JPS614906A - Measuring method of line width - Google Patents

Measuring method of line width

Info

Publication number
JPS614906A
JPS614906A JP12611584A JP12611584A JPS614906A JP S614906 A JPS614906 A JP S614906A JP 12611584 A JP12611584 A JP 12611584A JP 12611584 A JP12611584 A JP 12611584A JP S614906 A JPS614906 A JP S614906A
Authority
JP
Japan
Prior art keywords
film
light
line width
grating
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12611584A
Other languages
Japanese (ja)
Inventor
Shinya Hasegawa
晋也 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP12611584A priority Critical patent/JPS614906A/en
Publication of JPS614906A publication Critical patent/JPS614906A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To reduce an error in measurement of line width by generating light beams which differ in direction of polarization in a light transmissible material film and guiding them to one grating, calculating the wavelength of the light beams projected from the other at the same angle of projection, and calculating the line width from the relation among the wavelength, a propagation constant, film shape, and refractive indexes. CONSTITUTION:A film 1 which has a refractive index n1 and thickness (t) is sandwiched between a material 2 with a refractive index n2 and a material 3 (e.g. air) with a refractive index n0, and a grating 4 with a period S' and a grating 5 with a period S are formed on the surface of the film 1. Further, light 6 which has a different direction of polarization and wavelength lambda is guided in the film 1 from the grating 4 and the wavelength lambda of the light projected at the same angle theta of projection is measured. Further, the line width W is calculated from a relational expression which holds for the line width W, refractive indexes n0 and n1, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は微細加工により形成されたパターンの線幅測定
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring line width of a pattern formed by microfabrication.

(従来技術とその問題点) 従来、微細加工により得られたパターンの線幅を測定す
るには、パターン上方から集光した光を照射し、パター
ン各部からの光の反射率を測定することにより行なわれ
てきた。しかし、光の反射率はパターンエツジにおいて
急峻には変化せず、このために得られたパターン線幅の
測定値が真のパターン線幅とは等しくならず、0.1μ
m程度の不確定性があった。
(Prior art and its problems) Conventionally, in order to measure the line width of a pattern obtained by microfabrication, it is necessary to irradiate focused light from above the pattern and measure the reflectance of light from each part of the pattern. It has been done. However, the reflectance of light does not change sharply at the pattern edge, and for this reason, the measured value of the pattern line width obtained is not equal to the true pattern line width, and is 0.1 μm.
There was an uncertainty of about m.

(発明の目的) 本発明の目的は、上記のような欠点を除去し、測定誤差
の小さい線幅測定方法を提供することにある。
(Objective of the Invention) An object of the present invention is to eliminate the above-mentioned drawbacks and provide a line width measuring method with small measurement errors.

(発明の構成) すなわち、本発明は基板上の、屈折率と膜厚とが既知の
、パターニングされた可透光性材質膜にグレーティング
を2か所に形成し、一方のグレーティングを通して鉄膜
に光を導波せしめ、次に、導波せしめた光及びこれと偏
光方向が異なる光とが鉄膜から他方のグレーティングを
通して同じ出射角で出射するような光の波、長を求め、
この波長と光の伝搬定数、膜の形状、屈折率の間に成り
た □つ式から膜の加工線幅を求めることを特徴とする
線幅測定方法である。
(Structure of the Invention) That is, in the present invention, gratings are formed in two places on a patterned light-transmitting material film of known refractive index and film thickness on a substrate, and an iron film is formed through one of the gratings. Waveguide the light, then find the wavelength and length of the light such that the guided light and light with a different polarization direction exit from the iron film through the other grating at the same exit angle.
This line width measurement method is characterized by determining the processed line width of the film from the equation formed between this wavelength, the propagation constant of light, the shape of the film, and the refractive index.

(本発明の原理) 以下に本発明を図面を参照しながら説明する。(Principle of the present invention) The present invention will be explained below with reference to the drawings.

第1図に示すように、屈折率n1、厚さtで線幅Wに加
工された膜1が、屈折率n2の物質2(この場合は基板
)と屈折率n0の物質(例えば空気あるいは液体)3と
の間にはさまれている場合において、まず膜1の表面に
周期S′のグレーティング4及び周期Sのグレーティン
グ5を形成する6次に、グレーティング4を通して波長
λの光6を膜1中に導波させ、グレーティング5を通し
て光を出射角θで出射させる。なお、グレーティングの
周期S及びS′はl+λ/S及びl+λ/S’が、”O
r ”2より大きく、λ/8及びλ/S’がn、より小
さいことが必要である。
As shown in FIG. 1, a film 1 processed to have a line width W with a refractive index n1 and a thickness t is made up of a material 2 with a refractive index n2 (in this case, the substrate) and a material with a refractive index n0 (for example, air or liquid). ) 3, first, a grating 4 with a period S' and a grating 5 with a period S are formed on the surface of the film 1. Next, light 6 with a wavelength λ is transmitted through the grating 4 to the film 1. The light is guided through the grating 5 and is emitted at an emission angle θ. Incidentally, the grating periods S and S' are l+λ/S and l+λ/S' are "O
It is necessary that r'' is greater than 2 and that λ/8 and λ/S' be less than n.

この時、TE波について、各変数間Iこは式(1)から
(4)の関数が成り立つ、、/M、/9EはそれぞれT
M波、TE波の伝搬定数。
At this time, for the TE wave, the functions of equations (1) to (4) hold between each variable, /M and /9E are respectively T
Propagation constant of M wave and TE wave.

(A/k )” + UM/k 戸”j = S”θ+
λ/S −(3)k−2π/λ           
   −(4)また、TM波については前記式(3)(
4)及び式+5)(6)が成り立つ。
(A/k)” + UM/k door”j = S”θ+
λ/S −(3)k−2π/λ
-(4) Also, regarding the TM wave, the above formula (3) (
4) and formula +5) (6) holds true.

また、特定の波長λにおいては、式(1)から(6)が
同時に成り立ち、グレーティング5を通して偏光方向の
異なる光が同じ出射光角θで出射する。従って、波長λ
を変えてグレーティング5を通して偏光方向が異なる光
が同じ出射角で出射する波長λを測定し、式(1)から
(6)を解くことにより、パターンの線幅Wを求めるこ
とができる。
Further, at a specific wavelength λ, equations (1) to (6) hold simultaneously, and lights with different polarization directions are emitted through the grating 5 at the same exit light angle θ. Therefore, the wavelength λ
The line width W of the pattern can be determined by changing the wavelength λ at which light with different polarization directions exits at the same exit angle through the grating 5 and solving equations (1) to (6).

なお、第1図ではまっすぐなパターンの線幅を測る例を
示しているが、線幅が一定であればまがったパターンで
も測定できる。
Although FIG. 1 shows an example in which the line width of a straight pattern is measured, it is also possible to measure a crooked pattern as long as the line width is constant.

(実施例) 以下、本発明の実施例を記載する。(Example) Examples of the present invention will be described below.

屈折率1.457の石英ガラス上にポリメチルメタアク
リル酸(PMMA)  を塗布し、偏光解析法で測定し
た所、PMMAの屈折率は1,491 、 、[厚は0
.8μmであった。次にPMMA  を線状パターンに
加工後、PMMA表面l表面筋1μmのグレーティング
を2か所に形成する。次に、空気(屈折率i、ooo 
>中より、一方のグレーティングを通して、ローダミン
B色素レーザ光を全部波長を6000〜6400 Aの
範囲で変化させてPMMA中に導波させ、他方のグレー
ティングから光を出射させた所、波長6328AでTE
波及びTM波が出射角54.51度で出射した。従って
、式+1+から(6)よりWを求めることによって、加
工後のPMMAのパターンの線幅は1.22μmである
ことが判った。
When polymethyl methacrylic acid (PMMA) was coated on quartz glass with a refractive index of 1.457 and measured using ellipsometry, the refractive index of PMMA was 1,491, [thickness is 0].
.. It was 8 μm. Next, after processing the PMMA into a linear pattern, gratings of 1 μm in diameter are formed on the PMMA surface at two locations. Next, air (refractive index i, ooo
> From the middle, Rhodamine B dye laser light was guided into PMMA with the wavelength changed in the range of 6000 to 6400 A through one grating, and the light was emitted from the other grating, where it was TE at a wavelength of 6328 A.
The waves and TM waves were emitted at an emission angle of 54.51 degrees. Therefore, by finding W from equation +1+ (6), it was found that the line width of the PMMA pattern after processing was 1.22 μm.

(発明の効果) したがって1本発明によれば、グレーティ〉・グを用い
てパターンに導波した光の波長を測定するのみで、パタ
ーンの線幅を正確に求めることができる効果を有するも
のである。
(Effects of the Invention) Therefore, according to the present invention, it is possible to accurately determine the line width of a pattern by simply measuring the wavelength of light guided into the pattern using a grating. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は膜の加工後の線幅を測定する方法を説明するた
めの斜視図である。 1・・・測定対象となる膜、2・・・屈折率n2の物質
、3・・・屈折率noの物質、4・・・入射グレーティ
ング、5・・・出射グレーティング、6・・・光。 −〇− 代理人弁理士 内 原  晋  7. 2′ 71−1  図
FIG. 1 is a perspective view for explaining a method of measuring the line width after processing a film. DESCRIPTION OF SYMBOLS 1... Film to be measured, 2... Substance with refractive index n2, 3... Substance with refractive index no, 4... Incoming grating, 5... Outgoing grating, 6... Light. −〇− Representative Patent Attorney Susumu Uchihara 7. 2' 71-1 Figure

Claims (1)

【特許請求の範囲】[Claims] (1)基板上の、屈折率と膜厚とが既知である、パター
ニングされた可透光性材質膜にグレーティングを2か所
に形成し、一方のグレーティングを通して該膜に光を導
波せしめ、次に、導波せしめた光及びこれと偏光方向が
異なる光とが該膜から他方のグレーティングを通して同
じ出射角で出射するような光の波長を求めて、この波長
と光の伝搬定数、膜の形状、屈折率の間に成りたつ式か
ら膜の加工線幅を求めることを特徴とする線幅測定方法
(1) Gratings are formed at two locations on a patterned light-transmitting material film with a known refractive index and film thickness on a substrate, and light is guided to the film through one grating, Next, find the wavelength of the light such that the guided light and the light with a different polarization direction exit from the film through the other grating at the same exit angle, and calculate this wavelength, the light propagation constant, and the film's wavelength. A line width measuring method characterized by determining the processed line width of a film from an equation established between shape and refractive index.
JP12611584A 1984-06-19 1984-06-19 Measuring method of line width Pending JPS614906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12611584A JPS614906A (en) 1984-06-19 1984-06-19 Measuring method of line width

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12611584A JPS614906A (en) 1984-06-19 1984-06-19 Measuring method of line width

Publications (1)

Publication Number Publication Date
JPS614906A true JPS614906A (en) 1986-01-10

Family

ID=14927004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12611584A Pending JPS614906A (en) 1984-06-19 1984-06-19 Measuring method of line width

Country Status (1)

Country Link
JP (1) JPS614906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336466A (en) * 1991-07-26 1994-08-09 Toyota Jidosha Kabushiki Kaisha Heat resistant magnesium alloy
US7859659B2 (en) 1998-03-06 2010-12-28 Kla-Tencor Corporation Spectroscopic scatterometer system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336466A (en) * 1991-07-26 1994-08-09 Toyota Jidosha Kabushiki Kaisha Heat resistant magnesium alloy
US7859659B2 (en) 1998-03-06 2010-12-28 Kla-Tencor Corporation Spectroscopic scatterometer system
US7898661B2 (en) 1998-03-06 2011-03-01 Kla-Tencor Corporation Spectroscopic scatterometer system

Similar Documents

Publication Publication Date Title
JP2804073B2 (en) Apparatus and method for measuring the refractive index of a substance
JPH0259639A (en) Measurement of automatic collimation angle for grid coupler
Brandenburg et al. Grating couplers as chemical sensors: a new optical configuration
JPH0432704A (en) Gap measuring instrument and surface shape measuring instrument
JPS614906A (en) Measuring method of line width
JPS6190185A (en) Holographic exposure method
JPS614905A (en) Measuring method of line width
JPS60236006A (en) Measuring method of line width
JPS60236005A (en) Measuring method of line width
JPS60233505A (en) Line width measuring method
JP2006023183A (en) Device and method for measuring level difference, computer program for controlling the device and computer readable recording medium recorded with the same
JPS60233506A (en) Line width measuring method
JPS60236004A (en) Measuring method of line width
JPH01189506A (en) Method for measuring thickness of film
JPH11173825A (en) Prism squareness-measuring method
Podviaznyi et al. Improved interferometric method for determination of refractive index profile parameters in single-mode waveguides
SU1539713A1 (en) Method of determining losses caused by light diffusion in three-dimensional heterogeneities in planar optic waveguides
JPS61265515A (en) Method for measuring processing accuracy
JPS6246821B2 (en)
SU1213398A1 (en) Interference method of determining refraction index
JPS625105A (en) Waveguide type photo-displacement sensor
JPH06201320A (en) Interferometer having built-in unit and reflection unit which are mutually separated with measuring part
Villatoro et al. Guided beam deflection method: A novel alternative for designing integrated optical sensors
JPS63128210A (en) Measuring method for film thickness and refractive index
JPH01203910A (en) Measuring method for film thickness distribution