JPH01134310A - Production of light guide - Google Patents

Production of light guide

Info

Publication number
JPH01134310A
JPH01134310A JP29280887A JP29280887A JPH01134310A JP H01134310 A JPH01134310 A JP H01134310A JP 29280887 A JP29280887 A JP 29280887A JP 29280887 A JP29280887 A JP 29280887A JP H01134310 A JPH01134310 A JP H01134310A
Authority
JP
Japan
Prior art keywords
optical waveguide
refractive index
exposure
manufacturing
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29280887A
Other languages
Japanese (ja)
Inventor
Kazunori Miura
和則 三浦
Ippei Sawaki
一平 佐脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP29280887A priority Critical patent/JPH01134310A/en
Publication of JPH01134310A publication Critical patent/JPH01134310A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To extremely easily produce a light guide having a desired refractive index distribution by subjecting a waveguide material consisting of an org. material to photopolymn. by exposing and by adequately changing the exposure. CONSTITUTION:The waveguide material 12 is formed on a substrate 11 by using an org. material such as polymethyl methacrylate (PMMA). A photomask 13 having a desired waveguide pattern is disposed thereon and the photopolymn. is executed by executing exposing with UV rays, etc. The exposure is adequately changed in accordance with the relation between the exposure and the difference in refractive index at this time. As a result, the light guide having an arbitrary difference in refractive index and an arbitrary shape is thereby extremely simply and easily formed without requiring intricate production processes such as vacuum process and etching at all.

Description

【発明の詳細な説明】 〔概   要〕 例えば半導体レーザと光フアイバ間に接続されるモード
整合素子等のように、導波モードの形状が変化する光導
波路を得るために好適な光導波路の製造方法に関し、 任意の屈折率差を持つ任意形状の光導波路を簡単な製造
プロセスで実現できることを目的とし、有機材料を導波
路材料として用い、該導波路材料に対し光重合により所
望の屈折率分布を持たせ′(光導波路を形成する光導波
路の製造方法であって、前記光重合を露光によって生じ
させ、その露光量を該露光量と屈折率差との関係に基づ
き適宜変化させることにより前記所望の屈折率分布を得
るように構成する。
[Detailed Description of the Invention] [Summary] Manufacture of an optical waveguide suitable for obtaining an optical waveguide in which the shape of the guided mode changes, such as a mode matching element connected between a semiconductor laser and an optical fiber. Regarding the method, the aim is to realize an optical waveguide of any shape with an arbitrary refractive index difference by a simple manufacturing process, using an organic material as the waveguide material and creating a desired refractive index distribution by photopolymerizing the waveguide material. A method of manufacturing an optical waveguide for forming an optical waveguide, wherein the photopolymerization is caused by exposure, and the amount of exposure is appropriately changed based on the relationship between the amount of exposure and the refractive index difference. It is configured to obtain a desired refractive index distribution.

〔産業上の利用分野〕[Industrial application field]

本発明は、例えば半導体レーザと光フアイバ間に接続さ
れるモード整合素子等のように、導波モードの形状が変
化する光導波路を得るのに好適な光導波路の製造方法に
関する。
The present invention relates to a method of manufacturing an optical waveguide suitable for obtaining an optical waveguide in which the shape of a waveguide mode changes, such as a mode matching element connected between a semiconductor laser and an optical fiber.

〔従来の技術〕[Conventional technology]

一般に、半導体レーザと光ファイバ(或いは光機能素子
)との間の接続点では、光導波路(導波モード)の形状
が互いに異なるため、非常に大きな損失が生じる。例え
ば、半導体レーザの導波モードは楕円形であるのに対し
、光ファイバの導波モードは円形である。
Generally, at a connection point between a semiconductor laser and an optical fiber (or an optical functional element), the shapes of the optical waveguides (waveguide modes) are different from each other, resulting in a very large loss. For example, the waveguide mode of a semiconductor laser is elliptical, whereas the waveguide mode of an optical fiber is circular.

従来、上記のような損失を低減させるため、第4図に示
すように各種レンズを接続点に組込んだものがある。す
なわち、同図(alは半導体レーザ1と光フアイバ2間
に円柱レンズ3および集束性ロッドレンズ4を組込んだ
ものであり、同図(blは光ファイバ2として先端部2
aがテーパ先球状とされたテーパ先球ファイバ(もしく
は細径化先球ファイバ)を用いたものであり、また同図
(0)は光ファイバ2として先端に微小レンズ2bの形
成されたものを用いたものである。このような構成とす
ることにより、結合損失は約2〜3dBまで改善される
Conventionally, in order to reduce the above-mentioned losses, there are devices in which various lenses are incorporated into the connection points, as shown in FIG. That is, in the same figure (al shows the cylindrical lens 3 and the focusing rod lens 4 assembled between the semiconductor laser 1 and the optical fiber 2, and in the same figure (bl shows the optical fiber 2 with the tip 2 assembled).
A is an optical fiber using a tapered spherical fiber (or a reduced diameter spherical fiber), and (0) is an optical fiber 2 with a microlens 2b formed at its tip. This is what I used. With such a configuration, the coupling loss is improved to about 2 to 3 dB.

更には、半導体レーザと光フアイバ間に第5図に示すよ
うなモード整合素子5を配置することにより、低損失な
接続を行おうとする試みもなされている。このモード整
合素子5は、ガラス基板5aに対してAg等の全屈を熱
拡散させることにより、光の進行方向に沿って屈折率分
布(屈折率差)および断面形状の徐々に変化する光導波
路5bを形成したものである。このような構成のモード
整合素子5を用いれば、第4図のものにおいて必ず生じ
ていた、レンズと空気の境界での反射による損失を防ぐ
ことができるので、より一層の低損失化が可能になる。
Furthermore, an attempt has been made to establish a low-loss connection by arranging a mode matching element 5 as shown in FIG. 5 between the semiconductor laser and the optical fiber. This mode matching element 5 is an optical waveguide whose refractive index distribution (refractive index difference) and cross-sectional shape gradually change along the traveling direction of light by thermally diffusing the total refraction of Ag etc. to the glass substrate 5a. 5b is formed. By using the mode matching element 5 with such a configuration, it is possible to prevent the loss due to reflection at the boundary between the lens and the air, which always occurred in the one shown in Fig. 4, making it possible to further reduce the loss. Become.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第5図に示したモード整合素子5における光導波路5b
は、上述したようにガラス基板5aへの熱拡散によって
形成される。そのため、その製造工程が非常に複雑であ
って、しかも導波路の形状(寸法)および屈折率差の自
由度が小さく、すなわち所望の形状および所望の屈折率
差を自由に選択することは極めて困難であった。
Optical waveguide 5b in mode matching element 5 shown in FIG.
is formed by thermal diffusion to the glass substrate 5a as described above. Therefore, the manufacturing process is extremely complicated, and the degree of freedom in the shape (dimensions) and refractive index difference of the waveguide is small.In other words, it is extremely difficult to freely select the desired shape and desired refractive index difference. Met.

本発明は、上記問題点に鑑み、任意の屈折率差を持つ任
意形状の光導波路を簡単な製造プロセスで実現すること
のできる光導波路の製造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a method for manufacturing an optical waveguide that can realize an optical waveguide having an arbitrary shape and an arbitrary refractive index difference through a simple manufacturing process.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では、有機材料を導波路材料として用い、これに
対し光重合により所望の屈折率分布を持たせて光導波路
を形成する。更に、前記光重合を露光によって生じさせ
るようにし、その露光量を「露光量と屈折率差との関係
」に基づき適宜変化させることにより、前記所望の屈折
率分布を得るようにする。
In the present invention, an organic material is used as a waveguide material, and an optical waveguide is formed by photopolymerizing it to give it a desired refractive index distribution. Further, the photopolymerization is caused by exposure, and the amount of exposure is appropriately changed based on the "relationship between the amount of exposure and the difference in refractive index" to obtain the desired refractive index distribution.

〔作   用〕[For production]

上記の有機材料は、露光によって光重合が生じると、そ
の部分の屈折率が変化する。よって、例えば光ビームや
フォトマスク等を用い所望の領域に露光を施して光重合
を起こさせれば、その領域と他の領域との間に屈折率差
が生じ、よって光導波路が得られる。すなわち、光導波
路の形状パターンは、露光領域に応じて極めて自由に選
ぶことができる。
When the above organic material undergoes photopolymerization due to exposure to light, the refractive index of that portion changes. Therefore, if a desired region is exposed to light using, for example, a light beam or a photomask to cause photopolymerization, a difference in refractive index will occur between that region and other regions, and an optical waveguide will therefore be obtained. That is, the shape pattern of the optical waveguide can be selected very freely depending on the exposure area.

また、露光量に応じて光重合の程度が異なることから、
屈折率も異なる。すなわち、露光量と屈折率(屈折率差
)との間には一定の関係が存在する。よって、露光量を
適宜変化させれば、上記の関係に基づき、露光量に応じ
た屈折率を極めて自由に選ぶことができる。
In addition, since the degree of photopolymerization varies depending on the amount of exposure,
The refractive index is also different. That is, a certain relationship exists between the exposure amount and the refractive index (refractive index difference). Therefore, by appropriately changing the exposure amount, the refractive index can be extremely freely selected according to the exposure amount based on the above relationship.

以上のことから、熱拡散はもちろんのこと、真空プロセ
スやエツチング等の複雑な製造プロセスを一切必要とせ
ずに、任意の屈折率差を持つ任意形状の光導波路が容易
に得られる。
From the above, it is possible to easily obtain an optical waveguide of any shape with any refractive index difference without any need for complicated manufacturing processes such as vacuum processing or etching as well as thermal diffusion.

〔実  施  例〕〔Example〕

以下、本発明の実施例について、図面を参照しながら説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例を示す製造工程図である。FIG. 1 is a manufacturing process diagram showing an embodiment of the present invention.

なおここでは、半導体レーザと光フアイバ間の光結合に
使用されるモード整合素子における光導波路を作製亥る
場合について述べる。
Here, a case will be described in which an optical waveguide in a mode matching element used for optical coupling between a semiconductor laser and an optical fiber is manufactured.

一般に、単一モード光導波路において、細い導波路中に
光を閉じ込めようとする場合は、より大きな屈折率差を
必要とし、太い導波路中に光を閉じ込めようとする場合
は、より小さな屈折率差を必要とする。このことから、
第2図(alに示すような横長の導波モード形状を持つ
半導体レーザ1と対向する側では、同図(b)に示すよ
うに、光導波路15の横幅W2を縦幅W1よりも長くす
ると共に、横方向の屈折率差Δn+2 (=n+  n
2)をより小さ(、縦方向の屈折率差Δn+ 3 (=
n+−n3)をより大きくする必要がある。一方、円形
の導波モード形状を持つ光ファイバと対向する側では、
光導波路15の縦と横の幅W I SW 2を互いに等
しくし、これに伴い横方向と縦方向の屈折率差Δn12
、Δn13を互いに等しくする必要がある。本実施例で
は、このような形状および屈折率差の条件を満たすよう
に光導波路を作製する。
Generally, in a single mode optical waveguide, if you are trying to confine light in a thin waveguide, you need a larger refractive index difference, and if you are trying to confine light in a thick waveguide, you need a smaller refractive index difference. Requires difference. From this,
On the side facing the semiconductor laser 1 having a horizontally elongated waveguide mode shape as shown in FIG. 2(al), the horizontal width W2 of the optical waveguide 15 is made longer than the vertical width W1, as shown in FIG. In addition, the refractive index difference in the lateral direction Δn+2 (=n+ n
2) is smaller (, vertical refractive index difference Δn+ 3 (=
n+-n3) needs to be made larger. On the other hand, on the side facing the optical fiber with a circular guided mode shape,
The vertical and horizontal widths W I SW 2 of the optical waveguide 15 are made equal to each other, and accordingly, the refractive index difference Δn12 in the horizontal and vertical directions is
, Δn13 must be equal to each other. In this example, an optical waveguide is manufactured so as to satisfy the conditions of such shape and refractive index difference.

まず第1図(a)に示すように、屈折率n3の基板11
上に屈折率n20の導波路材料12を厚さWlとなるよ
うに生成する。この導波路材料12としては、例えばB
A量体のスチレン(SL)を含んだポリメタクリル酸メ
チル(PMMA)等の有機材料を使用する。続いて第1
図(b)に示すように、導波路材料12上に半導体レー
ザ側を広くし光フアイバ側を狭くした所望の導波路パタ
ーンを有するフォトマスク13を配置した後、このフォ
トマスク13を介し紫外線等で露光を施す。この際、露
光時間は以下に述べる関係に基づいて設定する。
First, as shown in FIG. 1(a), a substrate 11 with a refractive index of n3
A waveguide material 12 having a refractive index n20 is formed thereon to have a thickness Wl. As this waveguide material 12, for example, B
An organic material such as polymethyl methacrylate (PMMA) containing A-mer styrene (SL) is used. Then the first
As shown in Figure (b), a photomask 13 having a desired waveguide pattern in which the semiconductor laser side is wide and the optical fiber side is narrow is placed on the waveguide material 12, and then ultraviolet rays are emitted through the photomask 13. Exposure is performed. At this time, the exposure time is set based on the relationship described below.

すなわち、上述した有機材料(S t/PMMA)に対
し光強度を一定にしたまま露光を施した場合、その露光
時間(露光M)tと屈折率差Δnとの間には第3図に示
すような一定の関係が得られる。
That is, when the above-mentioned organic material (S t/PMMA) is exposed to light while keeping the light intensity constant, the difference between the exposure time (exposure M) t and the refractive index difference Δn is as shown in FIG. A certain relationship is obtained.

この関係は、露光時間(露光m>  tが増加するにつ
れて屈折率差Δnの変化量が徐々に小さくなる非線形曲
線で表され、露光時間tがある値以上になると屈折率差
Δnが飽和する。このような関係になるのは、重合体(
PMMA)中に含まれる単量体(St)の量が有限であ
って、この有限な単量体が上記の露光により光重合を起
こして重合体に変化していき、これに伴って屈折率が増
加していくからである。単量体がすべて重合体になった
時点で、屈折率差Δnが飽和することになる。
This relationship is represented by a nonlinear curve in which the amount of change in the refractive index difference Δn gradually decreases as the exposure time (exposure m>t) increases, and when the exposure time t exceeds a certain value, the refractive index difference Δn saturates. This kind of relationship exists in polymers (
The amount of monomer (St) contained in PMMA) is finite, and this finite monomer undergoes photopolymerization by the above exposure and changes into a polymer, and as a result, the refractive index changes. This is because the amount increases. When all the monomers become polymers, the refractive index difference Δn becomes saturated.

そこで、上記の関係から第1図(b)における露光時間
をtlに設定する。露光領域12aと非露光領域12b
との間で大きな屈折率差Δn1=n21−n20を得る
ことができる。
Therefore, based on the above relationship, the exposure time in FIG. 1(b) is set to tl. Exposure area 12a and non-exposure area 12b
A large refractive index difference Δn1=n21−n20 can be obtained between the two.

次に、第1図(dlに示すように、半導体レーザ側の所
定領域だけを残してその他の領域をフォトマスク14で
覆い、このフォトマスク14を介して2度目の露光を施
す。この際、フォトマスク14と基板表面との間に隙間
dを設けることにより、光をフォトマスク14の下方領
域にも回り込ませる。また、この場合の露光時間を、第
3図の関係に基づきt2に設定する。すると半導体レー
ザ側では、第1図(elに示すように、露光時間t 、
 +t 2の2度露光領域12cと露光時間t2の1度
露光領域12dが生じ、これらの間で小さな屈折率差Δ
n2=n23−n22を得ることができる。
Next, as shown in FIG. 1 (dl), only a predetermined area on the semiconductor laser side is left and the other areas are covered with a photomask 14, and a second exposure is performed through this photomask 14. At this time, By providing a gap d between the photomask 14 and the substrate surface, light is allowed to pass around to the lower region of the photomask 14. Also, the exposure time in this case is set to t2 based on the relationship shown in FIG. Then, on the semiconductor laser side, as shown in FIG. 1 (el), the exposure time t,
A twice-exposed region 12c of +t2 and a once-exposed region 12d of exposure time t2 are generated, and there is a small refractive index difference Δ between them.
It is possible to obtain n2=n23-n22.

以上の工程により得られた光導波路15は、半導体レー
ザ側で幅が広く、かつ光フアイバ側で幅が狭い形状を有
している。更に、屈折率分布については、幅の狭い光フ
アイバ側で大きな屈折率差Δn1 (−n2+−n2o
)を有し、幅の広い半導体レーザ側で小さな屈折率差Δ
n2 (=n23−n2;)を有している。しかも、2
度目の露光の際、第1図(d)に示したようにフォトマ
スク14に隙間dを持たせて光を回り込ませたことから
、屈折率差は光の伝1般方向に対して滑らかに変化して
いる。
The optical waveguide 15 obtained through the above steps has a shape that is wide on the semiconductor laser side and narrow on the optical fiber side. Furthermore, regarding the refractive index distribution, there is a large refractive index difference Δn1 (-n2+-n2o
), with a small refractive index difference Δ on the wide semiconductor laser side.
It has n2 (=n23-n2;). Moreover, 2
During the second exposure, as shown in FIG. 1(d), the gap d was provided in the photomask 14 to allow the light to pass around, so the refractive index difference was smoothed in the general direction of light propagation. It's changing.

従って、本実施例によれば、光導波路の形状パターンを
フォトマスクにより自由に書き込むことができ、しかも
露光ff1(iF8光時間)により屈折率を自由に選ぶ
ことができることから、モード整合素子に必要な形状お
よび屈折率差の条件を満たすような光導波路を極めて容
易に得ることができる。
Therefore, according to this embodiment, the shape pattern of the optical waveguide can be freely written using a photomask, and the refractive index can be freely selected by exposure ff1 (iF8 light time), which is necessary for a mode matching element. An optical waveguide that satisfies the conditions of shape and refractive index difference can be obtained extremely easily.

更に、熱拡散はもちろんのこと、真空プロセスやエツチ
ング等の複雑な処理が一切必要ないことがら、製造工程
が極めて簡単になる。また、導波路材料として有機材料
を用いたので、本実施例によって得られたモード整合素
子は非常に安価であり、かつ軽量である。
Furthermore, the manufacturing process becomes extremely simple since not only thermal diffusion but also complicated treatments such as vacuum processing and etching are not required. Furthermore, since an organic material was used as the waveguide material, the mode matching element obtained in this example is very inexpensive and lightweight.

なお、導波路パターンは、上記実施例のようにフォトマ
スクを用いる代わりに、光ビームを走査して描くように
してもよい。また、露光量の調整は、露光時間を変化さ
せて行う代わりに、光強度を変化させるようにしてもよ
い。
Note that the waveguide pattern may be drawn by scanning a light beam instead of using a photomask as in the above embodiment. Further, the exposure amount may be adjusted by changing the light intensity instead of by changing the exposure time.

また、導波路材料としては、上述したSt/PMMA以
外にも、第3図に示したように露光量と屈折率差の間に
一定の関係を有するような各種の有機材料を使用するこ
とができる。
Furthermore, as the waveguide material, in addition to the above-mentioned St/PMMA, it is possible to use various organic materials that have a certain relationship between the exposure amount and the refractive index difference, as shown in Figure 3. can.

更に、本発明は、上述したような半導体レーザと光フア
イバ間(もしくは光機能素子相互間)のモード整合素子
の作製に適用しうるだけではなく、その他にも、導波モ
ード形状の変化する各種の光導波路の作製に最適である
Furthermore, the present invention is not only applicable to the production of a mode matching element between a semiconductor laser and an optical fiber (or between optical functional elements) as described above, but also can be applied to various types of devices in which the waveguide mode shape changes. It is ideal for fabricating optical waveguides.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、任意の屈折率差
を持つ任意形状(寸法)の光導波路を自由に作製できる
。すなわち、光導波路の形状及び屈折率差の自由度が非
常に大きい。そのため、モード整合素子のような導波モ
ード形状の変化する光導波路をも極めて容易に得ること
ができる。しかも、熱拡散のような複雑な工程を必要と
しないため、製造工程が極めて簡単になる。また、導波
路材料として有機材料を用いているため、本発明におい
て作製された光導波路は軽量かつ安価である。
As explained above, according to the present invention, an optical waveguide having an arbitrary shape (size) having an arbitrary refractive index difference can be freely produced. That is, the degree of freedom in the shape of the optical waveguide and the difference in refractive index is very large. Therefore, it is possible to extremely easily obtain an optical waveguide such as a mode matching element in which the waveguide mode shape changes. Moreover, since no complicated process such as thermal diffusion is required, the manufacturing process is extremely simple. Furthermore, since an organic material is used as the waveguide material, the optical waveguide produced in the present invention is lightweight and inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)は本発明の一実施例を示す製造工
程図、 第2図(al及び(blは一般的な半導体レーザの導波
モード形状を示す図及び光導波路の断面形状及び屈折率
差の条件を示す図、 第3図は本発明の一実施例で使用する有機材料における
露光時間(露光fl)  tと屈折率差△nとの関係を
示す図、 第4図fa)〜(C)は従来における半導体レーザと光
ファイバの接続構造を示す図、 第5図は従来のモード整合素子を示す斜視図である。 12・・・導波路材料、 13.14・・・フォトマスク、 15・・・光導波路。 特許出願人   富士通株式会社 (b) (C) イ芝来lzhげろ半導イ外し−サ゛ヒ光ファイバ”のオ
瞥#先オ勇fl第4図 (b) 水密日月の 第 (d) 11基。 立 Δn+ (Δn2 一実3(叱イ11] 1図
Figures 1 (a) to (e) are manufacturing process diagrams showing one embodiment of the present invention, Figure 2 (al and (bl) are diagrams showing waveguide mode shapes of general semiconductor lasers and cross-sections of optical waveguides. Figure 3 is a diagram showing the conditions of shape and refractive index difference. Figure 3 is a diagram showing the relationship between exposure time (exposure fl) t and refractive index difference Δn in an organic material used in an embodiment of the present invention. Figure 4 fa) to (C) are diagrams showing a conventional connection structure between a semiconductor laser and an optical fiber, and FIG. 5 is a perspective view showing a conventional mode matching element. 12...Waveguide material, 13.14...・Photomask, 15... Optical waveguide. Patent applicant: Fujitsu Ltd. (b) (C) A look at "Removal of semiconductors from optical fibers" shown in Fig. 4 ( b) Watertight sun and moon (d) 11 units.

Claims (1)

【特許請求の範囲】 1)有機材料を導波路材料(12)として用い、該導波
路材料(12)に対し光重合により所望の屈折率分布を
持たせて光導波路(15)を形成する光導波路の製造方
法であって、前記光重合を露光によって生じさせ、その
露光量を該露光量と屈折率差との関係に基づき適宜変化
させることにより前記所望の屈折率分布を得ることを特
徴とする光導波路の製造方法。 2)前記露光はフォトマスク(13、14)を介して所
望の領域にのみ行われることを特徴とする特許請求の範
囲第1項記載の光導波路の製造方法。 3)前記露光は光ビームの走査によって所望の領域にの
み行われることを特徴とする特許請求の範囲第1項記載
の光導波路の製造方法。 4)前記露光量は光強度を一定にしたまま露光時間を変
化させることによって調整されることを特徴とする特許
請求の範囲第1項乃至第3項のいずれか1つに記載の光
導波路の製造方法。 5)前記光導波路(15)はその断面形状が光の伝搬方
向に対して変化するように形成されることを特徴とする
特許請求の範囲第1項乃至第4項のいずれか1つに記載
の光導波路の製造方法。 6)前記光導波路(15)はその周囲領域との屈折率差
が光の伝搬方向に対して変化するように形成されること
を特徴とする特許請求の範囲第1項乃至第5項のいずれ
か1つに記載の光導波路の製造方法。 7)前記露光量と屈折率差との関係は、露光量が増加す
るにつれて屈折率差の変化量が除々に小さくなる非線形
曲線で表され、所定値以上の露光量に対して屈折率差が
飽和することを特徴とする特許請求の範囲第1項乃至第
6項のいずれか1つに記載の光導波路の製造方法。 8)前記光導波路は、半導体レーザと光ファイバ間の光
結合に使用されるモード整合素子における光導波路であ
ることを特徴とする特許請求の範囲第1項乃至第7項の
いずれか1つに記載の光導波路の製造方法。 9)前記光導波路は、光機能素子相互間の光結合に使用
されるモード整合素子における光導波路であることを特
徴とする特許請求の範囲第1項乃至第7項のいずれか1
つに記載の光導波路の製造方法。 10)前記有機材料は第1の有機材料の重合体中に第2
の有機材料の単量体を含んでなり、該単量体を前記光重
合により重合体に変えることを特徴とする特許請求の範
囲第1項乃至第9項のいずれか1つに記載の光導波路の
製造方法。 11)前記第1の有機材料はメタクリル酸メチルである
ことを特徴とする特許請求の範囲第10項記載の光導波
路の製造方法。 12)前記第2の有機材料はスチレンであることを特徴
とする特許請求の範囲第10項または第11項記載の光
導波路の製造方法。
[Claims] 1) An optical guide in which an organic material is used as a waveguide material (12) and the waveguide material (12) is given a desired refractive index distribution by photopolymerization to form an optical waveguide (15). A method for manufacturing a wave path, characterized in that the photopolymerization is caused by exposure, and the desired refractive index distribution is obtained by appropriately changing the amount of exposure based on the relationship between the amount of exposure and the difference in refractive index. A method for manufacturing an optical waveguide. 2) The method for manufacturing an optical waveguide according to claim 1, characterized in that the exposure is performed only on desired areas through a photomask (13, 14). 3) The method of manufacturing an optical waveguide according to claim 1, wherein the exposure is performed only on a desired area by scanning a light beam. 4) The optical waveguide according to any one of claims 1 to 3, wherein the exposure amount is adjusted by changing the exposure time while keeping the light intensity constant. Production method. 5) The optical waveguide (15) is formed so that its cross-sectional shape changes with respect to the propagation direction of light, according to any one of claims 1 to 4. A method for manufacturing an optical waveguide. 6) The optical waveguide (15) is formed such that the difference in refractive index with the surrounding area changes with respect to the propagation direction of light. The method for manufacturing an optical waveguide according to item 1. 7) The relationship between the exposure amount and the refractive index difference is expressed by a nonlinear curve in which the amount of change in the refractive index difference gradually decreases as the exposure amount increases, and the refractive index difference increases for an exposure amount equal to or higher than a predetermined value. The method for manufacturing an optical waveguide according to any one of claims 1 to 6, characterized in that the optical waveguide is saturated. 8) According to any one of claims 1 to 7, the optical waveguide is an optical waveguide in a mode matching element used for optical coupling between a semiconductor laser and an optical fiber. A method of manufacturing the optical waveguide described above. 9) Any one of claims 1 to 7, wherein the optical waveguide is an optical waveguide in a mode matching element used for optical coupling between optical functional elements.
The method for manufacturing an optical waveguide described in . 10) The organic material has a second organic material in the polymer of the first organic material.
The light guide according to any one of claims 1 to 9, characterized in that the light guide comprises a monomer of an organic material, and the monomer is converted into a polymer by the photopolymerization. Method of manufacturing wave channels. 11) The method for manufacturing an optical waveguide according to claim 10, wherein the first organic material is methyl methacrylate. 12) The method for manufacturing an optical waveguide according to claim 10 or 11, wherein the second organic material is styrene.
JP29280887A 1987-11-19 1987-11-19 Production of light guide Pending JPH01134310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29280887A JPH01134310A (en) 1987-11-19 1987-11-19 Production of light guide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29280887A JPH01134310A (en) 1987-11-19 1987-11-19 Production of light guide

Publications (1)

Publication Number Publication Date
JPH01134310A true JPH01134310A (en) 1989-05-26

Family

ID=17786612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29280887A Pending JPH01134310A (en) 1987-11-19 1987-11-19 Production of light guide

Country Status (1)

Country Link
JP (1) JPH01134310A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7653278B2 (en) 2004-05-21 2010-01-26 Panasonic Corporation Refractive index distribution type optical member, and production method for refractive index distribution type optical member
US7710657B2 (en) 2005-01-19 2010-05-04 Panasonic Corporation Distributed refractive index lens and method for manufacturing the same
WO2022076992A1 (en) * 2020-10-06 2022-04-14 The Boeing Company Optical waveguide structure with triple partially overlapping loops

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7653278B2 (en) 2004-05-21 2010-01-26 Panasonic Corporation Refractive index distribution type optical member, and production method for refractive index distribution type optical member
US7710657B2 (en) 2005-01-19 2010-05-04 Panasonic Corporation Distributed refractive index lens and method for manufacturing the same
WO2022076992A1 (en) * 2020-10-06 2022-04-14 The Boeing Company Optical waveguide structure with triple partially overlapping loops
WO2022076991A1 (en) * 2020-10-06 2022-04-14 The Boeing Company Directional phase matching optical waveguide
WO2022076993A1 (en) * 2020-10-06 2022-04-14 The Boeing Company Nonlinear optical waveguide structures for light generation and conversion
US11550201B2 (en) 2020-10-06 2023-01-10 The Boeing Company Directional phase matching optical waveguide
US11561454B2 (en) 2020-10-06 2023-01-24 The Boeing Company Optical waveguide structure with partially overlapping loops in direction dependent material
US11614673B2 (en) 2020-10-06 2023-03-28 The Boeing Company Nonlinear optical waveguide structures for light generation and conversion
US11614672B2 (en) 2020-10-06 2023-03-28 The Boeing Company Optical waveguide structure with triple partially overlapping loops

Similar Documents

Publication Publication Date Title
US5114513A (en) Optical device and manufacturing method thereof
AU2004283319B2 (en) Planar waveguide with patterned cladding and method for producing same
US5033812A (en) Grating coupler
US7336881B2 (en) Planar lightwave circuit and fabrication method thereof
JPH03138606A (en) Light branching device
US7269310B2 (en) Optical connector, optical coupling method and optical element
US5838853A (en) Optical waveguide
US5101297A (en) Method for producing a diffraction grating in optical elements
KR100471380B1 (en) Method for Manufacturing Optical Waveguide Using Laser Direct Writing And Optical Waveguide Using the Same
JPH03288102A (en) Manufacture of light beam shape converting element
JP2007183468A (en) Manufacturing method of optical waveguide with mirror
JPH01134309A (en) Production of light guide
JPH01134310A (en) Production of light guide
JPS62296102A (en) Waveguide grating coupler
JPH0312612A (en) Connecting element between optical elements
US5923801A (en) Optical branching element
JPH04165311A (en) Manufacture of photo waveguide passage
JPS60175010A (en) Manufacture of optical waveguide
KR0162754B1 (en) Post photo-bleaching method for the fine tuning of the effective refractive index of polymer waveguide device
JP3969320B2 (en) Waveguide type optical components
JP4279598B2 (en) Manufacturing method of gradient index lens
Shih et al. Improving transmission of partial parabolic single layer crossing for silicon-on-insulator nanophotonic waveguides by composite subwavelength structures
JP2004205537A (en) Optical waveguide and its manufacturing method
KR20060121627A (en) Liquid crystal display backlight unit include cone structure type bright enhancement film and manufacture method of above bright enhancement film
GB2096344A (en) Apparatus for changing the direction of waves guided along an interface