JPS6190185A - Holographic exposure method - Google Patents

Holographic exposure method

Info

Publication number
JPS6190185A
JPS6190185A JP59212047A JP21204784A JPS6190185A JP S6190185 A JPS6190185 A JP S6190185A JP 59212047 A JP59212047 A JP 59212047A JP 21204784 A JP21204784 A JP 21204784A JP S6190185 A JPS6190185 A JP S6190185A
Authority
JP
Japan
Prior art keywords
medium
plane
planes
laser beam
exposure method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59212047A
Other languages
Japanese (ja)
Other versions
JP2629671B2 (en
Inventor
Yoshikazu Hori
義和 堀
Keisuke Koga
啓介 古賀
Akimoto Serizawa
芹沢 晧元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59212047A priority Critical patent/JP2629671B2/en
Publication of JPS6190185A publication Critical patent/JPS6190185A/en
Application granted granted Critical
Publication of JP2629671B2 publication Critical patent/JP2629671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70408Interferometric lithography; Holographic lithography; Self-imaging lithography, e.g. utilizing the Talbot effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0476Holographic printer
    • G03H2001/0482Interference based printer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/18Prism

Abstract

PURPOSE:To form a minute pattern having varied shapes with one exposure by transmitting a laser light having a certain diameter through a specific medium and irradiating an interference pattern to a medium to be exposed. CONSTITUTION:The diameter of a laser beam 11 generated from a laser light source 10 is expanded by a beam expander 12, and the laser beam is refracted and is made incident on a light-transmissive medium 13. The medium 13 is prismatic, and laser beams 11' and 11'' incident on planes 16 and 17 which are inclined at certain angles theta1 and theta2 to a plane 15 are refracted at angles alpha1 and alpha2. That is, though beams going in directions of arrows 18 and 18' overlap near the lane 15, the interference is caused because the phase difference between two lights is varied in accordance with position/ and a grating image having a certain space cycle is formed near the plane 15, and the interference image of beams is formed on a coating optical medium 14 such as a semiconductor substrate, and the minute pattern is exposed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体デバイス、或はオプトエレクトロ二ッ
クデバイス等の作製技術分野において、特に微細パター
ンの形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the field of manufacturing technology for semiconductor devices, optoelectronic devices, etc., and particularly relates to a method for forming fine patterns.

従来例の構成とその問題点 近年エレクトロニクスや通信技術の発展に伴なう、情報
化社会の著しい進展と共に、ますます高度な半導体技術
や光通信技術が要求されている。
BACKGROUND OF THE INVENTION Conventional configurations and their problems In recent years, along with the remarkable progress of the information society due to the development of electronics and communication technology, more and more advanced semiconductor technology and optical communication technology are required.

従って超LSIの開発も盛んであり、まだ、半導体レー
ザや先導波路等を一体化した光100発展も期待されて
いる。
Therefore, the development of ultra-LSI is active, and the development of optical 100 systems that integrate semiconductor lasers, guiding waveguides, etc. is still expected.

この様な状況の中で、微細加工技術の重要性はますます
高くなり、現在ではサブミクロン領域での加工技術も確
立されつつあり、その量産性が問題となる様になってき
ている。
Under these circumstances, microfabrication technology has become increasingly important, and now machining technology in the submicron region is being established, and mass production is becoming an issue.

特に半導体レーザにおいても、光の誘導放出が生ずる光
活性層の近傍に、そのバルク内での発振波長と同程度の
空間周期(0,2〜O,Sμm)を有する回折格子を形
成する技術が不可欠となシ、ホログラフィック露光法を
用いた回折格子の形成がなされている。
In particular, even in semiconductor lasers, there is a technology to form a diffraction grating with a spatial period (0.2 to O.S μm) comparable to the oscillation wavelength in the bulk near the photoactive layer where stimulated emission of light occurs. As an essential step, a diffraction grating is formed using a holographic exposure method.

そこで従来のホログラフィック露光法の概略を第1図に
記す。1はHe −06レ一ザ発振器であシ、これよ)
発した紫外光(約326o人)2はビームエクスパンダ
3でビーム径が広げられた後、ビームスプリッタ4によ
りビーム5,6に分割される。このビーム5,6は反射
鏡7及び8により、試料9に一定の角度で照射される様
に構成されている。
Therefore, an outline of the conventional holographic exposure method is shown in FIG. 1 is a He-06 laser oscillator, this is it)
The emitted ultraviolet light (approximately 326 degrees) 2 is expanded in beam diameter by a beam expander 3 and then split into beams 5 and 6 by a beam splitter 4. These beams 5 and 6 are configured to be irradiated onto a sample 9 at a constant angle by reflecting mirrors 7 and 8.

ところが、回折格子を形成するだめの従来のホログラフ
ィック露光法はHe −Cdレーザ等の紫外線の光を発
するレーザをビームスプリッタ4で分割し、更に分割さ
れた光をもう一度重ね合わせ、そこに形成される干渉像
を利用する事により露光を行うものであり、物理的大き
なスペースが必要となる事は勿論大型の防振台が必要と
なシまた目に見えない紫外のレーザ光の光路や光軸合わ
せを行わねばならず、装置の設定が非常に困難であった
。また、試料の設定角度に対してピッチがその余弦に比
例して変化するので試料設定が困難であり、更に同一基
板上に異なる周期や異なる方向の回折格子を形成しよう
とする場合、一度露光を行った後、再び試料の配置角を
微妙に変化させてもう一度露光するか或はレーザ光線の
光路や光軸合わせの再設定を行うか、又は別に設定され
た光学系に試料を移設するという工程を繰シ返さなけれ
ばならず、量産化は非常に困難なものであった。
However, the conventional holographic exposure method for forming a diffraction grating splits a laser that emits ultraviolet light, such as a He-Cd laser, using a beam splitter 4, and then superimposes the split lights again. Exposure is performed by using an interference image created by the laser beam, which requires a large physical space, a large anti-vibration table, and the optical path and optical axis of invisible ultraviolet laser light. This made it very difficult to set up the device. In addition, sample setting is difficult because the pitch changes in proportion to the cosine of the sample setting angle, and furthermore, when trying to form diffraction gratings with different periods and different directions on the same substrate, it is necessary to expose once. After that, the sample is exposed again by slightly changing the placement angle of the sample, the optical path and optical axis alignment of the laser beam is reset, or the sample is moved to a separately set optical system. mass production was extremely difficult.

発明の目的 本発明は前記の従来のホログラフィック露光法の欠点を
克服するものであシ、非常に簡単な構成でホログラフィ
ック露光が行え、しかも、−回の露光で同一基板上に複
数の回折格子が形成される事を可能とするもので61、
また本発明は、数μmの比較的大きな周期でサブミクロ
ンのパターンを一回の露光で容易に形成する事等をも可
能とするものである。
OBJECTS OF THE INVENTION The present invention overcomes the drawbacks of the conventional holographic exposure method described above, and allows holographic exposure to be performed with a very simple configuration, and moreover, allows multiple diffraction patterns to be produced on the same substrate in -times of exposure. It enables the formation of a lattice61,
The present invention also makes it possible to easily form a submicron pattern with a relatively large period of several μm in a single exposure.

発明のt7/7成 本発明は、一定のビーム径を有するレーザ光線を特定の
媒体を通して被露光媒体に干渉パターンを照射するとい
う極めて簡単な構成である。
t7/7 Formation of the Invention The present invention has an extremely simple configuration in which a laser beam having a constant beam diameter is passed through a specific medium and an interference pattern is irradiated onto the medium to be exposed.

実施例の説明 第2図に本発明のホログラフインク露光法の構成の概略
を示す。10はHa −Cd等の紫外線のレーザ光源で
あシ、発生したレーザビーム11は、ビームエクスパン
ダ12によりビーム径が広げられ、レーザビームを屈折
させ、光透過性を有する媒体13に入射される。14は
半導体基板等の被露光媒体であシこの表面に、媒体13
により生じた光の干渉像が形成され、微細パターンの露
光が行われるという原理である。第1図に示した従来の
ホログラフィック露光法に比較して、簡単な構成となっ
ている事が判る。
DESCRIPTION OF EMBODIMENTS FIG. 2 schematically shows the configuration of the holographic ink exposure method of the present invention. Reference numeral 10 denotes an ultraviolet laser light source such as Ha-Cd, and the generated laser beam 11 is expanded in beam diameter by a beam expander 12, refracted, and incident on a light-transmitting medium 13. . Reference numeral 14 denotes a medium to be exposed such as a semiconductor substrate, and the medium 13 is placed on the surface of the substrate.
This is the principle that an interference image of the light generated by this process is formed, and a fine pattern is exposed. It can be seen that the structure is simpler than the conventional holographic exposure method shown in FIG.

実施例1 第2図の媒体13が第3図に示す様なプリズム形の媒体
、即ち、被露光媒体14の密接又は近接する第1平面1
5に対して一定の角変θ、及びθ2(ただし0くθ1.
θ2<90°)を有する第2平面、16及び第3平面1
7を有する媒体を使用し、ビームが平面16に対して垂
直方向から媒体に入射した場合の実施例について示す。
Embodiment 1 The medium 13 in FIG. 2 is a prism-shaped medium as shown in FIG.
5, constant angular variation θ, and θ2 (however, 0 and θ1.
a second plane 16 and a third plane 1 having θ2<90°)
An example will be shown in which a medium having a beam angle 7 is used and the beam is incident on the medium from a direction perpendicular to the plane 16.

例えば平面16に入射されるレーザ光11′は、その平
面16の垂直方向に対して角度α、の方向18に屈折さ
れる。ただし、αとθは次の様な関係を有している。
For example, a laser beam 11' incident on a plane 16 is refracted in a direction 18 at an angle α with respect to a direction perpendicular to the plane 16. However, α and θ have the following relationship.

sinθ =nsinα1 ここでnは媒体の屈折率である。sin θ = n sin α1 Here n is the refractive index of the medium.

同様に平面17に入射される光線11′は平面17の垂
直方向に対して sin 02= n sinα2 の関係を満足するα2の方向18′に屈折される。
Similarly, the light ray 11' incident on the plane 17 is refracted in the direction 18' of α2, which satisfies the relationship sin 02=n sin α2 with respect to the direction perpendicular to the plane 17.

18及び18′に進光する光はそれぞれもう一度平面1
6の近傍において重なシ合うが、場所に応じて二つの光
線の位相差が異なるために、干渉が生じ、平面16の近
傍において、一定の空間周期Wを有する格子像が形成さ
れる。第4図に光強度の空間分布の一例を示す。空間周
期は例えば光強度が極大になる点から次の極大点までの
きよりである。
The light beams traveling to 18 and 18' are once again on the plane 1.
Although the two light beams overlap in the vicinity of the plane 16, since the phase difference between the two light beams differs depending on the location, interference occurs, and a grating image having a constant spatial period W is formed in the vicinity of the plane 16. FIG. 4 shows an example of the spatial distribution of light intensity. The spatial period is, for example, the distance from the point where the light intensity reaches its maximum to the next maximum point.

そして−例として、θ=θ、=02 としたときのθと
空間周期Wとの関係を第5図に示す。第5図において、
パラメータは、媒体の屈折率であり、n = 1.2 
、1.4 、1.6 、1.8 、2.0と変化させで
ある。
As an example, FIG. 5 shows the relationship between θ and the spatial period W when θ=θ, =02. In Figure 5,
The parameter is the refractive index of the medium, n = 1.2
, 1.4, 1.6, 1.8, and 2.0.

横軸はθ(0)であシ、縦軸はレーザービームの波長λ
に対する空間周期の比(W/λ)を示している。第6図
よりθが大きくなるに従って格子状パターンの空間周期
が短かくなシ、また、同じθに対しても、媒体の屈折率
が大きい方が空間周期が短くなる事が判る。
The horizontal axis is θ(0), and the vertical axis is the wavelength λ of the laser beam.
It shows the ratio of the spatial period to (W/λ). From FIG. 6, it can be seen that as θ becomes larger, the spatial period of the lattice pattern becomes shorter, and even for the same θ, the larger the refractive index of the medium, the shorter the spatial period becomes.

従って、レーザービーム11’、11’としてHθ−c
d レーザーの3250人の波長を用い、媒体13とし
て石英ガラス(n〜1.48)を用いると。
Therefore, as the laser beams 11' and 11', Hθ-c
d using a laser wavelength of 3250 and using quartz glass (n ~ 1.48) as the medium 13.

θニア 4.0 ’に設定すればW=0.1993μ7
7Lの回折格子が得られ、また、θ=44.0’に設定
すればW=0.3985μmの回折格子が得られる。
If set to θ near 4.0', W=0.1993μ7
A 7L diffraction grating can be obtained, and if θ=44.0', a W=0.3985 μm diffraction grating can be obtained.

上の回折格子は媒体14でしるたとえば半導体基板に形
成される工nGaAs P / In) 系の分布I@
遠形半導体レーザ(DFB−LD)のそれぞれ1次及び
2次のグレーティングとして働く事になる。
The upper diffraction grating is marked by the medium 14.For example, the distribution of the nGaAs P/In) system formed on a semiconductor substrate I@
They serve as the primary and secondary gratings of the distant semiconductor laser (DFB-LD), respectively.

一方、媒体13として加工形成の容易なアクリル系のプ
ラスチック材料(n〜1.58)を用いると、上の回折
格子を得るためのθはそれぞれ66:6° 、及び37
.7°となる。
On the other hand, if an acrylic plastic material (n~1.58), which is easy to process and form, is used as the medium 13, θ to obtain the above diffraction grating is 66:6° and 37°, respectively.
.. It becomes 7°.

次に、レーザビームの媒質への入射角度が傾いた場合の
その傾き角度と、回折格子のピッチの関係を第6図に示
す。媒質の屈折率は1.60と仮定されている。この結
果によると、レーザビームの入射角度が20〜30’傾
いたとしても、回折格子の周期は、はとんど変化しない
事が判る。この事は大量生産を行う場合、露光時のアラ
インメントの精度が厳しく要求されない事を意味してお
シ、本発明が大量生産に非常に適している事、を物語っ
ている。
Next, FIG. 6 shows the relationship between the angle of incidence of the laser beam on the medium and the pitch of the diffraction grating. The refractive index of the medium is assumed to be 1.60. According to this result, it can be seen that even if the incident angle of the laser beam is tilted by 20 to 30', the period of the diffraction grating hardly changes. This means that when performing mass production, alignment accuracy during exposure is not strictly required, and it shows that the present invention is very suitable for mass production.

以上の例ではθ1=02 の場合を述べたが。In the above example, the case where θ1=02 was described.

θ1笑θ2の場合も、それぞれの条件で一定のピッチが
決定され、このピッチは、レーザー光線の照η、1角度
の若干のずれに対しても、はとんど変化しないものであ
る。
Also in the case of θ1 and θ2, a constant pitch is determined under each condition, and this pitch hardly changes even with a slight deviation of one angle in the laser beam illumination η.

実施例2 第7図に第2図媒体13の形状が、複数対の平面を有し
ている場合の実施例を示す。
Embodiment 2 FIG. 7 shows an embodiment in which the shape of the medium 13 in FIG. 2 has a plurality of pairs of planes.

本実施例においては、平面19.19’、20゜20′
 に入射する光が平面15上及び近傍で干渉し合い、実
施例1よりも複雑なパターンが形成される。
In this example, the plane is 19.19', 20°20'
The incident light interferes with each other on and near the plane 15, forming a more complicated pattern than in the first embodiment.

第8図に、−例としてθ1=θ2:=so’  。In FIG. 8, - as an example, θ1=θ2:=so'.

θ、=04=30’の場合の平面16上での光の強度分
布を示す。露光条件を選ぶ事により、ピッチが空間的に
変化した回折格子を形成する事ができる。
The intensity distribution of light on the plane 16 in the case of θ,=04=30′ is shown. By selecting exposure conditions, it is possible to form a diffraction grating with a spatially varying pitch.

また第9図には、θ1=02=60’、θ5=θ4=2
4.1゜の場合の干渉像の光強度分布を示す。この場合
、θ=600 で形成される回折格子と、θ==24.
1゜で形成される回折格子のピッチが1:3となってお
シ、更にそれらの干渉により、θ、=02=60゜の場
合の3倍のピッチでしかも、線幅がほぼ同程度の回折格
子像が得られる事が判る。同様に回折格子のピッチの比
を変化させる事により、同程度の線幅でしかもピッチの
大きなパターンが得られる。これは、半導体集積回路等
にサブミクロンのゲートを形成するという場合にも極め
て有用となる。
Also, in Fig. 9, θ1=02=60', θ5=θ4=2
The light intensity distribution of the interference image in the case of 4.1° is shown. In this case, a diffraction grating formed with θ=600 and a diffraction grating formed with θ==24.
The pitch of the diffraction grating formed at 1° is 1:3, and due to their interference, the pitch is three times that of the case where θ = 02 = 60°, but the line width is almost the same. It can be seen that a diffraction grating image can be obtained. Similarly, by changing the pitch ratio of the diffraction grating, patterns with similar line widths and larger pitches can be obtained. This is also extremely useful when forming submicron gates in semiconductor integrated circuits and the like.

ただし、2組の平面対のみで、ピッチが大きく線幅の細
いパターンを形成しようとする場合、本来Jに光される
べき細線の中間にある程度露光される領域が存在するた
めに、露光及び現像条件の制約が厳しくなる。第10図
に2組の平面対での干渉パターンのピッチが1:6の場
合の例を示す。
However, when trying to form a pattern with a large pitch and narrow line width using only two pairs of planes, there is a region that is exposed to some extent between the thin lines that should be exposed to J, so exposure and development Conditions become more restrictive. FIG. 10 shows an example where the pitch of the interference patterns in two pairs of planes is 1:6.

従ってこれを防止するためには、更に新たな平面対を設
け、例えば第11図に示す様な媒体を用い各下面対21
−21’ 、 22−22’、 23−23’で形成さ
れる回折格子の周期が整数比となる様に設計する事によ
り、上記の問題を解決する事ができる。第12図はθ1
=θ、’=60’、θ2=θ2′=24°。
Therefore, in order to prevent this, it is necessary to provide a new pair of planes and use a medium as shown in FIG.
The above problem can be solved by designing the period of the diffraction grating formed by -21', 22-22', and 23-23' to be an integer ratio. Figure 12 shows θ1
=θ, '=60', θ2=θ2'=24°.

o、=o3r=6.2°の場合の平面16上での回折像
の強度分布を示している。
It shows the intensity distribution of the diffraction image on the plane 16 when o,=o3r=6.2°.

第7図、第11図の場合は、求める回折パターンの形成
される領域が小さくなるという欠点があるが、これは第
13図及び第14図に示す様な媒体を形成する事により
、容易に解決できるものである。また、第15図に示す
様な媒体を用いる事により、平面対24−24’ 、2
5−25’ 。
In the case of FIGS. 7 and 11, there is a disadvantage that the area where the desired diffraction pattern is formed becomes small, but this can be easily solved by forming the medium as shown in FIGS. 13 and 14. It is something that can be solved. Furthermore, by using a medium as shown in FIG.
5-25'.

26−26’  でそれぞれ形成される回折格子が平面
15の異なる領域に形成される様に設定する事により、
同一基板上に異なる周期又は方向の複数の回折格子を一
度の露光で形成する事ができる。
By setting the diffraction gratings 26-26' to be formed in different regions of the plane 15,
A plurality of diffraction gratings with different periods or directions can be formed on the same substrate by one exposure.

これらの媒体の形状は複雑ではあるが、アクリル系或は
ポリカーボネート系のプラスチックを用いる事により容
易にしかも安価に実現する事ができる。
Although the shapes of these media are complex, they can be easily realized at low cost by using acrylic or polycarbonate plastics.

次に第1媒体13の形状が複数の曲面を有する場合の実
施例を示す。
Next, an example will be described in which the first medium 13 has a plurality of curved surfaces.

実施例3 第16図は平面15に対し、鋭角をなして27及び27
’の曲面が相対して存在し、その角度が28の方向に対
して連続的に変化(増加)している場合の一例を示して
いる。この場合、平面15に形成される回折パターンは
、第16図に示される様に、そのピッチが28の方向に
変化(減少)する。
Embodiment 3 FIG. 16 shows the planes 27 and 27 at an acute angle
An example is shown in which curved surfaces ' are present opposite each other and the angle thereof continuously changes (increases) in 28 directions. In this case, the pitch of the diffraction pattern formed on the plane 15 changes (decreases) in the direction of 28, as shown in FIG.

実施例4 実施例3に対して更に対をなす曲面を設けた場合の例を
第18図に示す。実施例3の場合と同様の原理により、
第19図の様な間隔が変化する細線が形成される。
Embodiment 4 FIG. 18 shows an example in which a pair of curved surfaces is provided in addition to Embodiment 3. Based on the same principle as in Example 3,
Thin lines with varying intervals as shown in FIG. 19 are formed.

この様な媒体13による露光方法を用いれば、一定間隔
から徐々に広がる細線のパターンも容易に形成され、光
集積回路の中に、方向性結合器等の変調素子を容易に形
成する事ができる。
If such an exposure method using the medium 13 is used, a pattern of thin lines that gradually spread from a fixed interval can be easily formed, and a modulation element such as a directional coupler can be easily formed in an optical integrated circuit. .

実施例6 実施例1〜5では、複数の平面又は曲面の場合を示した
が必ずしも複数の平面又は曲面である必要はなく、平面
と曲面が両方台まれる場合も全く同様の効果が得られる
事は自明である。更に、曲面及び平面部が部分的に含ま
れる様な−っの曲面を有する様な形状であっても何らさ
しつがえはない。また第1媒体として第20図に示す様
な円錐形の1楳体を用いた場合は同心円状の干渉パター
ンが形成され、光集積回路にフレネルレンズ等を形成す
る事も容易となる。
Example 6 In Examples 1 to 5, the case of a plurality of planes or curved surfaces was shown, but it does not necessarily have to be a plurality of planes or curved surfaces, and exactly the same effect can be obtained when both a plane and a curved surface are mounted. The matter is self-evident. Furthermore, there is nothing wrong with a shape having a curved surface that partially includes a curved surface and a flat portion. Furthermore, when a conical wedge as shown in FIG. 20 is used as the first medium, a concentric interference pattern is formed, making it easy to form a Fresnel lens or the like in an optical integrated circuit.

発明の効果 以上の実施例においても説明した様に、本発明は極めて
多彩な形状の微細パターンを一回の露光で実現し得るも
のであり、しかも、量産性にも優れた方法であるといえ
る。
Effects of the Invention As explained in the examples above, the present invention can realize fine patterns with extremely diverse shapes in a single exposure, and can be said to be a method that is excellent in mass production. .

本発明は超LSIの製造や、高性能かつ多機能な半導体
レーザーの製造、或は光集積回路等の実用に極めて有用
な方法である。
The present invention is an extremely useful method for manufacturing VLSIs, high-performance and multifunctional semiconductor lasers, and practical applications such as optical integrated circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のホログラフィック露光法の概略図、第2
図は本発明のホログラフィック露光法の構成の概略図、
第3図は本発明のホログラフィック露光に使用したプリ
ズム形の媒体と被露光媒体の断面図、第4図は第3図の
媒体を使用した時、露光面に形成される光パターンの光
強度分布を示す図、第5図は第3図に於けるθ(=θ、
=θ2)と形成されるホログラフィックパターンのピッ
チの関係を示す図、第6図は第3図の媒体を使用した時
、レーザービームの媒質への入射角度が傾いた場合のそ
の傾き角度と回折格子のピッチの関係を示す図、第7図
は第2図の13の媒体の形状が二対の平面を有している
場合の実施例を示す図。 第8図は第7図の実施例で、θ1=02=60°。 θ3−04−300の場合平面15に形成される干渉パ
ターンの光強度分布を示す図、第9図は第7図の実施例
で、θ1−02=60’、θ、−04=24.1°の場
合の干渉像の光強度分布を示す図、第10図は第7図の
実施例で2組の平面対での干渉パターンのピッチの比が
1:5の場合の干渉像の光強度分布を示す図、第11図
は第2図の13の媒体の形状が三対の平面を有している
場合の実施例を示す図、第12図は第11図に於て、θ
1=θ、’=80’。 θ2=02′=24°、θ、=θ、’ =8.2°の場
合の平面15上での回折像の強度分布を示す図、第13
図(&)、Φ)は第7図の実施例と同様の効果を有する
他の実施例の一例を示す媒体の斜視図、断面図、第14
図(&)、Φ)は第10図の実施例と同様の効果を有す
る他の実施例の一例の媒体の斜視図、断面図、第15図
は同一基板上に一回の露光で複数の回折格子を実現する
だめの媒体の実施例の一例を示す図、第16図はピッチ
が連続的に変化する回折格子を実現するだめの媒体の一
例を示す図、第17図はピッチが連続的に変化する回折
格子の説明図、第18図は2対の曲面を有する媒体の一
例の説明図、第19図は第18図を用いた時に形成され
るホログラフィックパターンの一例を示す図、第2CI
31は円錐形状の媒体とそれにより生ずるホログラフィ
ックパターンを示す図である。 1o・・・・・・レーザー光源、14・・・・・・被露
光媒体、13・・・・・・第1媒体、1B、16,17
,19゜19/ 、20.20’ 、22.22’  
、23.23’  。 24.24’  、25.26’  、26.26’ 
・・・・・・平面、27.27’・・・・・曲面。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第 3 図 第4図 Dtatctnce  (X/λ) 第5図 八N OL E  (+)EGI 第6図 ANeLE  CDE(r) 浴 7 図 fl、> 第 8 図 Di−ata、nce  (ス/入ン 第9図 DijtJtbnce  (工/入2 第10 図 第11 図 第12図 Dzwtty、nce  (X/入) 第13 図 第15図 fΦ 第17図 第18因 第19図
Figure 1 is a schematic diagram of the conventional holographic exposure method, Figure 2
The figure is a schematic diagram of the configuration of the holographic exposure method of the present invention,
Fig. 3 is a cross-sectional view of the prism-shaped medium and the exposed medium used in the holographic exposure of the present invention, and Fig. 4 shows the light intensity of the light pattern formed on the exposed surface when the medium of Fig. 3 is used. Figure 5 is a diagram showing the distribution of θ (=θ,
= θ2) and the pitch of the holographic pattern formed. Figure 6 shows the relationship between the angle of incidence of the laser beam and the diffraction when the medium of Figure 3 is used and the angle of incidence of the laser beam on the medium is tilted. FIG. 7 is a diagram showing the relationship between the pitches of the gratings, and FIG. 7 is a diagram showing an embodiment in which the shape of the medium 13 in FIG. 2 has two pairs of planes. FIG. 8 shows the embodiment of FIG. 7, with θ1=02=60°. A diagram showing the light intensity distribution of the interference pattern formed on the plane 15 in the case of θ3-04-300, FIG. 9 is the embodiment of FIG. 7, θ1-02=60', θ, -04=24.1 10 is a diagram showing the light intensity distribution of the interference image when the pitch is 1:5 in the example of FIG. 11 is a diagram showing an example in which the shape of the medium 13 in FIG. 2 has three pairs of planes, and FIG. 12 is a diagram showing the distribution of θ
1=θ,'=80'. 13th diagram showing the intensity distribution of the diffraction image on the plane 15 when θ2=02′=24°, θ,=θ,′=8.2°
Figures (&) and Φ) are a perspective view, a cross-sectional view, and a 14th
Figures (&) and Φ) are a perspective view and a cross-sectional view of a medium of another embodiment having the same effect as the embodiment in Figure 10, and Figure 15 shows a plurality of exposures on the same substrate with one exposure. Figure 16 shows an example of a medium that realizes a diffraction grating with a continuously changing pitch. Figure 17 shows an example of a medium that realizes a diffraction grating with a continuously changing pitch. FIG. 18 is an explanatory diagram of an example of a medium having two pairs of curved surfaces. FIG. 19 is an illustration of an example of a holographic pattern formed when using FIG. 18. 2CI
31 is a diagram showing a conical medium and a holographic pattern generated thereby. 1o... Laser light source, 14... Exposure medium, 13... First medium, 1B, 16, 17
,19°19/ ,20.20',22.22'
, 23.23'. 24.24', 25.26', 26.26'
...Flat surface, 27.27'...Curved surface. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Fig. 3 Fig. 4 Dtatctnce (X/λ) Fig. 5 8NOL E (+) EGI Fig. 6 ANeLE CDE (r) Dzwtty, nce (X/in) Fig. 13 Fig. 15 fΦ Fig. 17 Fig. 18 Cause Fig. 19

Claims (10)

【特許請求の範囲】[Claims] (1)少なくとも1つの平面を有した光透過性の第1の
媒体を通してこの第1媒体の第1の平面と反対側よりレ
ーザ光線を照射し、前記第1媒体の第1の平面に近接し
て配置された第2媒体の第2の表面に形成される前記レ
ーザ光線の干渉パターンを利用して前記第2の媒体表面
の露光を行なうことを特徴とするホログラフィック露光
方法。
(1) A laser beam is irradiated through a light-transmissive first medium having at least one plane from the side opposite to the first plane of the first medium, and the laser beam is irradiated close to the first plane of the first medium. A holographic exposure method, characterized in that the surface of the second medium is exposed using an interference pattern of the laser beam formed on the second surface of the second medium, which is disposed in the same direction.
(2)第1媒体のレーザ光線の入射側に、第2媒体の密
着又は近傍に配置される第1媒体の第1の平面に対して
鋭角をなす複数の平面を有しており、この複数の平面に
入射するレーザ光線がそれぞれの複数の平面に同時に照
射されて前記第1媒体を通過し、第2媒体の第2の平面
上の一部又は全面に形成される特定のパターンを利用し
て露光を行う事を特徴とする特許請求の範囲第1項記載
のホログラフィック露光方法。
(2) The first medium has a plurality of planes on the laser beam incident side that make an acute angle with respect to the first plane of the first medium that is arranged in close contact with or near the second medium; A laser beam incident on the plane of the plurality of planes is simultaneously irradiated and passes through the first medium, and a specific pattern is formed on a part or the entire surface of the second plane of the second medium. 2. The holographic exposure method according to claim 1, wherein the exposure is performed using a holographic exposure method.
(3)複数の平面が第3、第4の平面から成り、前記第
3、第4平面の一部または全部を含む第1媒体に照射さ
れるレーザー光線によって第2平面に形成される干渉パ
ターンを利用する事により回折格子を形成する特許請求
の範囲第2項記載のホログラフィック露光方法。
(3) The plurality of planes are composed of third and fourth planes, and an interference pattern is formed on the second plane by a laser beam irradiated on the first medium including a part or all of the third and fourth planes. The holographic exposure method according to claim 2, wherein a diffraction grating is formed by utilizing the holographic exposure method.
(4)複数の平面が、第3、第4の平面の他に、第5、
第6等の複数対でなる平面から構成されており、これら
複数対の平面を含むレーザビームによって第2平面に形
成される干渉パターンを利用して露光することを特徴と
する特許請求の範囲第2項記載のホログラフイック露光
方法。
(4) In addition to the third and fourth planes, the plurality of planes are the fifth plane,
It is composed of a plurality of pairs of planes such as a sixth plane, and the exposure is performed using an interference pattern formed on the second plane by a laser beam including the plurality of pairs of planes. The holographic exposure method according to item 2.
(5)複数の平面が複数対の平面からなり各複数対の平
面での光の屈折、干渉効果により第2平面上に形成され
る複数の空間周期的な光強度パターンの各空間周期が整
数比をなしていることを特徴とする特許請求の範囲第2
項に記載のホログラフィック露光方法。
(5) The plurality of planes are composed of a plurality of pairs of planes, and each spatial period of the plurality of spatially periodic light intensity patterns formed on the second plane by the refraction and interference effects of light on each of the plurality of pairs of planes is an integer number. Claim 2 characterized in that it is a ratio
The holographic exposure method described in section.
(6)第1媒体の入射側に、第1平面に対して鋭角をな
す複数の曲面を有しており、この複数の曲面に入射する
レーザー光線が、それぞれの曲面に同時に照射され、第
2平面上に形成される干渉パターンを利用して露光を行
う事を特徴とする特許請求の範囲第1項記載のホログラ
フィック露光方法。
(6) The first medium has a plurality of curved surfaces forming an acute angle with respect to the first plane on the incident side, and the laser beam incident on the plurality of curved surfaces is simultaneously irradiated to each curved surface, and the second medium is exposed to the second plane. 2. The holographic exposure method according to claim 1, wherein exposure is performed using an interference pattern formed thereon.
(7)複数の曲面が、第1及び第2の曲面からなり、か
つこの第1曲面に対するこれらの曲面のなす角度が、一
定の方向に対して連続的に変化している事を特徴とする
特許請求の範囲第6項記載のホログラフィック露光方法
(7) The plurality of curved surfaces are composed of a first curved surface and a second curved surface, and the angles formed by these curved surfaces with respect to the first curved surface continuously change in a fixed direction. A holographic exposure method according to claim 6.
(8)複数の曲面が各曲面対を構成しており、この複数
曲面にレーザビームを照射することによって形成される
空間周期的な強度分布の空間周期が、整数比を有してい
る事を特徴とする特許請求の範囲第6項記載のホログラ
フィック露光方法。
(8) A plurality of curved surfaces constitute each curved surface pair, and the spatial period of the spatially periodic intensity distribution formed by irradiating the plurality of curved surfaces with a laser beam has an integer ratio. A holographic exposure method according to claim 6, characterized in:
(9)第1媒体の形状が、第1平面に対して鋭角をなし
、かつ第1平面を包囲する曲面を有する形状である事を
特徴とする特許請求の範囲第1項記載のホログラフィッ
ク露光方法。
(9) Holographic exposure according to claim 1, wherein the shape of the first medium is a shape having a curved surface that forms an acute angle with respect to the first plane and surrounds the first plane. Method.
(10)第1媒体がプラスチックで形成されている事を
特徴とする特許請求の範囲第1項記載のホログラフィッ
ク露光方法。
(10) The holographic exposure method according to claim 1, wherein the first medium is made of plastic.
JP59212047A 1984-10-09 1984-10-09 Holographic exposure method Expired - Lifetime JP2629671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59212047A JP2629671B2 (en) 1984-10-09 1984-10-09 Holographic exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59212047A JP2629671B2 (en) 1984-10-09 1984-10-09 Holographic exposure method

Publications (2)

Publication Number Publication Date
JPS6190185A true JPS6190185A (en) 1986-05-08
JP2629671B2 JP2629671B2 (en) 1997-07-09

Family

ID=16615985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59212047A Expired - Lifetime JP2629671B2 (en) 1984-10-09 1984-10-09 Holographic exposure method

Country Status (1)

Country Link
JP (1) JP2629671B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277782A (en) * 1988-09-13 1990-03-16 Fujitsu Ltd Formation of hologram
JPH05259575A (en) * 1992-01-17 1993-10-08 Hughes Aircraft Co Apparatus and method of forming chirp lattice to a surface radiation distribution feedback semiconductor laser diode device
JPH08179680A (en) * 1994-08-31 1996-07-12 Hughes Aircraft Co Holographic exposure system
US5698343A (en) * 1994-07-05 1997-12-16 The United States Of America As Represented By The Secretary Of The Air Force Laser wavelength detection and energy dosimetry badge
US5942157A (en) * 1996-07-12 1999-08-24 Science Applications International Corporation Switchable volume hologram materials and devices
KR100536684B1 (en) * 2003-06-30 2005-12-14 주식회사 대우일렉트로닉스 Holographic rom system
US7474385B2 (en) 2004-08-27 2009-01-06 Asml Holding N.V. Adjustable resolution interferometric lithography system
CN102880005A (en) * 2011-07-15 2013-01-16 株式会社东芝 Interference exposure apparatus, interference exposure method, and manufacturing method of semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172452A (en) * 1974-12-20 1976-06-23 Nippon Kogaku Kk KYOSHIJOKAISETSUGOSHISAKUSEISOCHI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172452A (en) * 1974-12-20 1976-06-23 Nippon Kogaku Kk KYOSHIJOKAISETSUGOSHISAKUSEISOCHI

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277782A (en) * 1988-09-13 1990-03-16 Fujitsu Ltd Formation of hologram
JPH05259575A (en) * 1992-01-17 1993-10-08 Hughes Aircraft Co Apparatus and method of forming chirp lattice to a surface radiation distribution feedback semiconductor laser diode device
US5698343A (en) * 1994-07-05 1997-12-16 The United States Of America As Represented By The Secretary Of The Air Force Laser wavelength detection and energy dosimetry badge
JPH08179680A (en) * 1994-08-31 1996-07-12 Hughes Aircraft Co Holographic exposure system
US5942157A (en) * 1996-07-12 1999-08-24 Science Applications International Corporation Switchable volume hologram materials and devices
US6692666B2 (en) 1996-07-12 2004-02-17 Science Applications International Corporation Switchable volume hologram materials and devices
KR100536684B1 (en) * 2003-06-30 2005-12-14 주식회사 대우일렉트로닉스 Holographic rom system
US7474385B2 (en) 2004-08-27 2009-01-06 Asml Holding N.V. Adjustable resolution interferometric lithography system
US7492442B2 (en) 2004-08-27 2009-02-17 Asml Holding N.V. Adjustable resolution interferometric lithography system
JP2009076937A (en) * 2004-08-27 2009-04-09 Asml Holding Nv Adjustable resolution interference lithography system
CN102880005A (en) * 2011-07-15 2013-01-16 株式会社东芝 Interference exposure apparatus, interference exposure method, and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2629671B2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
US7783150B2 (en) Planar optical waveguide
US5116461A (en) Method for fabricating an angled diffraction grating
KR101210099B1 (en) Optical substrate and method of making
US5054884A (en) Beam splitter including a diffraction grating and one of step shaped, inclined, or curved transparent surface
US7935459B2 (en) Photo-masks and methods of fabricating surface-relief grating diffractive devices
US7263249B2 (en) Optical element assembly and method of making the same
CN1292098B (en) Method of fabricating mirrors in polymer waveguides
JPS6190185A (en) Holographic exposure method
JPS6060042B2 (en) Method and device for creating a grating in an optical waveguide
JP2000047044A (en) Optical signal transmission system and its manufacture
US9034563B2 (en) Micro-truss structures having in-plane structural members
JP2013104960A (en) Photomask and exposure method
CN1556444A (en) Preparation method of three dimensional photon crystal and its device
JP2003084158A (en) Method for manufacturing photonic crystal having diamond structure by interference of laser beam
JPS59116602A (en) Production of chirped-grating
JP3333886B2 (en) Holographic element
KR900007555B1 (en) Phase grating of a combination pattern refraction modification type
JPS60181701A (en) Grating lens for coupling optical fiber
CN108646429A (en) A kind of structured light projection instrument
JPH03296003A (en) Optical device and its manufacture
US6593062B1 (en) Formation of bulk refractive index structures
JPH01134310A (en) Production of light guide
JPS614906A (en) Measuring method of line width
JP2003121619A (en) Optical element and method for manufacturing the same
JPS6218503A (en) Manufacture of diffraction grating

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term