JPS6314870A - Method for selective growth of thin metallic film - Google Patents

Method for selective growth of thin metallic film

Info

Publication number
JPS6314870A
JPS6314870A JP15603686A JP15603686A JPS6314870A JP S6314870 A JPS6314870 A JP S6314870A JP 15603686 A JP15603686 A JP 15603686A JP 15603686 A JP15603686 A JP 15603686A JP S6314870 A JPS6314870 A JP S6314870A
Authority
JP
Japan
Prior art keywords
substrate
thin film
metal
metal thin
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15603686A
Other languages
Japanese (ja)
Inventor
Eisuke Nishitani
英輔 西谷
Susumu Tsujiku
都竹 進
Mitsuo Nakatani
中谷 光雄
Masaaki Maehara
前原 正明
Mitsuaki Horiuchi
光明 堀内
Koichiro Mizukami
水上 浩一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15603686A priority Critical patent/JPS6314870A/en
Publication of JPS6314870A publication Critical patent/JPS6314870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To maintain good selectivity and to form a thin metallic film at a high speed with good reproducibility by cooling parts such as the inside wall of a reaction vessel, substrate susceptor, and gas introducing pipe except the substrate exposed to gaseous raw materials. CONSTITUTION:WF6 and H2 are introduced from a WF6 cylinder 1 and H2 cylinder 2 through respective flow rate regulators 3, 4 and stop valves 5, 6 into the reaction vessel 8 cooled with water. Water-cooled light shielding plates 10, 11 are provided to the inside and outside of the reaction vessel 8 and air is blown from a direction B to cool a projection window 9 with the air. A halogen lamp 9 with a water-cooled reflection mirror is then lighted up to heat the vacuum vessel 12 through the projection window 9 and to cause the reaction of the introduced gases, by which the thin metallic film is selectively grown onto the substrate 12.

Description

【発明の詳細な説明】 〔座業上の利用分野〕 本発明は気相成長方法によって金属薄膜を選択的に形成
する方法に係り、特に高選択性を保ち高速に霊属薄膜を
形成す、bのに好適な方法に係る。
[Detailed Description of the Invention] [Field of Sedentary Application] The present invention relates to a method for selectively forming a metal thin film by a vapor phase growth method, particularly for forming a metal thin film at high speed while maintaining high selectivity. According to a method suitable for b.

〔従来の技術〕[Conventional technology]

従来、気相成長法には常IEcVD装置および減圧CV
D装置が用いられてきたが、金属薄膜の形成には一役的
に膜厚分布及び設工被覆性に優れる減圧CVD法が使用
されてきた。このうち、特に選択的に金xivgを形成
する場合には、ウェハ以外の反応容器壁等に金属薄膜を
形成させなh工夫が必要とされた。ホントウオールタイ
プの減圧CVD装置としては米国特許4547404号
に開示されている様に反応容器全体をヒータで加熱し1
反応容器はヒータからの赤外線が透過し反応容器内が均
一に加熱できるという利点がある。また、ハロゲノ化金
属ガスと水素ガスを用いた螢属薄膜形成を行なう場合、
反応容器に金、A薄膜を形成し難い石英等を用いると選
択成膜が可能となる。しかし、反応容器の内壁がたとえ
徴立であっても膜形成の核となる汚れが存在した場合、
その核を中心として金属薄膜の形成領域が拡大し、やが
て基体上の所望しない部分にも金属薄、摸を形成してし
まうという問題がある。一方コールドウオールタイプの
減圧CVD装置としてにt、特開昭59−179775
号に開示されている様に反応容器全体は水冷されており
、基体を基本支持部と共に所望する金属薄膜を形成する
基本表面の裏側から赤外ラングで加熱する方法がある。
Conventionally, the vapor phase growth method usually uses IEcVD equipment and low pressure CV.
D equipment has been used, but the low pressure CVD method, which has excellent film thickness distribution and construction coverage, has been used to form metal thin films. Among these methods, especially when gold xivg is selectively formed, it is necessary to take measures to avoid forming a metal thin film on the walls of the reaction vessel other than the wafer. As a true wall type low pressure CVD apparatus, the entire reaction vessel is heated with a heater as disclosed in US Pat. No. 4,547,404.
The reaction vessel has the advantage that infrared rays from the heater can pass therethrough and the interior of the reaction vessel can be heated uniformly. In addition, when forming a flora thin film using metal halide gas and hydrogen gas,
Selective film formation becomes possible by using gold, quartz, etc., on which it is difficult to form an A thin film, in the reaction vessel. However, even if the inner wall of the reaction vessel is rough, if there is dirt that becomes the core of film formation,
There is a problem in that the region in which the metal thin film is formed expands around the core, and eventually a metal thin film or imitation is formed on undesired portions of the substrate. On the other hand, as a cold wall type low pressure CVD device, JP-A-59-179775
As disclosed in No. 1, the entire reaction vessel is water-cooled, and there is a method in which the substrate is heated with an infrared rung from behind the basic surface on which the desired metal thin film is formed together with the basic support.

この方云では、所望する金属薄膜を形成する基体面以外
は殆んど原料ガスに露出していないため、反応容器壁と
原料ガスの反応も起こらず成膜速度7ノ:安定するとい
うオリ点がある。
In this method, since almost nothing other than the substrate surface on which the desired metal thin film is formed is exposed to the raw material gas, there is no reaction between the reaction vessel wall and the raw material gas, and the film formation rate is 7: stable. be.

また、基体の加熱全基体支持台と共に加熱しているため
、基体表面温度が均一に加熱できるという利点がある。
Furthermore, since the entire substrate is heated together with the substrate support, there is an advantage that the surface temperature of the substrate can be heated uniformly.

しかし、基体支持台も加熱している九め、基体支持台に
おいて金属薄膜を形成してしまい、そこから金4薄膜の
形成領域が拡大し、やがて基体上の所望しない部分にも
金4薄膜を形成してしまうという問題がある。
However, when the substrate support is also heated, a metal thin film is formed on the substrate support, and the area where the gold 4 thin film is formed expands, and eventually the gold 4 thin film is deposited on undesired parts of the substrate. The problem is that it forms.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記したように従来技術では、金属薄膜を形成する基体
と、反応容器や基体支持治具等の基体以外のものとの温
度差について、さらに、同一基本面上でbっでも、所望
する金属g哀を選択的に形成する部分とそれ以外の部分
との温度差について配慮がされておらず、良好な選択性
を渫持し、捗現性良く高速に金y4薄膜を形成できない
という問題があった。
As mentioned above, in the conventional technology, it is difficult to control the temperature difference between the substrate on which a metal thin film is formed and something other than the substrate, such as a reaction vessel or a substrate support jig, and even if the desired metal g is There was no consideration given to the temperature difference between the part where the gold is selectively formed and the other parts, and there was a problem that it was not possible to maintain good selectivity and form a gold Y4 thin film at high speed with good progress. Ta.

本発明の目的は、良好な選択性を保持し、再現性良く高
速に金ノ!i4 i’J4膜を形成する方法で揚上する
ことにある。
The purpose of the present invention is to maintain good selectivity and perform gold metallization at high speed with good reproducibility. i4 i'J4 film.

〔問題点を解決する/ζめの+段」 前記の目的を達成するためンζ本発明では、反応容器ビ
]に設ばざnた基体を加熱する手段として基体材料及び
形成した金属が光吸収・2持つ光源を用い、所望する金
属i4膜を形成する基体104に、該光源からの光を表
面照射し、さらに、基体以外には該光源からの元が当た
らないようにもしくは当っても水冷等の冷却手段により
温度が上がらないようにして、基体のみ所定の温度に加
熱させると共に、ハロゲン化金属ガスと水素ガスガスを
灰石容器内に導入することにより、金属薄膜を形成式せ
た。気相成長法による金属薄膜の形成は、・・ロゲン化
金属のH2による還元で行なわれるが、このためには膜
成長の核となるH原子が存在することが必要であるとさ
れている。ところが、逆に選択成膜の場合には、所望し
ない部分に何らかの原因でH原子が発生、もしくは外部
から発生した五原子が付着することは、甚だ良くない。
[Solving the Problem/Step ζ] In order to achieve the above-mentioned object, in the present invention, the substrate material and the formed metal are exposed to light as a means for heating the substrate placed in the reaction vessel. Using a light source with absorption 2, the surface of the substrate 104 on which the desired metal i4 film is to be formed is irradiated with light from the light source, and further, the light from the light source is made such that it does not hit anything other than the substrate, or even if it does not hit anything other than the substrate. A thin metal film was formed by heating only the substrate to a predetermined temperature while using cooling means such as water cooling to prevent the temperature from rising, and by introducing metal halide gas and hydrogen gas into the ash stone container. Formation of a metal thin film by the vapor phase growth method is carried out by reduction of a metal halogenide with H2, and it is said that for this purpose, the presence of H atoms, which serve as a nucleus for film growth, is required. However, in the case of selective film formation, it is extremely bad if H atoms are generated for some reason or five atoms generated from the outside are attached to undesired portions.

この考えに基づけば、所望する金属薄膜を形成する部分
以外は極カー反を低く抑え、H原子発生の原因を取9除
くことがi要である。従って本発明では、基体を加熱す
る手段として基体材料及び形成した金属が光吸収を持つ
光源を用い、所望する金属薄膜を形成する基体表面側に
、上記光源からの光を表面照射した。また、上記光源か
らの光は、基体以外には轟たらない様に、もしくは当っ
ても水冷前の冷却手段により温度が上がらない様にして
いる。
Based on this idea, it is important to keep the polar resistance low in areas other than those where the desired metal thin film is to be formed, and to eliminate the cause of H atom generation. Therefore, in the present invention, a light source in which the substrate material and the formed metal absorb light is used as a means for heating the substrate, and the surface of the substrate on which the desired metal thin film is to be formed is irradiated with light from the light source. Further, the light from the light source is made so that it does not reach anything other than the base, or even if it hits, the temperature does not rise due to cooling means before water cooling.

このため、基体以外の部分でH原子が発生することはな
い。また同−基体内においても所望する金属i?膜を形
成する基本表面側から光照射しているため、基体の金I
j4薄膜の蒸着した部分とそれ以外の部分で材質の違い
による吸光係数の違いから、該金属の蒸着した部分の方
がそれ以外の部分よりも温度が高くなる。従って、それ
だけ金属を蒸着しない基体部分からのH原子の発生が抑
えられることになる。
Therefore, H atoms are not generated in parts other than the base. Also within the same substrate is the desired metal i? Since the light is irradiated from the basic surface side where the film is formed, the gold I on the substrate
Due to the difference in absorption coefficient due to the difference in material between the part where the j4 thin film is deposited and the other parts, the temperature is higher in the part where the metal is deposited than in the other parts. Therefore, the generation of H atoms from the portion of the substrate on which metal is not deposited can be suppressed to that extent.

〔実施例〕〔Example〕

次に本発明を実施例に従い説明する。本発明の一実施u
lJとして、六フッ化タングステン(lIV14’4)
および水素(H2)を原料ガスとし、熱酸化膜(SiO
2)が表面を1っており、多数のコンタクトホール(0
,6μm0〜2μm′、深さ1μm)のあいたシリコン
ウェハ(Si)に、コンタクトホール部のみ選択的にり
/グステ/を形成する列を取り上げ説明する。第1図に
おいて、1,2は夫々WFb、Hのボンベを示し、6,
4は各ガス専用の九景調整器を、5,6は各ガス専用の
ストソゲパルプを示す。7は水冷された反射鏡付きの・
・ロゲンランプでめり、ここから照射された光は石英製
の照射窓9を通してウェハ12を加熱する。87よ水冷
され九反応容器を示し、光照射による器壁のm度上昇を
抑えている。また、この反応容器は入方向に真空排気系
(図示せず)が接続されている。・・ロゲンラング7を
点灯させた時に照射窓9−?反応容器8内壁の温度上昇
を抑えるノ也めに、反応容器8外にも反応容器8内のい
ずれにも水冷された遮光板10および11を設け、B方
向からエアーをブローし照射窓9を空冷している。さら
にウェハ12は温度低下を伴なわないよう三点でほぼ点
接触する様な水冷された基板支持体16で保持されてい
る。なお、反応容器8同に設けた遮光板111ま、原料
ガスの4人口が接、読されて2り原料ガスが有効にウェ
ハに拡散するようにしである。本芙施例では実験I装置
を用いて気相成長を行なったため、ウェハ1Q温度はQ
 、 25pの熱電対をセラミック接層剤(アロンセラ
ミックD二束亜合成化学)によりクエ・・12に直付け
して測定し次。またウェー・12温度の制御は上記熱電
対からの電圧出力C全モニタし、パワーコントローラ1
5でハロゲンラング7の出力を変化させて行なった。反
応容器8内の圧力は静電容量型圧力セン?14によりモ
ニタし、圧力制御はA方向にある排気系(図示せず)の
コンダクタンスを変化させて行なった。
Next, the present invention will be explained according to examples. One implementation of the present invention
Tungsten hexafluoride (lIV14'4) as lJ
and hydrogen (H2) as raw material gas, thermal oxide film (SiO
2) on the surface, and there are many contact holes (0
, 6 .mu.m0 to 2 .mu.m', depth 1 .mu.m) in a silicon wafer (Si) with openings of 0 to 2 .mu.m' and a depth of 1 .mu.m). In FIG. 1, 1 and 2 indicate WFb and H cylinders, respectively, and 6,
4 is a Kukei regulator dedicated to each gas, and 5 and 6 are stosuge pulps dedicated to each gas. 7 is equipped with a water-cooled reflector.
- The light emitted from the rogen lamp heats the wafer 12 through the irradiation window 9 made of quartz. 87 shows a water-cooled reaction vessel, which suppresses the rise in the vessel wall by m degrees due to light irradiation. Further, this reaction vessel is connected to a vacuum exhaust system (not shown) in the inlet direction. ...Is the irradiation window 9 - when you turn on Rogenlang 7? In order to suppress the temperature rise on the inner wall of the reaction vessel 8, water-cooled light shielding plates 10 and 11 are provided both outside and inside the reaction vessel 8, and air is blown from direction B to close the irradiation window 9. It is air cooled. Furthermore, the wafer 12 is held by a water-cooled substrate support 16 in which three points are in substantially point contact so as not to cause a temperature drop. Note that a light shielding plate 111 provided in the reaction vessel 8 is designed so that four sources of the raw material gas are in contact with each other so that the two raw material gases can be effectively diffused into the wafer. In this example, vapor phase growth was performed using Experiment I equipment, so the wafer 1Q temperature was
, A 25p thermocouple was directly attached to the Que. In addition, to control the temperature of Way 12, the voltage output C from the above thermocouple is monitored, and the power controller 1
5, the output of the halogen rung 7 was varied. Is the pressure inside reaction vessel 8 measured by a capacitive pressure sensor? 14, and pressure control was performed by changing the conductance of an exhaust system (not shown) in the A direction.

次に第2図において、コンタクトホール部とそれ以外の
部分とで温度差が生ずることについて説明する。加熱手
段として用いた/・ロゲンランプ7はラング材質が石英
で構成されているため、約40unmの近紫外から4μ
mの遠赤外領域までの発光領域がある。(ただし石英に
は約2.7μmの波長に強い吸収があるためその位置だ
け発光強度が低い)照射窓9とSiクエノ1の表面を覆
っている熱酸化膜(SiO2)との材質はほぼ同様のも
のと考えられるため、照射窓9全通して照射された・・
ログンラ/グアの尤に対してフェノ1上の5iO215
はほぼ100%透過しランプ点灯によるウニ/・温度上
昇への寄与はないと言える。それに対し、タングステン
17は上記波長範囲の光に対し100チの吸収ヲ持チ、
ンリコンウエハ(5ウエハニ5IJll[0,55龍)
では上記波長範囲全域に亘り70チの吸収しか持たない
。このことから反応が進行するフェノ・12表面上では
著しく温度が異なると予想される。本発明の実施例にお
けるコンタクトホール部とそれ以外の表面温度を正確に
知ることは大変困難であるため、同一シリコン厚のシリ
コンウェハに全面5102を1μm形成した基板と、全
面Wを1μm形成したものの基板温度を比較した。W 
F 65 りCCin rH2500secmの流量条
件で反応容器内圧力を10Torrにした状態で上記5
102を形成した基板を550℃に加熱するハロゲンラ
ングの出力を用い−C同一条件下で上記Wを形成した基
板を加熱したところ、基板温度は約6500を示した。
Next, referring to FIG. 2, a description will be given of the temperature difference that occurs between the contact hole portion and other portions. Since the logen lamp 7 used as a heating means is made of quartz, it can be
There is a light emitting region up to the far infrared region of m. (However, since quartz has strong absorption at a wavelength of approximately 2.7 μm, the emission intensity is low at that position.) The materials of the irradiation window 9 and the thermal oxide film (SiO2) covering the surface of the Si Queno 1 are almost the same. It is thought that the light was irradiated through the entire irradiation window 9...
5iO215 on Pheno1 for Rogunra/Gua
It can be said that almost 100% of the light is transmitted through the lamp, and that there is no contribution to the temperature rise due to the lighting of the lamp. On the other hand, tungsten 17 has an absorption of 100 degrees for light in the above wavelength range.
Silicon wafer (5 wafers 5IJll [0,55 dragon)
In this case, it has only 70 degrees of absorption over the entire wavelength range. From this, it is expected that the temperature will be significantly different on the Pheno-12 surface where the reaction proceeds. In the embodiment of the present invention, it is very difficult to accurately know the surface temperature of the contact hole portion and other parts. The substrate temperatures were compared. W
The above 5.
When the substrate on which W was formed was heated under the same conditions as -C using the output of a halogen rung which heated the substrate on which 102 was formed to 550°C, the substrate temperature showed about 6500°C.

次に前記したコンタクトホール付さのシリコンウェハに
コンタクトホール部のみWを形成し、穴埋めを行う手1
項を説明する。反応容器8を10−3’rorr以下の
真空に排気し、排気後H2ガスを反応容器8内に導入す
ると共にハロゲンラングを点灯させ基板加熱を開始する
。H2の流量は流量調整器4によって5003CCmに
保持する。排気系(図示せず)のコンダクタンス11整
器により反応容器8内の圧力を10Torr、ハロゲン
ラング7のパワーコントローラ15により基板12温度
を550°0に設定する。圧力、温度共に安定した時に
WF6を反応容器内に導入する。WF’4の流量は流量
調整器6によって3secmに保持する。WF4の導入
により、圧力、温度共に若干の変動が見られるが、夫々
のコント1−ラにより数秒後に再び所定の値に回復する
。WF6導人後人後分30秒後に各ガスの供給をストッ
プパルプ5.6により停止すると同時にハロゲンランプ
を消灯し基板加熱を停止し反応容器内の残留ガスを排気
する。基板が100°0以下に冷却された後、反応容器
8をリークし基板を取り出した。上記操作により1μm
深さのコンタクトホールに対し約0.9Amの膜厚でタ
ングステンを埋め込んだ。選択性の評価はウェハ12を
割り、コンタクトホール周辺を走査型電子顕微鏡で観察
した。コンタクトホール部はタングステンでほぼ埋込み
が完了しているのに対し、ホール周辺の5iO215に
は全く変化がなく、選択性が大変良好であることが確認
された。
Next, the method 1 of forming W only in the contact hole part on the silicon wafer with the contact hole described above and filling the hole.
Explain the section. The reaction container 8 is evacuated to a vacuum of 10 -3'rorr or less, and after the evacuation, H2 gas is introduced into the reaction container 8, and the halogen lamp is turned on to start heating the substrate. The flow rate of H2 is maintained at 5003 CCm by the flow rate regulator 4. The pressure inside the reaction vessel 8 is set to 10 Torr by the conductance regulator 11 of the exhaust system (not shown), and the temperature of the substrate 12 is set to 550°0 by the power controller 15 of the halogen rung 7. When both pressure and temperature are stable, WF6 is introduced into the reaction vessel. The flow rate of WF'4 is maintained at 3 seconds by a flow rate regulator 6. Due to the introduction of WF4, slight fluctuations are seen in both the pressure and temperature, but the respective controllers restore them to predetermined values after a few seconds. After 30 seconds after the WF6 conductor, the supply of each gas is stopped by the stop pulp 5.6, and at the same time, the halogen lamp is turned off, substrate heating is stopped, and the residual gas in the reaction vessel is exhausted. After the substrate was cooled to below 100°, the reaction vessel 8 was leaked and the substrate was taken out. 1μm by the above operation
Tungsten was buried to a thickness of about 0.9 Am into the deep contact hole. To evaluate the selectivity, the wafer 12 was broken and the area around the contact hole was observed using a scanning electron microscope. Although the contact hole portion was almost completely filled with tungsten, there was no change in the 5iO215 around the hole, confirming that the selectivity was very good.

上記した実施例から明らかなように本発明により高選択
性を保持し金属薄膜を特定の下地上にのみ高速成膜(〜
3500 A/ai+ )できるとい9効果がある。ま
た、本発明の使用範囲は実施例で述べた成膜条件、yK
料ガス、下地材質に限らずハロゲン化金属ガスとしてW
Cl4 、 WCl5 、 MoF6. MoCl5T
iCl4. TaCl5 、 PtFi 、工rFa 
、 ReF6等、下地材質としてkl 、 Cu 、 
Nl 、 Cr 、 Mo 、 Pi 、 Tiwsム
x 、 MoSix 、 Ti5lx 、 PtEli
x 、 TiNy 、WNy等を用いれば対応する金属
薄膜を形成できる。
As is clear from the above examples, the present invention maintains high selectivity and forms metal thin films at high speed only on specific substrates (~
3500 A/ai+) It has 9 effects. In addition, the scope of use of the present invention is the film forming conditions described in Examples, yK
W as a metal halide gas, not only for raw materials and base materials.
Cl4, WCl5, MoF6. MoCl5T
iCl4. TaCl5, PtFi,
, ReF6, etc., kl, Cu, etc. as the base material.
Nl, Cr, Mo, Pi, Tiwsumx, MoSix, Ti5lx, PtEli
Corresponding metal thin films can be formed using materials such as x, TiNy, and WNy.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、金属薄膜を基板上の特定の下地
上にのみ選択性良く高速に形成できるため、W、Mo等
を多層配線のコンタクトホールやスルーホールの穴埋め
として用いた高集積、高速LSIの製造プロセスにおけ
る歩留り向上、スルーグツト向上、製品の信頼性向上に
寄与するところ犬である。
As described above, according to the present invention, a metal thin film can be formed selectively and at high speed only on a specific base on a substrate. Dogs contribute to improving yields, throughput, and product reliability in the manufacturing process of high-speed LSIs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の構成を示す図、第2図は
、本発明の実施列におけるコンタクトホ−ル段面図であ
る。 1・・・WF4ボンベ      2・・・H2ボンベ
7・・・ハロゲンラング    8・・・反応容器12
・・基板         13・・・基板支持体14
・・・圧力センサ      −5・・・f9i0z1
6・・・S+ウェハ       17・・・Wt’>
。 代理人弁理士 小 川 勝 衷・ 第 1 図
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, and FIG. 2 is a step-up view of contact holes in an embodiment of the present invention. 1...WF4 cylinder 2...H2 cylinder 7...Halogen rung 8...Reaction vessel 12
...Substrate 13...Substrate support 14
...Pressure sensor -5...f9i0z1
6...S+wafer 17...Wt'>
. Representative Patent Attorney Katsutoshi Ogawa / Figure 1

Claims (1)

【特許請求の範囲】 1、金属薄膜を基体上の特定の下地上にのみ選択的に化
学蒸着する方法において、 2、当該金属のハロゲン化金属ガスと水素ガスを原料ガ
スとし、 (2)当該基体を上において少なくとも金属薄膜を蒸着
したい部分を上記ガスが基体上で反応するのに十分高い
温度に加熱し、 (3)反応容器内壁、基体支持体、ガス導入管など上記
原料ガスに対し露出した基体以外の部分を冷却し、基体
以外では原料ガスと反応し膜形成が起こらない様にする
ことを特徴とする金属薄膜選択成長方法。 2、上記加熱する手段として基体材料及び形成した金属
が光吸収を持つ光源を用いることを特徴とする特許請求
の範囲第1項の金属薄膜選択成長方法。 3、上記光源からの光は所望する金属薄膜を形成する基
体表面側に照射することを特徴とする特許請求の範囲第
2項の金属薄膜選択成長方法。 4、上記ハロゲン化金属が、WF_6、WCl_5、W
Cl_6MoF_6、MoCl_5、TiCl_4、T
aCl_5、NbCl_5、PtF_6、IrF_6、
ReF_6のいずれかであることを特徴とする特許請求
の範囲第1項の金属薄膜選択成長方法。 5、上記金属薄膜が蒸着する部分の下地露出材質がある
所定の温度のもとで、上記ハロゲン化金属ガスと反応し
金属を形成する。もしくは水素ガスを吸着解離する触媒
作用を有する材質であり、基体上のそれ以外の部分の材
質は同温度下では、該反応も該触媒作用も有さない材質
であることを特徴とする特許請求範囲第1項の金属薄膜
選択成長方法。 6、上記金属薄膜が蒸着する部分の下地露出材質が、シ
リコン、金属、金属シリサイド、金属ナイトライドとし
、基体上のそれ以外の部分の露出材質はシリコン酸化物
、シリコン窒化物、アルミナ、ダイヤモンド、有機絶縁
膜とすることを特徴とする特許請求範囲第5項の金属薄
膜選択成長方法。
[Claims] 1. A method of selectively chemical vapor depositing a metal thin film only on a specific substrate on a substrate, 2. A metal halide gas of the metal and hydrogen gas are used as source gases; Place the substrate on top and heat at least the part on which you want to deposit the metal thin film to a temperature high enough for the above gas to react on the substrate, and (3) expose the inner wall of the reaction vessel, the substrate support, the gas introduction pipe, etc. to the above raw material gas. A method for selectively growing a metal thin film, which is characterized by cooling parts other than the substrate to prevent film formation from reacting with the raw material gas in areas other than the substrate. 2. The method for selectively growing metal thin films according to claim 1, wherein a light source in which the substrate material and the formed metal absorb light is used as the heating means. 3. The method for selectively growing a metal thin film according to claim 2, wherein the light from the light source is irradiated onto the surface of the substrate on which a desired metal thin film is to be formed. 4. The metal halide is WF_6, WCl_5, W
Cl_6MoF_6, MoCl_5, TiCl_4, T
aCl_5, NbCl_5, PtF_6, IrF_6,
The method for selectively growing a metal thin film according to claim 1, wherein the metal thin film is one of ReF_6. 5. The exposed underlying material of the portion on which the metal thin film is deposited reacts with the metal halide gas at a predetermined temperature to form a metal. Or, a patent claim characterized in that the material is a material that has a catalytic action to adsorb and dissociate hydrogen gas, and the material of the other parts on the substrate is a material that neither has the reaction nor the catalytic action at the same temperature. A method for selectively growing metal thin films according to scope 1. 6. The underlying exposed material of the part on which the metal thin film is deposited is silicon, metal, metal silicide, or metal nitride, and the exposed material of the other part of the base is silicon oxide, silicon nitride, alumina, diamond, 6. A method for selectively growing a metal thin film according to claim 5, wherein the method is an organic insulating film.
JP15603686A 1986-07-04 1986-07-04 Method for selective growth of thin metallic film Pending JPS6314870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15603686A JPS6314870A (en) 1986-07-04 1986-07-04 Method for selective growth of thin metallic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15603686A JPS6314870A (en) 1986-07-04 1986-07-04 Method for selective growth of thin metallic film

Publications (1)

Publication Number Publication Date
JPS6314870A true JPS6314870A (en) 1988-01-22

Family

ID=15618915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15603686A Pending JPS6314870A (en) 1986-07-04 1986-07-04 Method for selective growth of thin metallic film

Country Status (1)

Country Link
JP (1) JPS6314870A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333567A (en) * 1986-07-26 1988-02-13 Ulvac Corp Cvd device
JPH0212913A (en) * 1988-06-30 1990-01-17 Nippon Telegr & Teleph Corp <Ntt> Formation of metal or semiconductor electrode and wiring
JPH0247263A (en) * 1988-08-09 1990-02-16 Anelva Corp Method and apparatus for forming thin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333567A (en) * 1986-07-26 1988-02-13 Ulvac Corp Cvd device
JPH0212913A (en) * 1988-06-30 1990-01-17 Nippon Telegr & Teleph Corp <Ntt> Formation of metal or semiconductor electrode and wiring
JPH0247263A (en) * 1988-08-09 1990-02-16 Anelva Corp Method and apparatus for forming thin film

Similar Documents

Publication Publication Date Title
KR900006501B1 (en) Mehtod for selective deposition of metal thin film
US4653428A (en) Selective chemical vapor deposition apparatus
US6599367B1 (en) Vacuum processing apparatus
JP4889173B2 (en) Method for forming a silicon nitride layer on a semiconductor wafer
KR101046530B1 (en) Post-Processing of Low Dielectric Constant (κ) Films
US20030003729A1 (en) Method of forming metal wiring and semiconductor manufacturing apparatus for forming metal wiring
JP2002525886A (en) Method and apparatus for producing polycrystalline and amorphous silicon films
JP2752235B2 (en) Semiconductor substrate manufacturing method
EP0223787B1 (en) Selective chemical vapor deposition method and apparatus
JPS6314870A (en) Method for selective growth of thin metallic film
JPH0453132A (en) Metal thin film formation method
JP2008187187A (en) Film of low dielectric constant, its deposition method and electronic device employing that film
JP5141944B2 (en) Thermal CVD apparatus and film forming method
JPH09186095A (en) Method and apparatus for forming film and manufacture of semiconductor device
US6281122B1 (en) Method for forming materials
JPH03274275A (en) Device for forming thin film utilizing organometallic gas
JP2726149B2 (en) Thin film forming equipment
US4981723A (en) Chemical vapor deposition of tungsten silicide using silicon sub-fluorides
JP4401481B2 (en) Deposition method
JPS6320481A (en) Selective growth method for thin metallic film
JP3231914B2 (en) Film forming method and film forming apparatus
JPS63118068A (en) Method for selectively growing metallic thin film
JPH04333223A (en) Film forming method and device thereof
JP3110472B2 (en) Selective metal deposition method
JPS634915B2 (en)