JPS6191965A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6191965A
JPS6191965A JP59212525A JP21252584A JPS6191965A JP S6191965 A JPS6191965 A JP S6191965A JP 59212525 A JP59212525 A JP 59212525A JP 21252584 A JP21252584 A JP 21252584A JP S6191965 A JPS6191965 A JP S6191965A
Authority
JP
Japan
Prior art keywords
type
layer
potential well
undoped
semiconductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59212525A
Other languages
Japanese (ja)
Inventor
Toshiyuki Usagawa
利幸 宇佐川
Yuichi Ono
小野 佑一
Yasuhiro Shiraki
靖寛 白木
Susumu Takahashi
進 高橋
Tetsukazu Hashimoto
哲一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59212525A priority Critical patent/JPS6191965A/en
Publication of JPS6191965A publication Critical patent/JPS6191965A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors

Abstract

PURPOSE:To produce a new type transistor by a method wherein a secondary carrier to be stored in a potential well produced by hetero junction of semiconductor or any other junction corresponding thereto is shifted to adjoining potential well. CONSTITUTION:In order to control the secondary electronic gas in a potential well, the proper film pressure (d) of an N type AlxGa1-xAs 20 is selected and a gate electrode 19 for Schottky junction is provided. On the other hand, a source electrode 18 ohmic-connecting to the secondary electrons in the potential well, a buried layer AlxGa1-xAs 24 and a drain electrode 17 ohmic-connecting to the secondary electrode gas in another potential well are respectively provided.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、超高速のトランジスタに係り、特に高集積に
好適な、高負荷駆動能力を有す超格子構造を有する新型
トランジスタ比関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to ultra-high speed transistors, and particularly to a new type of transistor having a superlattice structure suitable for high integration and having high load driving capability.

(発明の背景〕 近年、Siの物理常数のもつ限界のために、トランジス
タ動作の本質的機構は変えることなしに、ガリウム−砒
素(GaAs)を道心とした化合物半導体を用いた超高
速デバイスが開発されつつある。その中でも、G a 
A sとA Q *G a 、−、A sのへテロ接合
界面に蓄積する二次元状電子ガス属を能動層に用いる選
択ドープヘテロ接合型電界効果トランジスタ〔例えば特
開昭55−132074号等に報告されている〕は、G
 a A 、s固有の高い移動度をFET動作に利用で
きるため非常に高速のスイッチング素子を構成できた。
(Background of the Invention) In recent years, due to the limitations of the physical constants of Si, ultrahigh-speed devices using compound semiconductors based on gallium-arsenide (GaAs) have been developed without changing the essential mechanism of transistor operation. Among them, Ga
A selectively doped heterojunction field effect transistor using a two-dimensional electron gas accumulated at the heterojunction interface between A s and A Q *G a , -, As as an active layer [for example, in JP-A-55-132074, etc. [reported] is G
Since the high mobility unique to a A and s can be utilized for FET operation, a very high-speed switching element can be constructed.

ところが、このトランジスタを用いて、高集積のL 5
 I (Large ScaleIntegrated
 C1rcuit)を構成すると動作速度が遅くなると
いう欠点が明らかになってきた。その主たる原因は、駆
動電流が小さいことによる負荷駆動能力の不足によるも
のである。一方負荷駆動能力の高いトランジスタとして
はエミッタとベースをヘテロ接合で形成するヘテロバイ
ポーラトランジスタが古くから知られている(たとえば
、特開昭49−43583 )。
However, using this transistor, highly integrated L5
I (Large Scale Integrated
It has become clear that the disadvantage of configuring the C1rcuit is that the operating speed becomes slow. The main reason for this is the lack of load driving ability due to the small drive current. On the other hand, as a transistor with a high load driving ability, a hetero bipolar transistor in which an emitter and a base are formed by a heterojunction has been known for a long time (for example, Japanese Patent Laid-Open No. 49-43583).

しかしながら、ヘテロバイポーラトランジスタは、高速
性をひきだすためのプロセス技術が複雑であリゲート当
りの消費電力も高く高集積化には不向きであるという欠
点を有していた。
However, hetero bipolar transistors have disadvantages in that the process technology required to achieve high speed is complicated, and the power consumption per ligator is high, making them unsuitable for high integration.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高集積化に適し、高い負荷駆動能力を
有する超格子構造を有する新型の電界効果トランジスタ
を提供することにある。
An object of the present invention is to provide a new type of field effect transistor having a superlattice structure that is suitable for high integration and has high load driving capability.

〔発明の概要〕[Summary of the invention]

近年分子線エピタキシー(MBE)技術、有機金属熱分
解法(MOCVD)技術等の超薄膜結晶成長技術の進歩
のため単一原子レベルの制御性をもつ結晶成長が可能と
なり、この様な微細な結晶成長技術を用いて、超格子構
造と呼ばれる様な人工結晶が実現できる様になってきた
。最近では、この様な人工的な超格子構造を利用するデ
バイスが提案しつつある。
Recent advances in ultra-thin film crystal growth technologies such as molecular beam epitaxy (MBE) and metal organic pyrolysis (MOCVD) have made it possible to grow crystals with controllability at the single atomic level. Using growth techniques, it has become possible to create artificial crystals with a so-called superlattice structure. Recently, devices using such artificial superlattice structures have been proposed.

本発明は、半導体のへテロ接合、或いはそれに準じる接
合を用いてつくられるポテンシャル井戸(電子又は正孔
を閉じこめるポテンシャル井戸、ヘテロ接合を用いると
量子井戸ポテンシャルになることも多い)に貯蓄する二
次元状担体を隣り合うポテンシャル井戸にその担体を移
動させることでトランジスタ動作をする新型トランジス
タを提供する。
The present invention is directed to a two-dimensional shape stored in a potential well (a potential well that confines electrons or holes, often becoming a quantum well potential when a heterojunction is used) created using a semiconductor heterojunction or a junction similar thereto. A new type of transistor is provided that operates as a transistor by moving carriers to adjacent potential wells.

次ず本発明の原理を説男するために、G a A s/
AQ、Gan−、As (0<x≦1)へテロ接合系を
用いた五層からなる超格子構造を導入する。第1図に、
n型A Q *G a x−wA s (x−0−3)
 ”/アンドープG a A s 21 / P型A 
Q 、Ga、−、As(y 〜0 、4 )  22 
/アンドープG a A s 23 /n型A (l 
t G a z −t A s (z 〜O−3)  
24のエネルギーバンド構造を示す0図中AQ、Ga、
−、AsとG a A sとの電子親和力の差をΔE1
!1価電子帯端のエネルギー差をΔEv、フェルミレベ
ルをE、で示している。不純物を故意には含有しない(
即ちアンドープ) G a A s lfJ 21 、
23の膜厚を各々Lee Lc−P型(もしくはアンド
ープ)AQ、Ga□−、AsWJ22の膜厚をLllと
する。
Next, in order to explain the principle of the present invention, G a A s/
A superlattice structure consisting of five layers using AQ, Gan-, As (0<x≦1) heterojunction system is introduced. In Figure 1,
n-type A Q *G a x-wA s (x-0-3)
” / Undoped G a As 21 / P type A
Q, Ga, -, As(y~0,4) 22
/Undoped G a As 23 /n-type A (l
t G az -t A s (z ~ O-3)
In the diagram 0 showing the energy band structure of 24, AQ, Ga,
−, the difference in electron affinity between As and Ga As is ΔE1
! The energy difference at the edge of the single valence band is indicated by ΔEv, and the Fermi level is indicated by E. Do not intentionally contain impurities (
(i.e., undoped) G a As lfJ 21 ,
The film thickness of Lc-P type (or undoped) AQ, Ga□-, and AsWJ22 is Lll.

よく知られている様にアンドープ層21,23の膜厚に
応じて、電子親和力の差ΔEc (Afl混晶比X〜0
.3で3.20meV、xの値に応じて異なる)に囲ま
れたポテンシャル井戸25.26中の二次元状電子はn
型A (I* G a 1− g A 8層20゜24
のへテロ接合界面側に局在する(Lt+Lcが大略40
0Å以上の場合)かアンドープG a A s中の全領
域にわたるエネルギー準位に局在する。
As is well known, the difference in electron affinity ΔEc (Afl mixed crystal ratio X ~ 0
.. The two-dimensional electron in the potential well 25.26 surrounded by n
Type A (I* G a 1- g A 8 layers 20°24
localized on the heterojunction interface side (Lt+Lc is approximately 40
(in the case of 0 Å or more), it is localized at energy levels throughout the entire region in undoped Ga As.

(Ll−Lcが大略400Å以下の場合)かのどちらか
である、この門な系ではへテロ接合界面に沿った電子の
移動度は不純物散乱の影響が少ないのでGaAs固有の
高い移動度が実現できる。
(When Ll-Lc is approximately 400 Å or less) In this unique system, the electron mobility along the heterojunction interface is less affected by impurity scattering, so the high mobility unique to GaAs is realized. can.

ところで、2つのポテンシャル井戸25.26に貯蓄す
る二次元状電子ガスを一方の井戸25から他方の井戸2
6へ移動させることができればp型AQyGan−yA
sAs2O3過時間を主要な遅延時間とする縦型の高速
デバイスが期待できる。
By the way, the two-dimensional electron gas stored in the two potential wells 25 and 26 is transferred from one well 25 to the other well 2.
If it can be moved to 6, it will be p-type AQyGan-yA.
A vertical high-speed device in which the sAs2O3 elapsed time is the main delay time can be expected.

との主たる理由は、MBE、OM−VPE等の縦方向の
膜厚制御性が極めて良ため、L、、L、、Loを極めて
薄く制御できるからである0本発明のトランジスタの動
作原理の主要な点は1つの井戸中の二次元状電子を他方
の井戸に移す方法を具現するトランジスタ構造にある。
The main reason for this is that the vertical film thickness controllability of MBE, OM-VPE, etc. is extremely good, so L, L, Lo can be controlled to be extremely thin. The key point lies in the transistor structure that embodies the method of transferring two-dimensional electrons in one well to the other well.

第2図に本発明を構成するトランジスタ構造例を示す、
ポテンシャル井戸25中の二次元状子ガスを制御するた
めに、n型層 Q、G a、−mA s 20の膜厚d
を適当に選び、ショットキー接合をするゲート金fi1
9を設ける。一方ポテンシャル井戸25中の二次元状電
子とオーミック接続をするソース電極18を有し、埋込
みn型層 Q ++Ga1−t−A+24を有し、ポテ
ンシャル井戸26中の二次元状電子ガスとオーミック接
続するドレイン電極17を有する電界効果トランジスタ
である0図中10は半絶縁性G a A s基板である
FIG. 2 shows an example of a transistor structure constituting the present invention.
In order to control the two-dimensional state gas in the potential well 25, the film thickness d of the n-type layer Q, Ga, -mA s 20 is
Select gate metal fi1 appropriately and make Schottky junction.
9 will be provided. On the other hand, it has a source electrode 18 that makes an ohmic connection with the two-dimensional electrons in the potential well 25, has a buried n-type layer Q++Ga1-t-A+24, and makes an ohmic connection with the two-dimensional electron gas in the potential well 26. 10 in the figure, which is a field effect transistor having a drain electrode 17, is a semi-insulating GaAs substrate.

ジュツトキーゲート金属をn型層 Q 、Ga、−、A
s層20に設けたとき、n型層 n、G al−mA 
s層20の膜厚dに応じてポテンシャル井戸25中の二
次元状電子ガスが消滅している(エンハンスメント型、
E−FETと略)場合と貯蓄している場合(デプレショ
ン型、D−FETと略)の二種類があるのは通常のFE
Tと同様である。
Juttokey gate metal as n-type layer Q, Ga, -, A
When provided in the s-layer 20, the n-type layer n, Gal-mA
The two-dimensional electron gas in the potential well 25 disappears depending on the film thickness d of the s-layer 20 (enhancement type,
There are two types of normal FE: E-FET (abbreviated as E-FET) and storage type (depression type, D-FET).
Same as T.

D −r/ E TとE−FETのゲート電極下のエネ
ルギーバンド図を各々第3図(a)、(b)に示す。
Energy band diagrams below the gate electrodes of D-r/ET and E-FET are shown in FIGS. 3(a) and 3(b), respectively.

本発明のトランジスタの動作原理をジュツトキー接合を
するゲート金属を用いた制御電極の場合について説明し
た。しかし、本発明のトランジスタを動作させるには、
ジュツトキーゲート電極である必要はなく、(I) p
 −n Junctionを用いたJunctionゲ
ート構造、(2)ショットキー金属とn型半導体層の間
にp型層をそう人するゲート構造、(3)n型半導体層
上に絶縁物を介してM I S (Metal−Ins
ulstor−5emicondudcr)型にする構
造、(4)n型半導体層に直接オーミック電極を設ける
構造等の二次元状担体を制御できる電極であれば基本的
には何でもよい、ゲート構造の工夫は従来の電界効果型
トランジスタで様々工夫されている通りである。どの電
極構造を選ぶかは、”本発明のトランジスタを応用する
具体的目的に応じて変ってくる。
The operating principle of the transistor of the present invention has been explained with reference to a control electrode using a gate metal that forms a Juttky junction. However, in order to operate the transistor of the present invention,
It does not have to be a Juttokey gate electrode, and (I) p
Junction gate structure using -n junction, (2) gate structure in which a p-type layer is placed between the Schottky metal and the n-type semiconductor layer, (3) M I on the n-type semiconductor layer via an insulator. S (Metal-Ins
Basically, any electrode can be used as long as it can control a two-dimensional carrier, such as (4) a structure in which an ohmic electrode is provided directly on the n-type semiconductor layer. This is the case with various improvements made to field-effect transistors. Which electrode structure to choose depends on the specific purpose for which the transistor of the present invention is applied.

又、本発明のトランジスタは、材料を選ぶことで二次元
状正孔を担体として動作させることもできる。たとえば
G a A su−、P、/G a A sのヘテロ接
合を用いた場合の本発明トランジスタを構成するエネル
ギーバンド図を第4図に示す。
Furthermore, the transistor of the present invention can be operated using two-dimensional holes as carriers by selecting materials. For example, FIG. 4 shows an energy band diagram constituting the transistor of the present invention when a GaAsu-, P, /GaAs heterojunction is used.

即ち、五層の超格子構造で、p型aaAst−、Pm6
0/アンドープG a A s 61 / n型(もし
くはアンドープ) G a A s、−、P、62/ア
ンドープG a A s 63 / n型GaAs1−
、P、64のエネルギーバンド図を示している6価電子
帯端のエネルギー差ΔE、に基づく二次元正孔を閉じこ
めるポテンシャル65.66を形成し、一方の井戸65
゛中の二次元正孔を他方のポテンシャル井戸66に移動
させることで本発明のトランジスタを構成できる。
That is, it has a five-layer superlattice structure, p-type aaAst-, Pm6
0/Undoped GaAs 61/n-type (or undoped) GaAs, -, P, 62/Undoped GaAs 63/n-type GaAs1-
, P, 64, which forms a potential 65.66 that confines a two-dimensional hole based on the energy difference ΔE at the edge of the hexavalence band, which shows the energy band diagram of 64, and one well 65
The transistor of the present invention can be constructed by moving the two-dimensional holes in the potential well 66 to the other potential well 66.

図中E、はフェルミレベルを示している。E in the figure indicates the Fermi level.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明のトランジスタを実施例を通して更に詳し
く説明する。
Hereinafter, the transistor of the present invention will be explained in more detail through examples.

実施例1 第5図(a)〜(e)に二次元電子ガスを担体に用いた
場合の実施例の”製造工程を示す。
Example 1 Figures 5(a) to 5(e) show the manufacturing process of an example in which a two-dimensional electron gas is used as a carrier.

半絶縁性GaAs基板10上にMBE (分子線エピタ
キシー)法を用いて基板温度650℃で1μmの不純物
を故意にはドープしなζN G a A s層11(ア
ンドープGaAs層)を成長させた。これはひき続く成
長へ基板10の影響を極力なくすために設けたもので、
トランジスタ動作には本質的なもではない、続いてアン
ドープ A Q * G a 1− m A s層12を500
人成長させ、表面の酸化防止のためのアンドープG a
 A s層上3を50人成長させた。ここで成長させた
アンドープ層はGaAs層11をバッファ層に利用した
がこの部分はアンドープAQ、Ga1.As (x〜0
.3) 層にでも良い0次にドレイン領域形成のための
選択的なイオン注入をフォトレジスト26をマスクに行
なう(第5図(a))。イオン注入はSi 27を用い
加速電圧40kV、ドーズ量lXl0”an−”の条件
で行なった。”フォトレジスト除去後、As雰囲気中で
750℃20分間のアニールを行ない注入されたSi原
子24を活性化した。更に、アンドープG a A s
 III 23を400人成長後、アンドープA Qy
G at−yA s (y−0,4)層14を20人成
長後、BeをI X 10”C1m−”ドープしたp型
AQ、Ga、−、As (y〜0.4)  層22を5
0人成長後、アンドープAQyGa1−yAs(y〜0
.4)層15を20人成長した。アンドープA Q、G
 al−yA s層14.15は移動度の低下を防ぐ目
的で挿入されている。更に続いてアンドープGaAs層
21を400人、アンドープAQ、Gax−As (z
〜0.3)  層16を50人、更にSiをI X 1
0”css−”ドープしたA Q s G a 1− 
* A 8層20を350人成長後、超高真空(I0−
’″torr)内の別室でM o 19を2000人成
長させた(第5図(b))。
On a semi-insulating GaAs substrate 10, a ζN GaAs layer 11 (undoped GaAs layer) which was not intentionally doped with impurities of 1 μm was grown at a substrate temperature of 650° C. using the MBE (molecular beam epitaxy) method. This was provided to minimize the influence of the substrate 10 on the subsequent growth.
Subsequently, an undoped AQ*Ga1-mA s layer 12 with a thickness of 500 nm is not essential for transistor operation.
Undoped Ga for human growth and prevention of surface oxidation
Achieved growth of 50 people in the top 3 of the A s layer. The undoped layer grown here uses the GaAs layer 11 as a buffer layer, but this portion is undoped AQ, Ga1. As (x~0
.. 3) Selective ion implantation is performed using the photoresist 26 as a mask to form a zero-order drain region, which may be a layer (FIG. 5(a)). The ion implantation was carried out using Si27 at an acceleration voltage of 40 kV and a dose of lXl0"an-". "After removing the photoresist, annealing was performed at 750° C. for 20 minutes in an As atmosphere to activate the implanted Si atoms 24. Furthermore, undoped Ga As
III After growing 23 to 400 people, Undope A Qy
After growing 20 Ga at-yA s (y-0,4) layers 14, a p-type AQ, Ga, -, As (y~0.4) layer 22 doped with Be I x 10"C1m-" is grown. 5
After the growth of 0 people, undoped AQyGa1-yAs(y~0
.. 4) Growth of layer 15 by 20 people. Undoped A Q, G
The al-yAs layers 14 and 15 are inserted for the purpose of preventing a decrease in mobility. Furthermore, undoped GaAs layer 21 was formed by 400 layers, undoped AQ, Gax-As (z
~0.3) Layer 16 by 50 people and further Si by I
0"css-" doped A Q s G a 1-
*A After growing 8 layers and 20 people for 350 people, ultra-high vacuum (I0-
2,000 M o 19 were grown in a separate room inside the '''torr (Figure 5(b)).

次にホトレジストをマスクとしてゲート電極部分を残す
様にNF3とHeガスの混合ガスを用いて選択的にエツ
チングした0次にドレイン領域24にオーミック接続を
とるために、まず選択的にエピタキシャル成長層20,
16,21,15゜22.14を化学エツチングした(
第5図(C))、次に全面KSiO,30をC,VD法
テ3000人蒸着した(第5図(c))、CVD5i0
.30をアラ酸系のエツチング液で選択的に除去し、ソ
ース・ドレイン電極18.17を形成した(第5図(d
))、このときソース・ドレイン電極金属としてはA 
u G e / N i / A uを各々1200人
/200人/ 2000人真空蒸着した。
Next, in order to make an ohmic connection to the zero-order drain region 24, which was selectively etched using a mixed gas of NF3 and He gas so as to leave the gate electrode portion using a photoresist as a mask, first, the epitaxially grown layer 20,
16, 21, 15°22.14 were chemically etched (
(Fig. 5 (C)), then 3000 people deposited KSiO, 30 on the entire surface using the C, VD method (Fig. 5 (c)), CVD 5i0
.. 30 was selectively removed using an araric acid-based etching solution to form source/drain electrodes 18 and 17 (see Figure 5(d)).
)) At this time, A is used as the source/drain electrode metal.
1200 people/200 people/2000 people of uGe/Ni/Au were vacuum-deposited, respectively.

本実施例の平面図を第5図(e)に示す。点線25で示
している部分が真性トランジスタ領域でありそれ以外の
部分はメサエッチング或いは02等のイオン注入により
素子間分層が行なわれている0本実施例中のp型層 (
!yG al−yA s 22のp型ドーパントの濃度
はトランジスタの閾値電圧。
A plan view of this embodiment is shown in FIG. 5(e). The part indicated by the dotted line 25 is the intrinsic transistor region, and the other part is the p-type layer (
! The concentration of p-type dopant in yG al-yA s 22 is the threshold voltage of the transistor.

ポテンシャル中に閉じこめられる電子濃度を制御するた
めに広い範囲(I0°Ql −”から10″’ aI−
” )で用いられる。又、外部電極とこのp型層 41
.G at−、A s 22を接続させて縦方向の電流
の制御端子として利用することもできる。
In order to control the electron concentration confined in the potential, a wide range (I0°Ql −” to 10″aI−
). Also, the external electrode and this p-type layer 41
.. It is also possible to connect G at- and A s 22 and use it as a control terminal for vertical current.

本実施例ではゲート電極19はショットキー接合を用い
る場合を示したが、(I)ショットキーメタルとn型層
 Q G a A s 20の間にp型層 a /’−
s又はp型層 F、 G a A sを入れて論理振幅
を大きくする様にしてもよいし、そのp型層とオーミッ
ク接続するゲート電極構造としてもよい。或いはゲート
電%19の代りにオーミック電極を用いてもよい。
In this embodiment, a Schottky junction is used for the gate electrode 19, but (I) a p-type layer a/'- is formed between the Schottky metal and the n-type layer QGaAs 20.
The logic amplitude may be increased by inserting an s- or p-type layer F, GaAs, or a gate electrode structure may be formed that is ohmically connected to the p-type layer. Alternatively, an ohmic electrode may be used instead of the gate electrode.

実施例2 エンハンスメント型トランジスタ(E型)デプレション
型トランジスタ(D型)を同一基板に作成した例を第6
図(a)、(b)に示す。
Example 2 An example in which an enhancement type transistor (E type) and a depletion type transistor (D type) were created on the same substrate is shown in the sixth example.
Shown in Figures (a) and (b).

E型とD型のためのドレイン領域24を各々設は実施例
1と同様にアンドープA(I,Ga、−、As16*で
MBE法で成長後、Siを1×101mロー3含むn型
Afl、Gat−mAs層20を250人成長後同じド
ーピング量のn型層 a A s p 9を250人成
長させて(第6図(a))。
Drain regions 24 for E type and D type are respectively provided in the same manner as in Example 1, using undoped A (I, Ga, -, As16* grown by MBE method, and then n type Afl containing 1 x 101 m of Si). , 250 Gat-mAs layers 20 were grown, and then 250 n-type layers aAsp 9 with the same doping amount were grown (FIG. 6(a)).

次にドレイン領域ヘオーミツク接続するための電極をと
りだすため、フォトレジスト26をマスクを用いて成長
層の一部を化学エツチングで取り去り、全面に3000
人のSi0,30を被着させた。
Next, in order to take out the electrode for ohmic connection to the drain region, a part of the grown layer was removed by chemical etching using the photoresist 26 as a mask, and a
Human Si0.30 was deposited.

次に、E型トランジスタの場合にはn型GaAs層9を
CCU、F、とHeの混合ガスを用いて選択的にエツチ
ングし、400℃30分間の加熱後、ゲート金属T i
 / P t / A u 19 ’ を真空蒸着した
。続いて、D型トランジスタのゲート金属Ti/Pt/
Au  (I000人7200人/ 1000人)19
を同様に蒸着した。その後、実施例1と同様にソース・
ドレイン電極を形成した。
Next, in the case of an E-type transistor, the n-type GaAs layer 9 is selectively etched using a mixed gas of CCU, F, and He, and after heating at 400°C for 30 minutes, the gate metal Ti
/Pt/Au19' was vacuum deposited. Next, the gate metal of the D-type transistor Ti/Pt/
Au (I000 people 7200 people / 1000 people) 19
was similarly deposited. After that, as in Example 1,
A drain electrode was formed.

実施例3 三次元正孔ガスを担体に用いた場合の製造実施例を第7
図に示す。
Example 3 A manufacturing example using a three-dimensional hole gas as a carrier is shown in the seventh example.
As shown in the figure.

半絶縁性GaAs基板10上にMBE法を用いてアンド
ープGaAs層11を約1μm成長させ。
An undoped GaAs layer 11 is grown to a thickness of approximately 1 μm on a semi-insulating GaAs substrate 10 using the MBE method.

更にGaAs、、P、(z=0.3)  層を500人
アンドープG a A s層71を30人成長させた。
Furthermore, 500 GaAs, P, (z=0.3) layers and 30 undoped GaAs layers 71 were grown.

ここでアンドープGaAs層11は基板の影響を除くた
めに導入されており、トランジスタ動作に本質的ではな
い、ドレイン領域形成のためにフォトレジスタ26をマ
スクにしてMgイオン91を100kVの加速電圧、5
 X 10”cm−”のドーズ量でイオン注入した。フ
ォトレジスト除去後As雰囲気中で850℃10秒のラ
ンプアニールを行ないMg原子92を活性化した(第7
図(a))。
Here, the undoped GaAs layer 11 is introduced to eliminate the influence of the substrate, and is not essential for transistor operation. To form a drain region, Mg ions 91 are heated at an acceleration voltage of 100 kV,
Ion implantation was performed at a dose of x 10"cm-". After removing the photoresist, lamp annealing was performed at 850°C for 10 seconds in an As atmosphere to activate Mg atoms 92 (7th
Figure (a)).

更にMB法を用いてアンドープG a A s層63を
200人、アンドープG a PI−yA 8 y (
’j = 0.4)を10人、Siを2 X I Qt
tal−3で含むn型層 a P 1−yA Sy (
3’ = 0−4)を100人、アンドープ゛G a 
P x−yA !Iy (y = 0−4)を10人、
アンドープGaAsを200人、アンドープGa P、
−As、(x=0.3)を10人更に、MgをI X 
10”Ql−”含むP型GaP1−、A8.(X=0.
3)を500人形成した0次にT i / P t /
Au19を各々1000人、400A、1000人超高
真空中(I0−”Torr)で蒸着した(第7図(b)
)。
Further, using the MB method, 200 layers of undoped Ga As layer 63 were formed, and undoped Ga PI-yA 8 y (
'j = 0.4) for 10 people, Si for 2 X I Qt
N-type layer included in tal-3 a P 1-yA Sy (
3' = 0-4) for 100 people, undoped゛Ga
Px-yA! Iy (y = 0-4) for 10 people,
200 undoped GaAs, undoped GaP,
-As, (x=0.3) for 10 more people, Mg for IX
10"Ql-" P-type GaP1-, A8. (X=0.
3) is formed by 500 people at the zeroth order T i / P t /
Au19 was deposited in an ultra-high vacuum (I0-''Torr) at 1000 people, 400 A, and 1000 people, respectively (Fig. 7(b)
).

以下の制活プロセスは実施例1とほとんど同様にしてソ
ース・ドレイン領域及びソース・ドレイン電極を形成し
た。ただし、今度はp型半導体と二次元正孔ガスにオー
ミック接触をとるために電極金属としてはCr−Auを
用いた。
The following activation process was carried out almost in the same manner as in Example 1 to form source/drain regions and source/drain electrodes. However, this time, Cr--Au was used as the electrode metal in order to make ohmic contact between the p-type semiconductor and the two-dimensional hole gas.

以上の実施例では二次元担体にはさまれた半導体層は二
次元担体では導伝型を異にする半導体層を用いた例をし
めしたが、トランジスタ動作には必ずしも必要ではなく
二次元担体と同じ導伝型でよい。
In the above embodiments, the semiconductor layer sandwiched between the two-dimensional carriers is an example in which semiconductor layers of different conductivity types are used in the two-dimensional carriers, but this is not necessarily necessary for transistor operation. The same conduction type is sufficient.

実施例4 以上の実施例ではショットキー接合のゲート電極を用い
た実施例を述べてきたが、MO5型或いはMIS型のゲ
ート構造を用いて本発明のトランジスタを構成すること
もできる。
Embodiment 4 In the above embodiments, an embodiment using a Schottky junction gate electrode has been described, but the transistor of the present invention can also be constructed using an MO5 type or MIS type gate structure.

第8図にInP/InGaAsPを用いた場合の実施例
を示す。
FIG. 8 shows an example using InP/InGaAsP.

半絶縁性InP基板30上にM o CV D法により
アンドープInP33層を4000人形成し、フォトレ
ジスト26をマスクとしてSiのイオン注入31により
100 b V 2 X 10”cs+−”ノドーズ量
でn型層32を形成した(第8図(a))、引き続いて
基板の洗浄、ライトエツチング後アンドープInGaA
sP34を200人、Siを1×10″’01″1ドー
プしたn型InP35を200人。
4000 layers of undoped InP were formed on a semi-insulating InP substrate 30 by the MoCVD method, and Si ion implantation 31 was performed using the photoresist 26 as a mask to form an n-type layer at a dose of 100 b V 2 X 10"cs+-". After forming a layer 32 (FIG. 8(a)), the substrate was subsequently cleaned and light etched, and then an undoped InGaA layer was formed.
200 people used sP34, and 200 people used n-type InP35 doped with 1×10'''01''1 Si.

アンドープInGaAsP36を200人、Siを5 
X 10”am−”ドープしたn型InP37を700
人成長させた。次にプラズマ陽極酸化法でInPを酸化
して酸化物38を形成した(第8図(b))。
200 undoped InGaAsP36, 5 Si
700 x 10"am-" doped n-type InP37
Made people grow. Next, the InP was oxidized by plasma anodic oxidation to form an oxide 38 (FIG. 8(b)).

次に実施例1と同様にソース18.ドレイン17、ゲー
ト19を形成した(第8図(c))。
Next, as in Example 1, source 18. A drain 17 and a gate 19 were formed (FIG. 8(c)).

本発明を実施できるヘテロ接合系には上記実施例の他に
A flyG a、−、A s −A QmG ax−
、A s eGaAs−AQGaAsP、I nP−I
 nGaAs*I nAs−GaAs層11.AI’、
Ga1.、As−Ge、GaAs−Ge、C:dTe 
 InSb。
In addition to the above embodiments, heterozygous systems in which the present invention can be practiced include A flyG a,-, As-A QmG ax-
, AseGaAs-AQGaAsP, InP-I
nGaAs*I nAs-GaAs layer 11. AI',
Ga1. , As-Ge, GaAs-Ge, C:dTe
InSb.

Ca5b−1nAs等が可能である。Possible examples include Ca5b-1nAs.

実施例5 実施例1において、n型埋込み領域24を形成する別の
実例を第9図に示す。
Example 5 Another example of forming the n-type buried region 24 in Example 1 is shown in FIG.

半絶縁性GaAs基板10上にMBE法を用いて、基板
温度650℃で、p−(ドーピングレベルI X 10
”Ql−’前後)GaAs層11を5000人成長後、
p−(ドーピングレベル1×10口cm −’前後)A
l1.Ga、−、AsJFJ(x〜0.3)  12を
500A成長させた。ひき続いてMBE*置内にあるイ
オンビーム描画装置を用いてSiイオンを100hv、
ドーズ量5 X 10”(!l−”の条件で所望の形状
(平面内)の領域にn型埋込み層24を形成した。ひき
続き、As#囲気中で800℃15分間のアニールを行
ない注入されたSL原子を活性化した。活性化された埋
込み層形成後は、実施例1と同様の工程で本発明を実施
した。
Using the MBE method on the semi-insulating GaAs substrate 10, p-(doping level I
After growing 5,000 GaAs layers 11 (around ``Ql-''),
p- (doping level 1 x 10 cm -' around) A
l1. Ga,-,AsJFJ(x~0.3) 12 was grown at 500A. Next, using the ion beam lithography equipment in the MBE* equipment, Si ions were irradiated at 100 hv.
An n-type buried layer 24 was formed in a region of a desired shape (in a plane) at a dose of 5 x 10"(!l-").Subsequently, annealing was performed at 800°C for 15 minutes in an As# atmosphere for implantation. After forming the activated buried layer, the present invention was carried out in the same steps as in Example 1.

〔発明の効果〕〔Effect of the invention〕

本発明の効果をまとめると次の傑に言うことができる。 The effects of the present invention can be summarized as follows.

ヘテロ接合界面あるいはそれに準じる界面にはさまれた
ポテンシャル井戸を2ケ設定し、その間を面内垂直方向
に電流を取り出す構造に、したため、従来の電界効果型
トランジスタと同−d irs e n S、L o 
nの場合、ポテンシャル井戸間の厚みをa、ゲート長L
gとしたとき、約’L g / a倍の電流を取り出す
ことができた。
Two potential wells are set between the heterojunction interface or a similar interface, and the structure is such that a current is extracted between them in the in-plane vertical direction. Lo
In the case of n, the thickness between the potential wells is a, and the gate length L
g, it was possible to extract a current that was approximately 'L g/a times.

【図面の簡単な説明】[Brief explanation of drawings]

第1riAは本発明のトランジスタの動作原理を説明す
るためのエネルギーバンド図、第2図は本発明のトラン
ジスタの断面構造を示す図、第3図はデプレツユン型と
エンハンスメント型の本発明トランジスタ動作原理を示
す図、第4図は二次元正孔ガスを担体に用いた場合のト
ランジスタのエネルギーバンド図、第5.第6.第7.
第9図は本発明のトランジスタの”製造工程例を示す図
、第8図はMO3型ゲート構造を利用した本発明の実施
工程を示す図である6 10−・・半!lAS性GaAs基板、24,20,6
1゜63・=n’1jlAn、Ga1−、As層、21
,23・・・アンドープG’aAs層、22・”p型も
しくはアンドープAll、Ga1−、As層、19・・
・ゲート電極、30 ・・・層間絶縁物、60.64−
p型GaAs、−mPm層、62− n型もしくはアン
ドープGaA31−y P y。 24・・・Si原子、27・・・Siイオンビーム、2
5・・・素子間分離領域、26・・・フォトレジスト、
91第 /I!1 第 2 臼 ゛   第 3 の 第 4  図 z4 第 6 口 第 7 目 第 7 目      −
1riA is an energy band diagram for explaining the operating principle of the transistor of the present invention, FIG. 2 is a diagram showing the cross-sectional structure of the transistor of the present invention, and FIG. 3 is a diagram showing the operating principle of the depletion type and enhancement type transistors of the present invention. Figure 4 is an energy band diagram of a transistor when a two-dimensional hole gas is used as a carrier, and Figure 5. 6th. 7th.
FIG. 9 is a diagram showing an example of the manufacturing process of a transistor of the present invention, and FIG. 8 is a diagram showing an implementation process of the present invention using an MO3 type gate structure. 24, 20, 6
1゜63・=n'1jlAn, Ga1-, As layer, 21
, 23... Undoped G'aAs layer, 22... p-type or undoped All, Ga1-, As layer, 19...
・Gate electrode, 30 ... Interlayer insulator, 60.64-
p-type GaAs, -mPm layer, 62- n-type or undoped GaA31-y P y. 24...Si atom, 27...Si ion beam, 2
5... Inter-element isolation region, 26... Photoresist,
91st /I! 1 2nd mill 3rd 4th figure z4 6th mouth 7th eye 7th eye -

Claims (1)

【特許請求の範囲】 1、第1、第2、第3、第4、第5の連続する半導体の
各層構造を基本として、第2、第4の半導体層の電子親
和力は第1、第3、第5の半導体層よりも大きいか、或
いは、第2、第4の半導体層の価電子帯端のエネルギー
は第1、第3、第5の半導体層の価電子帯端のエネルギ
ーより大きく、第1と第3の半導体により形成されるポ
テンシャル井戸( I )中の担体を制御する電極を第1
の半導体層に形成し、更に、ポテンシャル井戸( I )
中の担体に電子的に接続する電極と第3と第5の半導体
により形成されるポテンシャル井戸(II)中の担体に電
子的に接続される電極とを有し、前記制御電極を用いて
ポテンシャル井戸( I )の担体をポテンシャル井戸(
II)側に移動させることを特徴とする半導体装置。 2、前記第1、第5の半導体をn型半導体とし、前記第
2、第4の半導体を不純物を故意にはドープしない(ア
ンドープ;10^1^5cm^−^3以下のキャリア濃
度)ことを特徴とする特許請求の範囲第1項記載の半導
体装置。 3、前記第1、第5の半導体をp型半導体とし、前記第
2、第4の判導体をアンドープにすることを特徴とする
特許請求の範囲第1項記載の半導体装置。 4、前記第1、第3、第5の半導体として Al_xGa_1_−_xAsを、前記第2、第4の半
導体としてGaAsを用いることを特徴とする特許請求
の範囲第1項記載の半導体装置。
[Claims] Based on the respective layer structures of the first, second, third, fourth, and fifth consecutive semiconductor layers, the electron affinities of the second and fourth semiconductor layers are the same as those of the first and third semiconductor layers. , or the energy at the valence band edge of the second and fourth semiconductor layers is greater than the energy at the valence band edge of the first, third and fifth semiconductor layers, The first electrode controls the carrier in the potential well (I) formed by the first and third semiconductors.
In addition, a potential well (I) is formed in the semiconductor layer of
an electrode electrically connected to the carrier in the potential well (II) formed by the third and fifth semiconductors; The carrier in the well (I) is converted into a potential well (
II) A semiconductor device characterized by being moved to the side. 2. The first and fifth semiconductors are n-type semiconductors, and the second and fourth semiconductors are not intentionally doped with impurities (undoped; carrier concentration of 10^1^5 cm^-^3 or less). A semiconductor device according to claim 1, characterized in that: 3. The semiconductor device according to claim 1, wherein the first and fifth semiconductors are p-type semiconductors, and the second and fourth conductors are undoped. 4. The semiconductor device according to claim 1, wherein Al_xGa_1_-_xAs is used as the first, third, and fifth semiconductors, and GaAs is used as the second and fourth semiconductors.
JP59212525A 1984-10-12 1984-10-12 Semiconductor device Pending JPS6191965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59212525A JPS6191965A (en) 1984-10-12 1984-10-12 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59212525A JPS6191965A (en) 1984-10-12 1984-10-12 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6191965A true JPS6191965A (en) 1986-05-10

Family

ID=16624112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59212525A Pending JPS6191965A (en) 1984-10-12 1984-10-12 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6191965A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237581A (en) * 1987-03-26 1988-10-04 Nec Corp Compound semiconductor three-dimensional integrated circuit
WO2010050021A1 (en) * 2008-10-29 2010-05-06 富士通株式会社 Compound semiconductor device and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237581A (en) * 1987-03-26 1988-10-04 Nec Corp Compound semiconductor three-dimensional integrated circuit
WO2010050021A1 (en) * 2008-10-29 2010-05-06 富士通株式会社 Compound semiconductor device and method for manufacturing the same
CN102197468A (en) * 2008-10-29 2011-09-21 富士通株式会社 Compound semiconductor device and method for manufacturing the same
JPWO2010050021A1 (en) * 2008-10-29 2012-03-29 富士通株式会社 Compound semiconductor device and manufacturing method thereof
KR101167651B1 (en) 2008-10-29 2012-07-20 후지쯔 가부시끼가이샤 Compound semiconductor device and method for manufacturing the same
US8618577B2 (en) 2008-10-29 2013-12-31 Fujitsu Limited Compound semiconductor device and manufacturing method thereof
JP5533661B2 (en) * 2008-10-29 2014-06-25 富士通株式会社 Compound semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6963090B2 (en) Enhancement mode metal-oxide-semiconductor field effect transistor
TWI332269B (en) High speed lateral heterojunction misfets realized by 2-dimensional bandgap engineering and methods thereof
EP0067721B1 (en) Heterojunction semiconductor device
US7187045B2 (en) Junction field effect metal oxide compound semiconductor integrated transistor devices
EP0165798B1 (en) Semiconductor device comprising n-channel and p-channel transistors and production method
US6989556B2 (en) Metal oxide compound semiconductor integrated transistor devices with a gate insulator structure
WO2002015285A1 (en) Metal sulfide semiconductor transistor devices
US5872031A (en) Enhancement-depletion logic based on gaas mosfets
WO2002015283A2 (en) Metal sulfide-oxide semiconductor transistor devices
JPS5891682A (en) Semiconductor device
JPS6191965A (en) Semiconductor device
JP3368449B2 (en) Semiconductor device and manufacturing method thereof
JPS61147577A (en) Complementary semiconductor device
US5107314A (en) Gallium antimonide field-effect transistor
WO2002015233A2 (en) Integrated transistor devices
JPH02111073A (en) Insulated gate fet and integrated circuit device thereof
WO2024007443A1 (en) Gan-based hemt structure having multiple threshold voltages, and preparation method therefor and application thereof
JPS61276261A (en) Manufacture of high-speed bipolar transistor
JPH0513462A (en) Compound semiconductor structure
JPH0770706B2 (en) High-speed semiconductor device
JPS6112081A (en) Semiconductor device
JP3517803B2 (en) Compound semiconductor device
JPS63188972A (en) Field-effect transistor
JPS63196079A (en) Hetero-junction fet
JPS60103678A (en) Semiconductor device