approximately 1ooO
The number of people was 6-3. After washing and drying these, they were placed in the reaction chamber of the above-mentioned device and heated with a heater to reach about so.
I kept it at o'c for 1 hour. At this time, the reaction chamber is preliminarily evacuated using a separately provided oil rotary valve, and then the reaction chamber is evacuated using a cryo pump to maintain a reduced pressure state.

1記減圧状態のまま、基体8の温度をrsoocに低下
させ、以後、硅素(Sl)膜形成の間、この温度に保つ
。このときの真空度は約16”Torr程度でる9た。
1. While maintaining the reduced pressure state, the temperature of the substrate 8 is lowered to rsooc, and thereafter maintained at this temperature during the formation of the silicon (Sl) film. The degree of vacuum at this time was about 16'' Torr.

クライオ・ボ/グ17を動作させ1反応室を常に排気状
態に保つて、以下の工程によp、硅素(Si)PAの形
成を行う。
The cryo-bog 17 is operated to keep one reaction chamber constantly in an evacuated state, and silicon (Si) PA is formed in the following steps.

まず、電磁弁115.16を開く。パイプ10からは、
トリジラフ(51,Halを約1チ含むアルゴン(ムr
]約20 cd t−、パイプ11からはジボラン(B
zHa )を約0.1%含むアルゴン(ムr)約1cd
t−同時に基体8の近傍に導入する。同時に、電磁弁1
4を開け、約3oc11の純アルゴン(^τ)と導入し
て、窓6に吹きつける。この過程の所要時間は約O,S
秒程度で心る。こののち、を磁弁16と16と14をこ
の順に閉じる。
First, open the solenoid valves 115 and 16. From pipe 10,
Trijiraf (51, argon containing about 1 liter of Hal)
] Approximately 20 cd t-, diborane (B
About 1 cd of argon (Mr) containing about 0.1%
t- simultaneously introduced into the vicinity of the substrate 8. At the same time, solenoid valve 1
4 is opened, about 3oc11 of pure argon (^τ) is introduced, and it is blown onto the window 6. The time required for this process is approximately O,S
Think about it in about seconds. After this, the magnetic valves 16, 16, and 14 are closed in this order.

つき゛に、約1.6〜6秒程度排気する。このときの反
応室内の真空度は10’Torr以下でらりた。
Each time, exhaust the air for about 1.6 to 6 seconds. At this time, the degree of vacuum in the reaction chamber was 10'Torr or less.

点灯されている1KWのキセノンランプ1に随伴するシ
ャッター2を開けて、基体8に集光した紫外光を1秒照
射する。
The shutter 2 accompanying the lit 1KW xenon lamp 1 is opened, and the base 8 is irradiated with the focused ultraviolet light for 1 second.

以上の手順を繰p返して、硅素(SL)膜を得た。The above procedure was repeated to obtain a silicon (SL) film.

繰り返し回数を約400回とした場合、基体に関係なく
、形成された硅素(51) fiの膜厚は約2000人
でろり北。
When the number of repetitions is about 400, the thickness of the silicon (51) film formed is about 2000, regardless of the substrate.

形成された硅素(si)膜の電子線回折実験の結果、結
晶化していることが判つた。また、熱起電力の測定によ
れば、形成された硅素(51)膜の導電型はPで6つた
As a result of an electron beam diffraction experiment of the silicon (Si) film formed, it was found that it was crystallized. Further, according to the measurement of thermoelectromotive force, the conductivity type of the silicon (51) film formed was P, which was six.

従来の方法によれば、たとえば蒸着法等では、基体温度
を少なくとも800℃以上にしないと硅素(St)の多
結晶膜は得られないし、また化学蒸着(CVD)法によ
れば基体温度を少なくとも600℃以上にしないと形成
された硅素(St )膜は結晶化しないことが知られて
いる。
According to conventional methods, such as vapor deposition, a silicon (St) polycrystalline film cannot be obtained unless the substrate temperature is at least 800°C, and chemical vapor deposition (CVD) requires a substrate temperature of at least 800°C. It is known that a silicon (St 2 ) film formed does not crystallize unless the temperature is 600° C. or higher.

形成された硅素(si)膜の膜厚の均一性に関しては、
103離しておいた2個の基体において。
Regarding the uniformity of the thickness of the silicon (Si) film formed,
103 In two substrates separated.

膜厚の差は1チ以内でらりた。The difference in film thickness was within 1 inch.

〔実施例4〕 本実施例では1図のような装置を使りてなされた。但し
、紫外光源としては、60Wの弗化1ルゴ/〔ムrF)
のエキンマー・V−ジーを使用した。  −このレーザ
ーはパルス発振させることが通常の使用形態である。
[Example 4] In this example, an apparatus as shown in FIG. 1 was used. However, as an ultraviolet light source, 60W fluoride 1 Lugo/[MrF]
Ekinmar V-G was used. - This laser is normally used in pulsed oscillation.

基体としては、鏡面研磨された弗化カルシウム(CaF
2 )単結晶板を使用した。これを洗滌し、乾燥させて
後、酌記装置の反応室内に設置して後、ヒーターで加熱
して約600℃に1時間保った。
The substrate is mirror-polished calcium fluoride (CaF).
2) A single crystal plate was used. After washing and drying this, it was placed in the reaction chamber of the inscription device, heated with a heater, and kept at about 600° C. for 1 hour.

このとき別に設けられた油回転ポンプで予備排気して後
、クライオ・ポンプ1アで反応室を排気して減圧状態に
保つ。
At this time, after preliminary evacuation is performed using a separately provided oil rotary pump, the reaction chamber is evacuated using a cryo pump 1a to maintain a reduced pressure state.

前記減圧状態のまま、基体8の温度を460℃に低下さ
せ、以後硅素(8i) 倶形成の間この温度に保つ。こ
のときの真空度は約10 Torr g度であつた。
While maintaining the reduced pressure, the temperature of the substrate 8 is lowered to 460° C. and maintained at this temperature thereafter during the silicon (8i) layer formation. The degree of vacuum at this time was approximately 10 Torr g degrees.

クライオ・ポンプ17を動作させ5反応室を常に排気状
態に保つて、以下の工程によシ、硅素(Si)膜の形成
を行う。
The cryo pump 17 is operated to keep the reaction chamber 5 in an evacuated state at all times, and a silicon (Si) film is formed by the following steps.

まず、電磁弁16を開け、ジシラ7 (sl、x、 )
を5チ、ホスフィン(PHs ) ヲ0・3%含むアル
ゴン(ムr)約10cdを基体8の近傍に導入する。同
時に、電磁弁14を開け、約30iの純アルゴンを導入
して窓6に吹きつける。この過程の所要時間は約0.5
秒程度でるる。こののち、電磁弁15と14をこの順に
閉じる。
First, open the solenoid valve 16 and
About 10 cd of argon (Mr) containing 0.3% of phosphine (PHs) is introduced into the vicinity of the substrate 8. At the same time, the solenoid valve 14 is opened, and about 30 i of pure argon is introduced and blown onto the window 6. The time required for this process is approximately 0.5
It takes about seconds. Thereafter, the solenoid valves 15 and 14 are closed in this order.

つぎに、約1.6〜5秒程度排気する。このとき、反応
室内の真正度は1oτorr以下でありた。
Next, exhaust the air for about 1.6 to 5 seconds. At this time, the accuracy in the reaction chamber was 1 oτ orr or less.

つぎに、シャッター2を開けた状態で、SOWの弗化ア
ルゴン(ムrF)のエキシマ・レーザーt−a起し、単
発のレーザー光を基体8に照射する。
Next, with the shutter 2 open, an SOW argon fluoride (MrF) excimer laser t-a is activated to irradiate the substrate 8 with a single laser beam.

以上の手順を約60回、繰り返して、硅素(sB膜を得
た。硅素(Si)膜の膜厚は約230人でありた。
The above procedure was repeated about 60 times to obtain a silicon (sB) film. The thickness of the silicon (Si) film was about 230.

形成された硅素(si )膜の電子線回折実験の結果、
単結晶に近い結晶化をしていることが判りた。
As a result of an electron diffraction experiment of the silicon (si) film formed,
It was found that the crystallization was close to that of a single crystal.

従来の方法によれば、たとえば蒸着法等では、基体温度
を少なくとも800℃以上にしないと、硅素(ailの
多結晶膜は得られないし、また化学蒸着(CI/D)法
によれば基体温度を少なくとも600℃以上にしないと
形成された硅素(15i)膜は結晶化しないことが知ら
れている。
According to conventional methods, such as vapor deposition, a silicon (ail) polycrystalline film cannot be obtained unless the substrate temperature is at least 800°C, and chemical vapor deposition (CI/D) requires a substrate temperature of at least 800°C. It is known that a silicon (15i) film formed does not crystallize unless the temperature is at least 600° C. or higher.

形成された硅素(si)膜の均一性に関しては、このよ
うに膜厚が小さい場合、誤差が大きく、正確な評価は困
難で6りた。しかし、他の実験等から、このような小さ
い膜厚の場合でも、膜厚の均一性は非常に良好と結論さ
れた。
Regarding the uniformity of the formed silicon (Si) film, when the film thickness is small like this, the error is large and accurate evaluation is difficult. However, from other experiments and the like, it was concluded that even in the case of such a small film thickness, the uniformity of the film thickness is very good.

発明の効果 以上の説明から明らかなように1本発明は、順次、25
0℃以上に保たれた基体を硅素(Sil原子を含む化合
物を含有するガスに晒す過程と、つぎに基体表面の近傍
の雰凹気を減圧する過程と、つぎに前記基体表面に紫外
光を照射する過程を、反復するように構成しているので
、低温で瞑實のよい硅素(SL)膜が得られるという優
れた効果がある。その効果により、半導体集積回路プロ
セスのよジ一層の低温化や薄膜トランジスターの製造に
、本発明は資すること大である。
Effects of the InventionAs is clear from the above explanation, the present invention sequentially
The substrate kept at 0°C or higher is exposed to a gas containing a compound containing silicon (Sil) atoms, the atmosphere near the surface of the substrate is depressurized, and the surface of the substrate is exposed to ultraviolet light. Since the irradiation process is configured to repeat, it has the excellent effect of obtaining a silicon (SL) film with good density at low temperatures.This effect allows the semiconductor integrated circuit process to be performed at even lower temperatures. The present invention will greatly contribute to the manufacturing of thin film transistors and thin film transistors.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明を実施するための硅素(si)膜の製造装
!の1例の構成断面図である。 1・・・・・・紫外光源、2・・・・・/ヤケター、3
・・・・・合成石英製のレンズ、4・・・・・紫外光の
通路、5・・・・・反応室、6パ°・・・合成石英製の
息、7・・・・・ヒーター内蔵の基体担体、8・・・・
・基体、9・・・・・・窓6が曇らな“ように純アルゴ
/(ムτ)を窓6に吹きつけるための配管、1o・・・
・・・ジン2y(Si2Hi)またはトリシラン(f9
1AH9)を含有するガスを供給するための配管、11
・・・・・・硅素(St )膜に不純物を添加するため
のシボ2ン(32H4)、6るいはホスフィン(PHs
)、あるいはアル7/(ムIH5)を含有するガスを供
給するための配管、12・・・・・・配W9から供給さ
れたガスを吸引するための配管、13・・・・・配置F
10,11から供給されたガスを吸引するための配管、
14.15.16・・・・・・電磁弁、1了・・・・・
・クライオ・ポンプ、18・・・・・・冷却用蛇管。
The figure shows a silicon (Si) film manufacturing equipment for carrying out the present invention! FIG. 1...Ultraviolet light source, 2.../Yaketa, 3
...Synthetic quartz lens, 4..Ultraviolet light passage, 5..Reaction chamber, 6.Synthetic quartz breather, 7..Heater. Built-in base carrier, 8...
・Base body, 9... Piping for spraying pure Argo/(μτ) onto the window 6 so that the window 6 is not cloudy, 1o...
...Si2y (Si2Hi) or trisilane (f9
Piping for supplying gas containing 1AH9), 11
・・・・・・Sibo 2 (32H4), 6 or phosphine (PHs) for adding impurities to silicon (St) film
), or piping for supplying gas containing Al7/(muIH5), 12...Piping for sucking gas supplied from distribution W9, 13...Arrangement F
Piping for sucking gas supplied from 10 and 11,
14.15.16... Solenoid valve, 1 completion...
・Cryo pump, 18... Cooling pipe.

Claims (2)

【特許請求の範囲】[Claims] (1)順次、250℃以上に保たれた基体を硅素(Si
)原子を含む化合物を含有するガスに晒す過程と、つぎ
に基体表面の近傍の雰囲気を減圧する過程と、つぎに前
記近傍の雰囲気を減圧しながら前記基体表面に紫外光を
照射する過程とを反復することを特徴とする硅素膜の製
法。
(1) Sequentially, the substrate kept at 250°C or higher is made of silicon
) A step of exposing the substrate to a gas containing a compound containing atoms, a step of reducing the pressure of the atmosphere near the surface of the substrate, and a step of irradiating the surface of the substrate with ultraviolet light while reducing the pressure of the atmosphere near the substrate. A method for manufacturing a silicon film characterized by repetition.
(2)化合物は、ジシラン(Si_2H_6)またはト
リシラン(Si_3H_3)であることを特徴とする特
許請求の範囲第1項記載の硅素膜の製法。
(2) The method for manufacturing a silicon film according to claim 1, wherein the compound is disilane (Si_2H_6) or trisilane (Si_3H_3).
JP21543784A 1984-10-15 1984-10-15 Manufacture of silicon film Pending JPS6193617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21543784A JPS6193617A (en) 1984-10-15 1984-10-15 Manufacture of silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21543784A JPS6193617A (en) 1984-10-15 1984-10-15 Manufacture of silicon film

Publications (1)

Publication Number Publication Date
JPS6193617A true JPS6193617A (en) 1986-05-12

Family

ID=16672328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21543784A Pending JPS6193617A (en) 1984-10-15 1984-10-15 Manufacture of silicon film

Country Status (1)

Country Link
JP (1) JPS6193617A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293611A (en) * 1986-06-12 1987-12-21 Fujitsu Ltd Epitaxial growth of silicon
JPS63239812A (en) * 1987-03-27 1988-10-05 Toagosei Chem Ind Co Ltd Manufacture of electric-insulating dissimilar single crystal substrate with silicon single crystal film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293611A (en) * 1986-06-12 1987-12-21 Fujitsu Ltd Epitaxial growth of silicon
JPS63239812A (en) * 1987-03-27 1988-10-05 Toagosei Chem Ind Co Ltd Manufacture of electric-insulating dissimilar single crystal substrate with silicon single crystal film

Similar Documents

Publication Publication Date Title
JP3048749B2 (en) Thin film formation method
JPS5964770A (en) Photo-assisted chemical evaporation deposition
JPH08973B2 (en) Deposited film formation method
JPH07321046A (en) Device and method for thin film formation
JPS6193617A (en) Manufacture of silicon film
US5326649A (en) X-ray transmitting membrane for mask in x-ray lithography and method for preparing the same
JP3644556B2 (en) Deposition equipment
JPS63224233A (en) Surface treatment
JPH0530295B2 (en)
JPS61241913A (en) Manufacture of gallium nitride film
JPH07134413A (en) Device manufacturing process using resist material containing fullerene
JPS6193630A (en) Manufacture of silicon dioxide film
JPS6195535A (en) Manufacture of silicon nitride film
JPH04332115A (en) X-ray transmission film for x-ray lithography mask
KR102526512B1 (en) Laminate for blank mask and manufacturing method for the same
JPS61224318A (en) Device and method for formation of vapor-phase thin film
JP2937380B2 (en) Wiring forming method and apparatus
JPS6355929A (en) Manufacture of semiconductor thin film
JPS6314870A (en) Method for selective growth of thin metallic film
JPS6134924A (en) Growing device of semiconductor crystal
Petzold et al. Laser-induced metal deposition on silicon membranes for X-ray lithography
Petzold et al. Repair of clear X-ray mask defects by laser-induced metal deposition
JPS63179073A (en) Manufacture of gallium nitride film
JPH02281614A (en) Manufacture of polycrystalline silicon thin film
JPS61217576A (en) Formation of thin tungsten film