JPS6190419A - Device for deposition of film - Google Patents

Device for deposition of film

Info

Publication number
JPS6190419A
JPS6190419A JP21146184A JP21146184A JPS6190419A JP S6190419 A JPS6190419 A JP S6190419A JP 21146184 A JP21146184 A JP 21146184A JP 21146184 A JP21146184 A JP 21146184A JP S6190419 A JPS6190419 A JP S6190419A
Authority
JP
Japan
Prior art keywords
material gas
raw material
film
reaction vessel
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21146184A
Other languages
Japanese (ja)
Inventor
Hisanori Tsuda
津田 尚徳
Masafumi Sano
政史 佐野
Katsuji Takasu
高須 克二
Tomoji Komata
小俣 智司
Yoshiyuki Osada
芳幸 長田
Yutaka Hirai
裕 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP21146184A priority Critical patent/JPS6190419A/en
Publication of JPS6190419A publication Critical patent/JPS6190419A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To contrive the improvement in yield by increasing a film depositing velocity by driving a material gas into a reactor by a material gas introducing means. CONSTITUTION:A substrate supporting means 17 fixes and supports a substrate (A) and a valve 14 is closed whereas a valve 16 is opened to exhaust the air sufficiently by use of a pressure reducing source which is connected to an exhaust pipe 15 and a pressure inside a reactor 11 is made about 10<-4>Pa, for example. Nextly, while closing the valve 16 completely or opening it slightly, the control valve 14 is opened properly to drive a material gas into the reactor 11 by use of a pressing pump 19. With keeping a pressure in the reactor 11 at about 1.0X10<5>-1.5X10<5>Pa, high-energy beam B is projected from the outside through a window 18 thereby depositing the material on the substrate (A). Thus as the material gas can be utilized efficiently for deposition of films, the yield is improved. Also, as the concentration of material gas in high, a film depositing velocity becomes high.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は膜堰a装置に関し、特に光化学反応を利用する
ことによシ、低温プロセスにて高純度の薄膜を形成し得
る膜堆積装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a film weir a device, and more particularly to a film deposition device capable of forming a highly pure thin film in a low-temperature process by utilizing a photochemical reaction. .

〔従来の技術〕[Conventional technology]

光化学反応を利用して堆積膜を形成することができる。 Deposited films can be formed using photochemical reactions.

この様な膜堆積に利用する装置として、従来、反応容器
と該反応容器内に原料ガスを導入するための手段と該原
料ガスに高エネルギー光を照射するための手段とを備え
たものが利用されている。
Conventionally, devices used for such film deposition include a reaction vessel, a means for introducing a raw material gas into the reaction vessel, and a means for irradiating the raw material gas with high-energy light. has been done.

第2図は従来使用されている代表的な膜堆積装置の原理
的構成図を示すものである。第2図において、’ 1.
1は反応容器である。該反応容器11には原料ガス導入
管12が接続されている。該導入管12には膜形成原料
ガスの流量を測定するためのマスフローメーター13及
び原料ガスの流iをコントロールするためのバルブ14
が取付けられている。また、反応容器11には排気管1
5が接続されている。該排気管15にはパルプ16を介
し【減圧源(図示せず)が接続されている。
FIG. 2 shows a basic configuration diagram of a typical conventional film deposition apparatus. In Figure 2, '1.
1 is a reaction container. A raw material gas introduction pipe 12 is connected to the reaction vessel 11 . The introduction pipe 12 is equipped with a mass flow meter 13 for measuring the flow rate of the film-forming raw material gas and a valve 14 for controlling the flow i of the raw material gas.
is installed. In addition, an exhaust pipe 1 is provided in the reaction vessel 11.
5 is connected. A reduced pressure source (not shown) is connected to the exhaust pipe 15 via a pulp 16.

反応容器ll内には膜を堆積すべき基体を支持するため
の手段17が設けられている。反応容器11(2)基体
支持手段17と対向する位置に外部から反応容器11の
内部へと光照射を行なうための窓18が形成されている
Means 17 are provided in the reaction vessel 11 for supporting the substrate on which the film is to be deposited. A window 18 for irradiating light from the outside to the inside of the reaction container 11 is formed at a position facing the reaction container 11 (2) and the substrate support means 17.

膜堆積に際しては、基体支持手段17により基体Aたと
えばガラスまたはセラミック等を固定支持し、減圧源に
よシ反応容器ll内を排気して適宜の減圧状態に保ちな
がら、原料ガス流量コントロールパルプ14の開度を調
整しつつ適宜の流量にて反応容器11内に原料ガスを導
入する。原料ガスとしては、たとえばシラン(SiH4
)ガスやジシラン(Si±H6)gス等が用いられる。
During film deposition, the substrate A, such as glass or ceramic, is fixedly supported by the substrate support means 17, and the inside of the reaction vessel 11 is evacuated by a vacuum source to maintain an appropriate vacuum state, while the raw material gas flow rate control pulp 14 is maintained. The raw material gas is introduced into the reaction vessel 11 at an appropriate flow rate while adjusting the opening degree. For example, silane (SiH4
) gas, disilane (Si±H6) gas, etc. are used.

かくして、反応容器11内に原料ガスを存在せしめつつ
外部から窓18を通して高エネルギー光Bを照射するこ
とによシ原料が基体A上に堆積せしめられ、たとえば水
素化シリコン膜が形成される。高エネルギー光Bの光源
としては、たとえば水銀ランプやキセノンランプ等の紫
外領域の光源、あるいはエキシマレーザ−(Excim
er Las@r )光源が使用される。
Thus, by irradiating high-energy light B from the outside through the window 18 while the source gas is present in the reaction vessel 11, the source material is deposited on the substrate A, forming, for example, a silicon hydride film. Examples of light sources for high-energy light B include ultraviolet light sources such as mercury lamps and xenon lamps, or excimer lasers (Excimer lasers).
er Las@r ) light source is used.

〔発明の目的〕[Purpose of the invention]

以上の如き従来の膜堆積装置においては、減圧源により
反応容器11内を排気しながら膜堆積を行なうので、排
気時に未反応の原料ガスも同時に反応容器11外へと排
除される。このため、膜原料に対する堆積膜の収率は極
めて低いものとなシ、また膜の堆積速度が遅く、これが
堆積膜の高コスト化を一招いていた。
In the conventional film deposition apparatus as described above, film deposition is performed while the inside of the reaction vessel 11 is being evacuated by a reduced pressure source, so that unreacted raw material gas is also removed to the outside of the reaction vessel 11 at the time of exhaustion. For this reason, the yield of the deposited film based on the film raw material is extremely low, and the deposition rate of the film is slow, which has led to an increase in the cost of the deposited film.

本発明は以上の如き問題点を解決することを目的とする
The present invention aims to solve the above problems.

〔発明の概要〕[Summary of the invention]

本発明によれば、以上の如き従来技術の問題点を解決す
るため、原料ガス導入手段によシ原料ガスを反応容器内
へ圧入せしめ得ることを特徴とする、膜堆積装置が提供
される。
According to the present invention, in order to solve the problems of the prior art as described above, a film deposition apparatus is provided, which is characterized in that a source gas can be forced into a reaction vessel by a source gas introducing means.

〔実施例〕〔Example〕

以下、図面を参照しながら、本発明の膜堆積装置の具体
的実施例を説明する。
Hereinafter, specific embodiments of the film deposition apparatus of the present invention will be described with reference to the drawings.

第1図は本発明による膜堆積装置の原理的構成図である
。第1図において、11は反応容器でおシ、12は原料
ガス導入管であシ、14はコントロールパルプであり、
15は排気管であり、16はパルプであシ、17は基体
支持手段であり、18は窓でおり、これらは上記従来の
膜堆積装置におけるとほぼ同様である。19は原料ガス
導入管12に取付けられている加圧ポンプであり、20
は反応容器ll内に設けられているガス攪拌のためのフ
ァンである。また、本実施例においては原料ガス導入管
12の先端は反応容器ll内のファン20の前方にまで
延びていて、導入原料ガスが効率よく攪拌され得る様に
なりている。
FIG. 1 is a diagram showing the basic configuration of a film deposition apparatus according to the present invention. In FIG. 1, 11 is a reaction vessel, 12 is a raw material gas introduction pipe, and 14 is a control pulp.
15 is an exhaust pipe, 16 is pulp, 17 is a substrate support means, and 18 is a window, which are almost the same as in the conventional film deposition apparatus described above. 19 is a pressure pump attached to the raw material gas introduction pipe 12;
is a fan for stirring the gas provided inside the reaction vessel 11. Further, in this embodiment, the tip of the raw material gas introduction pipe 12 extends to the front of the fan 20 in the reaction vessel 11, so that the introduced raw material gas can be efficiently stirred.

本実施例装置での膜堆積に際しては、基体支持手段17
によシ基体人を固定支持し、パルプ14を閉じた状態で
パル7’16を開き、排気管15に接続されている減圧
源(図示せず)たとえば真空ポンプにより十分排気を行
ない、反応容器ll内の圧力をたとえば10Pa程度と
する。次にパルプ16を完全に閉じるかまたはわずかに
開いた状態に保ち、コントロールパルプ14を適宜の開
度に保って加圧ポンプ19によシ原料ガスを反応容器1
1内に圧入し、反応容器11内の圧力をたとえば1.0
X105〜1.5 X 105Pa程度に保つ。かくし
て、反応容器ll内に原料ガスを加圧状態で存在せしめ
つつ外部から窓18を通して高エネルギー光Bを照射す
ることにより原料が基体A上に堆積せしめられる。
When depositing a film in the apparatus of this embodiment, the substrate support means 17
The substrate is fixedly supported, the pulp 7'16 is opened with the pulp 14 closed, and the reaction vessel is sufficiently evacuated using a reduced pressure source (not shown) such as a vacuum pump connected to the exhaust pipe 15. The pressure inside ll is set to be about 10 Pa, for example. Next, the pulp 16 is kept completely closed or slightly opened, the control pulp 14 is kept at an appropriate opening degree, and the raw material gas is pumped into the reaction vessel by the pressure pump 19.
1, and the pressure inside the reaction vessel 11 is set to 1.0, for example.
Maintain it at about X105~1.5X105Pa. Thus, the raw material is deposited on the substrate A by irradiating high-energy light B from the outside through the window 18 while the raw material gas is kept in a pressurized state in the reaction vessel 11.

以上の様な方法で、512a、 (純度99%)ガスを
H2ガスで90チに希釈した原料ガスを用い、高エネル
ギー光Bの光源としてl kWキセノンランプを用い、
高エネルギー光Bを200℃に加熱された基板人と垂直
に照射し基体A上に水素化アモルファスシリコン(a−
8t :H)膜を約0.44−1k堆積させたところ、
堆積速度は18 X/seeであった(例1)。
In the above method, using a raw material gas prepared by diluting 512a (99% purity) gas to 90% with H2 gas, and using a 1 kW xenon lamp as a light source for high-energy light B,
High-energy light B is irradiated perpendicularly to the substrate heated to 200°C, and hydrogenated amorphous silicon (a-
When the 8t:H) film was deposited about 0.44-1k,
The deposition rate was 18 X/see (Example 1).

比較のため、反応容器11内の原料ガス圧を0.1Pa
とする以外は同様にして膜堆積を行なったところ、堆積
速度は15X/secであった(例2)。
For comparison, the raw material gas pressure in the reaction vessel 11 was set to 0.1 Pa.
When the film was deposited in the same manner except that the deposition rate was 15X/sec (Example 2).

また、反応室11内の原料ガスを攪拌するためファン2
0を作動せしめる以外は例1と同様に膜堆積したところ
、堆積速度は22X/seaとなりた(例3)。
In addition, a fan 2 is used to stir the raw material gas in the reaction chamber 11.
When a film was deposited in the same manner as in Example 1 except that 0 was operated, the deposition rate was 22X/sea (Example 3).

更に、本実施例装置においてパルプ16を完全に閉じて
おき、反応容器11内の原料ガス圧を所定の圧力に保つ
場合には堆積膜の膜厚は原料ガス圧に対応する所定の厚
さ以上にはならないことが分った。たとえば、H2ガス
で90%に希釈したSl、H6ガスを原料ガスとして用
い、2000 cm30反応容器ll内の原料ガス圧を
1.2X10  Paとした場合に得られるa−8t:
H堆積膜の最大膜厚は2融であった(例4)。
Furthermore, in the apparatus of this embodiment, when the pulp 16 is completely closed and the raw material gas pressure in the reaction vessel 11 is maintained at a predetermined pressure, the thickness of the deposited film is equal to or greater than the predetermined thickness corresponding to the raw material gas pressure. It turns out that it doesn't. For example, when using Sl and H6 gases diluted to 90% with H2 gas as raw material gases and setting the raw material gas pressure in 1/1 of a 2000 cm30 reaction vessel to 1.2X10 Pa, the a-8t obtained is:
The maximum thickness of the H deposited film was 2 melts (Example 4).

以上の例においては基体Aを加熱したが、本実施例装置
においては原料ガスを反応容器11内に圧入せしめ且つ
基体Aを冷却して原料ガスを予め基体A上に露結せしめ
てから高エネルギー光照射によシ膜堆積を行なうことも
できる。これによれば、従来得られている堆積膜とは性
質の異なる堆積膜を形成することができる。
In the above example, the substrate A was heated, but in the present embodiment, the raw material gas is injected into the reaction vessel 11, the substrate A is cooled, the raw material gas is preliminarily dew-condensed on the substrate A, and then the raw material gas is heated with high energy. Film deposition can also be performed by light irradiation. According to this, a deposited film having different properties from conventionally obtained deposited films can be formed.

以上においては、原料ガスを分解して膜堆積を行なう技
術について述べたが、原料ガスとして有機材料のモノマ
ーを導入することにより反応容器11内において七ツマ
−を重合させポリマー膜を堆積させることもできる。
In the above, we have described the technique of decomposing the raw material gas to deposit a film, but it is also possible to polymerize the 7-mer in the reaction vessel 11 and deposit a polymer film by introducing an organic material monomer as the raw material gas. can.

〔発明の効果〕〔Effect of the invention〕

以上の如き本発明の膜堆積装置によれば原料ガスを加圧
した状態にて光化学反応を行なうことができるので、次
の様な効果が得られる。
According to the film deposition apparatus of the present invention as described above, the photochemical reaction can be carried out while the source gas is pressurized, so that the following effects can be obtained.

(1)排気しながら膜堆積を行なう従来の方式に比べて
原料ガスを有効に膜堆積に利用することができ、収率が
向上する。
(1) Compared to the conventional method in which film deposition is performed while exhausting air, raw material gas can be used more effectively for film deposition, and the yield is improved.

(2)原料ガス濃度が高いため膜堆積速度が速くなる。(2) The film deposition rate becomes faster because the source gas concentration is high.

これは、たとえば原料ガスであるS l 2H6から分
解してできるラジカルS1□H?が他のラジカル種ある
いはS1□H6と効率よく反応をおこすためと考えられ
る。
This is, for example, a radical S1□H? that is generated by decomposing the raw material gas S l 2H6. It is thought that this is because it efficiently reacts with other radical species or S1□H6.

(3)原料ガス謎度と反応容器内のガス圧力を規定する
ことによシ所望の膜厚の堆積膜を得ることができる。
(3) A deposited film of a desired thickness can be obtained by regulating the degree of mystery of the raw material gas and the gas pressure in the reaction vessel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による膜堆積装置の原理的構成図である
。第2図は従来の膜堆積装置の原理的構成図である。 11:反応容器、12:原料ガス導入管、15:排気管
、17:基体支持手段、18:窓、19:加圧Iンゾ、
20:ファン
FIG. 1 is a diagram showing the basic configuration of a film deposition apparatus according to the present invention. FIG. 2 is a diagram showing the basic configuration of a conventional film deposition apparatus. 11: Reaction vessel, 12: Raw material gas introduction pipe, 15: Exhaust pipe, 17: Substrate support means, 18: Window, 19: Pressurized inlet,
20: Fan

Claims (1)

【特許請求の範囲】[Claims] (1)反応容器と該反応容器内に原料ガスを導入するた
めの手段と該原料ガスに高エネルギー光を照射するため
の手段とを備え、光化学反応を利用して該反応容器内に
支持されている基体上に膜を堆積する装置において、原
料ガス導入手段により原料ガスを反応容器内へ圧入せし
め得ることを特徴とする、膜堆積装置。
(1) Comprising a reaction vessel, a means for introducing a raw material gas into the reaction vessel, and a means for irradiating the raw material gas with high-energy light; What is claimed is: 1. A film deposition apparatus for depositing a film on a substrate, characterized in that a raw material gas can be forced into a reaction vessel by a raw material gas introducing means.
JP21146184A 1984-10-11 1984-10-11 Device for deposition of film Pending JPS6190419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21146184A JPS6190419A (en) 1984-10-11 1984-10-11 Device for deposition of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21146184A JPS6190419A (en) 1984-10-11 1984-10-11 Device for deposition of film

Publications (1)

Publication Number Publication Date
JPS6190419A true JPS6190419A (en) 1986-05-08

Family

ID=16606321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21146184A Pending JPS6190419A (en) 1984-10-11 1984-10-11 Device for deposition of film

Country Status (1)

Country Link
JP (1) JPS6190419A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300617A (en) * 2007-05-31 2008-12-11 Ihi Corp Laser annealing method and laser annealing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300617A (en) * 2007-05-31 2008-12-11 Ihi Corp Laser annealing method and laser annealing device

Similar Documents

Publication Publication Date Title
US5154945A (en) Methods using lasers to produce deposition of diamond thin films on substrates
JPH01107519A (en) Vapor growth apparatus
JP3408399B2 (en) Method of forming silicon film
JPS6190419A (en) Device for deposition of film
JPS593931A (en) Forming of thin film
JPS6190417A (en) Device for depositing film
JPS6134924A (en) Growing device of semiconductor crystal
JPH03104867A (en) Cvd device
JPS60236215A (en) Laser cvd method
JPS6075328A (en) Process and device for photo gaseous phase reaction
JPS5518077A (en) Device for growing film under gas
JPS5833830A (en) Plasma deposition apparatus
JPS62149116A (en) Manufacture of thin-film layered superlattice structure
JPH01302718A (en) Photochemical vapor deposition device
JPS62179719A (en) Deposited film forming apparatus
JPS6118125A (en) Thin film forming apparatus
JPS6328865A (en) Hard carbon film manufacturing device
JPH05206009A (en) Manufacturing apparatus for semiconductor device
JPS6271218A (en) Thin film forming apparatus
JP2966909B2 (en) Amorphous semiconductor thin film
JPS63232416A (en) Formation of thin-film through photochemical vapor growth
JPH0257145B2 (en)
JPS639742B2 (en)
JPS5987041A (en) Vapor growth method
JPS62160713A (en) Photoexcitation film forming equipment