JPS6190037A - Method and device for measuring compressive strength of concrete - Google Patents

Method and device for measuring compressive strength of concrete

Info

Publication number
JPS6190037A
JPS6190037A JP21194684A JP21194684A JPS6190037A JP S6190037 A JPS6190037 A JP S6190037A JP 21194684 A JP21194684 A JP 21194684A JP 21194684 A JP21194684 A JP 21194684A JP S6190037 A JPS6190037 A JP S6190037A
Authority
JP
Japan
Prior art keywords
concrete
weight body
speed
compressive strength
compression coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21194684A
Other languages
Japanese (ja)
Inventor
Tadaharu Hagiwara
萩原 忠治
Akio Suzuki
昭夫 鈴木
Masakimi Morozumi
昌公 両角
Takenori Morikawa
森川 武則
Hiroyuki Sasaki
洋幸 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd, Takenaka Doboku Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP21194684A priority Critical patent/JPS6190037A/en
Publication of JPS6190037A publication Critical patent/JPS6190037A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/307Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by a compressed or tensile-stressed spring; generated by pneumatic or hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To measure compressive strength easily and accurately by causing a weight body to strike a pressure receiving plate adhered to concrete and calculating the ratio of the striking speed and repulsion speed. CONSTITUTION:When a measurement is taken, a measuring device 10 is fitted to a case 18 and put opposite the window 16 of a form 14. Then, a moving cylinder 36 is gripped and moved in the axial direction of a fixed cylinder 14 against the energizing force of a large compression coil spring40, and then a chuck 46 intrudes into the neck part 50 of the weight body 48 with the energizing force. When the moving cylinder 36 is extracted from the fixed cylinder 34 with the energizing force of the large compression coil spring 40 and the weight body 48 is elevated against the energizing force of a small compression coil spring 60 at the same time, so that a striking ready state is entered. A reset button 54 is pressed into a spring seat 38 and then a reset shaft 58 spreads the chuck 46, so the weight body 48 is released from being gripped to strike the pressure receiving plate 30 with the energizing force of the small compression coil spring 60. This striking speed is measured form the magnetic flux density variation of the coil 62.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は若材令コンクリートの圧縮強度を容易かつ正確
に測定することができるコンクリート圧縮強度測定方法
及び装置を得ることが目的である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The object of the present invention is to obtain a concrete compressive strength measuring method and apparatus that can easily and accurately measure the compressive strength of young concrete.

〔従来の技術及び解決すべき問題点〕[Conventional technology and problems to be solved]

打設されたコンクリートの強度発現に伴い、型枠を上昇
させて次第に高位置へコンクリートを打設するスリップ
フオーム工法等では若材令コンクリートの強度を正確に
把握する必要がある。
As the strength of the poured concrete increases, it is necessary to accurately grasp the strength of young concrete in slip form construction methods, etc., in which the formwork is raised and concrete is gradually poured into higher positions.

一般的に若材令コンクリートの強度測定には、超音波伝
播測定法、積算温度測定法、鋼棒四人量測定法等が用い
られている。
Generally, methods such as ultrasonic propagation measurement method, integral temperature measurement method, steel bar four-person measurement method, etc. are used to measure the strength of young concrete.

超音波伝播速度測定法では、コンクリート内を伝播する
超音波の速度がコンクリート強度に応して変化すること
を利用している。
The ultrasonic propagation velocity measurement method utilizes the fact that the speed of ultrasonic waves propagating in concrete changes depending on the strength of the concrete.

しかし若材令コンクリートは、表面が軟弱であり、超音
波送受信機の取りつけが困難である。またコンクリート
内部の超音波伝播速度は鋼製型枠よりも遅いため、また
超音波がコンクリート内部に配置される鉄筋の影響を受
けて変化しやすいため、正確な超音波伝播速度を測定す
ることは不可能である。
However, young concrete has a soft surface, making it difficult to install an ultrasonic transceiver. In addition, since the ultrasonic propagation speed inside concrete is slower than that in steel formwork, and because ultrasonic waves are easily affected by the reinforcing bars placed inside the concrete and change, it is difficult to accurately measure the ultrasonic propagation speed. It's impossible.

積算温度測定方法は、コンクリートが硬化するまでに放
出する熱量が判断できるため、所定時間毎に温度を測定
してこれを積算することによりコンクリート弾度を計算
するようになっている。
The cumulative temperature measuring method allows determining the amount of heat emitted until concrete hardens, so the concrete elasticity is calculated by measuring the temperature at predetermined time intervals and integrating the values.

しかしこの方法の場合にも、コンクリート表面温変が型
枠、スランプ、冷却水等の影響を受けやすく、正確な測
定に乱れを生ずる場合がある。
However, even with this method, the concrete surface temperature change is easily influenced by the formwork, slump, cooling water, etc., and accurate measurements may be disturbed.

鋼棒貫入法は、所定圧力の鋼棒をコンクリートへ挿入す
ることにより、その挿入量の相違でコンクリート強度を
計算する。
The steel rod penetration method calculates the strength of concrete by inserting a steel rod at a predetermined pressure into concrete, based on the difference in the amount of insertion.

しかしこの方法による場合には、鋼棒の駆動荷重が大き
く、装置が大型になる。また駆動荷重が大きいため、型
枠へ加わる反力が大きく、型枠の補強が必要となる。
However, in this method, the driving load of the steel rod is large and the device becomes large. Furthermore, since the driving load is large, the reaction force applied to the formwork is large, making it necessary to reinforce the formwork.

上記の方法以外にも各種の測定方法が試みられているが
、容易かつ正確な強度測定方法及び装置は得られていな
い。
Although various measuring methods other than the above-mentioned method have been attempted, an easy and accurate method and apparatus for measuring strength have not yet been obtained.

本発明は上記事実を考慮し、容易かつ正確にコンクリー
ト圧縮強度を測定することができる方法及び装置を得る
ことが目的である。
The present invention takes the above facts into consideration and aims to provide a method and apparatus that can easily and accurately measure concrete compressive strength.

C問題点を解決すべき手段及び作用〕 本発明に係るコンクリート圧縮強度測定方法は、コンク
リートへ受圧板を密着させ、この受圧板へ錘体を打撃さ
せ、この打撃速度と反発速度との比によりコンクリート
の圧縮強度を求めることを特徴としている。
Means and operation for solving problem C] The method for measuring concrete compressive strength according to the present invention involves bringing a pressure receiving plate into close contact with the concrete, causing a weight body to impact the pressure receiving plate, and determining the ratio of the impact speed to the repulsion speed. It is characterized by determining the compressive strength of concrete.

本発明に係るコンクリート圧縮強度測定W !では、コ
ンクリート表面への当接用受圧板と、この受圧板への打
撃用錘体と、この錘体を受圧板へ打撃する弾性体と、こ
の弾性体のエネルギ蓄積状態を保持するラッチ手段と、
前記受圧板への錘体打撃速度及び反発速度を検出する検
出手段とを有している。
Concrete compressive strength measurement W according to the present invention! Here, a pressure plate for contacting the concrete surface, a weight body for striking the pressure plate, an elastic body for striking the weight body against the pressure plate, and a latch means for maintaining the energy storage state of the elastic body. ,
and detection means for detecting the weight impact speed and repulsion speed on the pressure receiving plate.

従って本発明では、錘体の打撃速度と反発速度の比によ
り容易にコンクリート圧縮強度が測定できるようになっ
ている。
Therefore, in the present invention, concrete compressive strength can be easily measured by the ratio of the impact speed and rebound speed of the weight.

〔発明の実施例〕[Embodiments of the invention]

第1図には本実施例に係る測定装置10を用いて若材令
コンクリート12の圧縮強度をIII定している状態が
示されている。
FIG. 1 shows a state in which the compressive strength of young concrete 12 is determined using the measuring device 10 according to this embodiment.

若材令コンクリート12は型枠14内へ打設されており
、この型枠14には窓16が形成されている。この窓1
6は若材令コンクリート12の打設状態では図示しない
蓋板が当接されて若材令コンクリート12の流出を防い
でいる。しかし打設後の所定時間経過後に若材令コンク
リ−)12がある程度硬化した状態で取り外され、窓1
6の周縁に測定装置10が取りつけられるようになって
いる。
Young concrete 12 is poured into a formwork 14, and windows 16 are formed in this formwork 14. This window 1
6 is in contact with a cover plate (not shown) when the young concrete 12 is placed to prevent the young concrete 12 from flowing out. However, after a predetermined period of time has passed after pouring, the young concrete 12 is removed after it has hardened to some extent, and the window 1 is removed.
A measuring device 10 is attached to the periphery of 6.

測定装置10は窓16の周縁の型枠I4へ当接(必要に
応じて固定)されるケース18を有している。このケー
ス18は密閉構造とされて外部からの埃侵入を防いでい
る。
The measuring device 10 has a case 18 that is brought into contact (fixed as necessary) to the formwork I4 at the periphery of the window 16. This case 18 has a sealed structure to prevent dust from entering from the outside.

ケース18には筒体20が一体的に固着されており、こ
の筒体20は窓16の内径とほぼ等しい内径を有してい
る。
A cylindrical body 20 is integrally fixed to the case 18, and this cylindrical body 20 has an inner diameter approximately equal to the inner diameter of the window 16.

この筒体20には袋ナツト22が圧入、ボルト締め等で
取りつけられている。この袋ナツト22はその内周部が
ケース24の外周部と螺合している。この袋ナツト22
のケース24への螺合量は両者間に介在されるシール兼
用のワッシャ26によって制限されている。このワッシ
ャ26と袋ナツト22との間には弾性膜28の外周部付
近が挟持されている。
A cap nut 22 is attached to the cylindrical body 20 by press fitting, bolt tightening, or the like. The inner periphery of this cap nut 22 is threadedly engaged with the outer periphery of the case 24. This bag nut 22
The amount of screwing into the case 24 is limited by a washer 26 interposed between the two that also serves as a seal. The vicinity of the outer periphery of the elastic membrane 28 is held between the washer 26 and the cap nut 22.

この弾性膜28は軸心部に貫通孔が形成されていると共
に、貫通孔周囲へ受圧(反30が固着されている。この
受圧板30はその一端面がその袋ナツト22の一端面と
同一面を構成している。
This elastic membrane 28 has a through hole formed in its axial center, and a pressure receiving plate 30 is fixed around the through hole.One end surface of this pressure receiving plate 30 is the same as one end surface of the cap nut 22. It makes up the surface.

ケース24と弾性膜28との間には圧縮コイルばね32
が介在されており、受圧板30の−Om 、iiiを袋
ナツト22の一端面から突出する方向へ付=%41して
いる。
A compression coil spring 32 is provided between the case 24 and the elastic membrane 28.
is interposed, and -Om, iii of the pressure receiving plate 30 is attached in a direction protruding from one end surface of the cap nut 22.

従って袋ナツト22の一端面から突出した受!4板30
は、第1図に示される如く測定装置IOかコンクリート
12へ当)妾されると、コンクリート12の表面と当接
して圧縮コイルばね32の付勢力に抗して袋ナツト22
内へ押し込まれることになる。このため受圧板30は常
に一定の付勢力でコンクリート12へ当接されることに
なる。
Therefore, the receiver protrudes from one end surface of the cap nut 22! 4 plates 30
When the measuring device IO is brought into contact with the concrete 12 as shown in FIG.
It will be pushed inside. Therefore, the pressure receiving plate 30 is always brought into contact with the concrete 12 with a constant urging force.

ケース24の内周部には固定筒34の先端部外周が螺合
されている。
The outer periphery of the tip of the fixed cylinder 34 is screwed into the inner periphery of the case 24 .

第3図に示される如く固定筒34の他の一端部の外周に
は移動筒36が被嵌されている。この移動筒36の先端
部にはばね座38が固着されており、移動筒36の内周
部に配置される大圧縮コイルばね40の一端が当接され
ている。この大圧縮コイルばね4oの他端は固定筒34
の一端へ取りつけられるばね座42へ当接している。こ
れによって移動筒36は固定筒34がら抜は出す方向に
付勢されている。
As shown in FIG. 3, a movable cylinder 36 is fitted onto the outer periphery of the other end of the fixed cylinder 34. A spring seat 38 is fixed to the distal end of the movable cylinder 36, and one end of a large compression coil spring 40 disposed on the inner circumference of the movable cylinder 36 is brought into contact with the spring seat 38. The other end of this large compression coil spring 4o is a fixed cylinder 34
It abuts against a spring seat 42 attached to one end of the spring. As a result, the movable cylinder 36 is urged in a direction to be removed from the fixed cylinder 34.

ばね座38へ一端が固着された案内筒44は中間部がば
ね座42を貫通して固定筒34の内部へ至っており、チ
ャック46の基部を支持している。
A guide cylinder 44 whose one end is fixed to the spring seat 38 has an intermediate portion passing through the spring seat 42 to reach the inside of the fixed cylinder 34, and supports the base of the chuck 46.

このチャック46は先端鉤部が錘体48の首部50を挟
持する方向に付勢力を生じている。
This chuck 46 generates a biasing force in a direction in which the hook portion at the tip clamps the neck portion 50 of the weight body 48 .

また案内筒44内にはロッド52が貫通しており、この
ロッド52の先端部は移動筒36の端部から突出し、解
除釦54が固着されている。型枠14はばね座38との
間に復帰圧縮コイルばね56が介在されており、これに
よってばね座38から突出する方向に付勢力を受けてい
る。案内筒4・1から突出するロッド52の他の一端部
はラッチ手段を構成するチャック46の内側へ対応した
解除軸58となっている。この解除軸58は通常時は解
除釦54が復帰圧縮コイルばね56の付勢力を受けるこ
とによりチャック46の内部突起と離間しているが、解
除釦54が復帰圧縮コイルはね56の付勢力に抗してば
ね座38内へ押し込まれると、チャック46を拡開して
錘体48を自由状態とするようになっている。チャック
46は解除軸58と離間した状態では付勢力で縮径する
ようになっており、錘体48の首部50を把持している
A rod 52 passes through the guide tube 44, and the tip of the rod 52 protrudes from the end of the movable tube 36, to which a release button 54 is fixed. A return compression coil spring 56 is interposed between the formwork 14 and the spring seat 38, and is thereby biased in a direction protruding from the spring seat 38. The other end of the rod 52 protruding from the guide tube 4.1 serves as a release shaft 58 that corresponds to the inside of the chuck 46 constituting the latch means. This release shaft 58 is normally separated from the internal protrusion of the chuck 46 because the release button 54 receives the urging force of the return compression coil spring 56; When pushed into the spring seat 38 against resistance, the chuck 46 is expanded and the weight body 48 is set in a free state. When the chuck 46 is separated from the release shaft 58, its diameter is reduced by the urging force, and grips the neck portion 50 of the weight body 48.

この錘体48にはばね座42との間に小圧縮コイルばね
60が介在されており、錘体48を固定筒34の先端部
へと付勢して受圧板30へ打撃させるようになっている
A small compression coil spring 60 is interposed between the weight body 48 and the spring seat 42, and urges the weight body 48 toward the tip of the fixed cylinder 34 to strike the pressure receiving plate 30. There is.

固定筒34の外周には検出手段を構成するコイル62が
巻回されており、リード線64により制御装置へと接続
されている。このリードWA62は固定筒34内を移動
する錘体48の打撃速度及び打撃後の反発速度を磁束密
度の変化により検出でさ、制御装置がこれを測定記録す
るようになっている。
A coil 62 constituting a detection means is wound around the outer periphery of the fixed cylinder 34, and is connected to a control device by a lead wire 64. This lead WA62 detects the impact speed of the weight body 48 moving within the fixed cylinder 34 and the repulsion speed after impact by changes in magnetic flux density, and the control device measures and records this.

〔実施例の作用〕[Effect of the embodiment]

測定に当たっては、測定装置1oをケース18へ取りつ
け、このケース18を第1図に示される如く型枠14の
窓16へと対応させる。
For measurement, the measuring device 1o is attached to a case 18, and the case 18 is made to correspond to the window 16 of the formwork 14 as shown in FIG.

移動筒36を把持し、これを大圧縮コイルばね40の付
勢力に抗して固定筒34の軸方向へ移動させるとチャッ
ク46は付勢力で錘体48の首部50へと入り込む。
When the movable barrel 36 is gripped and moved in the axial direction of the fixed barrel 34 against the biasing force of the large compression coil spring 40, the chuck 46 enters the neck portion 50 of the weight body 48 due to the biasing force.

従ってこの状態で移動筒36の把持を解除すれば、移動
筒36は大圧縮コイルばね4oの付勢力で固定筒34か
ら抜きだされ、打撃可能状態となる。
Therefore, if the grip on the movable barrel 36 is released in this state, the movable barrel 36 is pulled out from the fixed barrel 34 by the biasing force of the large compression coil spring 4o, and becomes ready for impact.

この移動時にチャック46も移動筒36と共に移動する
為、錘体48は小圧縮コイルばね6oの付勢力に抗して
持ち上げられ、打撃可能状態となる。
During this movement, the chuck 46 also moves together with the movable cylinder 36, so the weight body 48 is lifted against the biasing force of the small compression coil spring 6o, and becomes ready for impact.

ここで解除釦54をばね座38内へ押し込むと、解除軸
58はチャック46を拡開するため、錘体48の挟持が
解除され、錘体48は小圧縮コイルばね60の付勢力で
受圧板30へと打撃される。
Here, when the release button 54 is pushed into the spring seat 38, the release shaft 58 expands the chuck 46, so the clamping of the weight body 48 is released, and the weight body 48 is pushed into the pressure receiving plate by the biasing force of the small compression coil spring 60. Hit to 30.

この打撃速度はコイル62の磁束密度変化によって測定
される。
This striking speed is measured by the change in magnetic flux density of the coil 62.

受圧板30へ打撃された錘体48は反発して逆方向に移
動するが、この反発速度はコンクリート12の圧縮強度
に応じて変化する。この反発速度は打撃速度と同様にコ
イル62の磁束密度変化で測定される。
The weight body 48 hit against the pressure receiving plate 30 rebounds and moves in the opposite direction, but the speed of this rebound changes depending on the compressive strength of the concrete 12. This repulsion speed is measured by the change in magnetic flux density of the coil 62, similar to the impact speed.

打撃時に袋ナツト22内の弾性膜28は打撃力を受けて
微少移動するが、周囲が袋ナツト22へ取りつけられて
いる構成であるため、打撃方向に抵抗が小さなものとな
っている。さらに弾性膜28はケース24内を密閉構造
として防塵機能を向上している。
At the time of impact, the elastic membrane 28 inside the cap nut 22 moves slightly due to the impact force, but since the periphery is attached to the cap nut 22, the resistance in the direction of impact is small. Furthermore, the elastic membrane 28 has a sealed structure inside the case 24 to improve the dustproof function.

第4図には打撃速度と反発速度との比である反発構造に
対する圧縮強度の測定結果が示されている。これによれ
ば反発硬度と圧縮硬度との比はほぼ直線的に変化してお
り、圧縮強度y (Kg/Ca )は(aX+b)で示
される。ここにa−7゜22、b=0.07であり、X
は反発硬度である。
FIG. 4 shows the measurement results of the compressive strength for the repulsion structure, which is the ratio of the impact speed to the repulsion speed. According to this, the ratio of rebound hardness to compression hardness changes almost linearly, and the compressive strength y (Kg/Ca) is expressed as (aX+b). Here a-7°22, b=0.07, and X
is the rebound hardness.

従って打撃速度と反発速度との比を求めることにより圧
縮強度を容易に測定することができる。
Therefore, the compressive strength can be easily measured by determining the ratio between the impact speed and the rebound speed.

特に本実施例では、錘体48を直接コンクリート!2へ
打撃せずに受圧板30を介して打撃させることによりコ
ンクリート表面の強度が平均化して測定されることにな
る。即ちコンクリート12は一般的に複合材料であり、
表面にはセメント、細骨材、粗骨材が局所的に見て不均
一に分散し、さらにエアーボイドや施工不良等により表
面が粗面化している。従って受圧板30は錘体48を介
して打撃することにより表面が平均化されることになり
、正確な圧縮強度が測定できる。
In particular, in this embodiment, the weight body 48 is directly made of concrete! By striking through the pressure receiving plate 30 without striking the concrete surface 2, the strength of the concrete surface is averaged and measured. That is, the concrete 12 is generally a composite material;
Cement, fine aggregate, and coarse aggregate are locally dispersed unevenly on the surface, and the surface is roughened due to air voids, poor construction, etc. Therefore, the surface of the pressure receiving plate 30 is averaged by being hit through the weight body 48, and the compressive strength can be measured accurately.

さらに上記実施例では袋ナツト22とケース24との間
に弾性膜28が設けられ、これによって固定筒34内が
気密状態に保持されているため、コンクリート12の表
面が湿潤状態でかつ粉塵が多い場合にもこれらに影舌さ
れない正確な測定が可能となっている。
Furthermore, in the embodiment described above, the elastic membrane 28 is provided between the cap nut 22 and the case 24, and this keeps the inside of the fixed cylinder 34 in an airtight state, so that the surface of the concrete 12 is wet and has a lot of dust. Accurate measurements are possible without being affected by these conditions.

このようにして測定されたコンクリート12の表面が充
分な圧縮強度を有している場合には、コンクリート12
から型枠14をスリップさセ、さらにコンクリート12
の上部へこの型枠14を取りつけ、コンクリート12の
上部へ順次コンクリートを打設することができる。
If the surface of the concrete 12 measured in this way has sufficient compressive strength, the concrete 12
Then slip the formwork 14 and then concrete 12.
This formwork 14 is attached to the upper part of the concrete 12, and concrete can be sequentially poured onto the upper part of the concrete 12.

なお本発明は上記工法に限らず、NATMT法、−i的
な左官仕上げ時、床にコンクリートを打設する場合等の
如くコンクリートの強度測定に広く適用可能である。
Note that the present invention is not limited to the above-mentioned method, but can be widely applied to the measurement of the strength of concrete, such as the NATMT method, -i plastering, and when pouring concrete onto a floor.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明に係るコンクリート圧縮強度測
定方法では、コンクリートへ受圧板を密着させ、この受
圧板へ錘体を打撃させ、この打撃速度と反発速度との比
によりコンクリート圧縮強度を求め、また本発明に係る
コンクリート圧縮強度測定装置ではコンクリート表面へ
の当接用受圧板とこの受圧板への打撃用錘体と、この錘
体を受圧板へ打撃する弾性体と、この弾性体のエネルギ
蓄積状態を保持するラッチ手段と、前記受圧板への錘体
打撃速度及び反発速度を検出する検出手段とを有するの
で、容易かつ正確に若材令コンクリートの圧縮強度を測
定することができる優れた効果を有する。
As explained above, in the concrete compressive strength measuring method according to the present invention, a pressure receiving plate is brought into close contact with the concrete, a weight is struck against the pressure receiving plate, and the concrete compressive strength is determined by the ratio of the striking speed to the repulsion speed. The concrete compressive strength measuring device according to the present invention includes a pressure plate for contacting the concrete surface, a weight body for striking the pressure plate, an elastic body for striking the weight body against the pressure plate, and an energy storage device for the elastic body. Since it has a latch means for holding the state and a detection means for detecting the speed of impact of the weight on the pressure receiving plate and the speed of repulsion, it has an excellent effect of being able to easily and accurately measure the compressive strength of young concrete. has.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るコンクリート圧縮強度測定方法及
び装置の実施例による測定状態を示す断面図、第2図は
測定装置の一部断面拡大図、第3図は測定装置の断面図
、第4図は反発硬度と圧縮強度との関係を示す線図であ
る。 lO・・・測定装置、 12・・・コンクリート、 30・・・受圧板、 48・・・錘体、 62・・・コイル。
FIG. 1 is a sectional view showing a measurement state according to an embodiment of the method and device for measuring concrete compressive strength according to the present invention, FIG. 2 is an enlarged partial sectional view of the measuring device, and FIG. 3 is a sectional view of the measuring device. FIG. 4 is a diagram showing the relationship between rebound hardness and compressive strength. lO... Measuring device, 12... Concrete, 30... Pressure receiving plate, 48... Weight body, 62... Coil.

Claims (2)

【特許請求の範囲】[Claims] (1)コンクリートへ受圧板を密着させ、この受圧板へ
錘体を打撃させ、この打撃速度と反発速度との比により
コンクリートの圧縮強度を求めることを特徴としたコン
クリート圧縮強度測定方法。
(1) A concrete compressive strength measuring method characterized by bringing a pressure receiving plate into close contact with concrete, causing a weight to strike the pressure receiving plate, and determining the compressive strength of the concrete from the ratio of the striking speed to the repulsion speed.
(2)コンクリート表面への当接用受圧板と、この受圧
板への打撃用錘体と、この錘体を受圧板へ打撃する弾性
体と、この弾性体のエネルギ蓄積状態を保持するラッチ
手段と、前記受圧板への錘体打撃速度及び反発速度を検
出する検出手段とを有することを特徴としたコンクリー
ト圧縮強度測定装置。
(2) A pressure plate for contacting the concrete surface, a weight for striking the pressure plate, an elastic body for striking the weight against the pressure plate, and a latch means for maintaining the energy storage state of the elastic body. and a detection means for detecting a weight impact speed and a repulsion speed on the pressure receiving plate.
JP21194684A 1984-10-09 1984-10-09 Method and device for measuring compressive strength of concrete Pending JPS6190037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21194684A JPS6190037A (en) 1984-10-09 1984-10-09 Method and device for measuring compressive strength of concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21194684A JPS6190037A (en) 1984-10-09 1984-10-09 Method and device for measuring compressive strength of concrete

Publications (1)

Publication Number Publication Date
JPS6190037A true JPS6190037A (en) 1986-05-08

Family

ID=16614311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21194684A Pending JPS6190037A (en) 1984-10-09 1984-10-09 Method and device for measuring compressive strength of concrete

Country Status (1)

Country Link
JP (1) JPS6190037A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318240A (en) * 1986-07-10 1988-01-26 Nippon Telegr & Teleph Corp <Ntt> Scleroscope measure with angle self-correcting function
JP2002267583A (en) * 2001-03-09 2002-09-18 Fuji Tekku Kk Compression strength estimation method for concrete and compression strength estimation method for concrete of structure
KR20020086836A (en) * 2002-09-12 2002-11-20 서 치 호 The face hitting rebound test machine for nondestructive test of concrete compressive strength
WO2011046687A1 (en) * 2009-10-16 2011-04-21 The Boeing Company Damage impactor
JP2014237217A (en) * 2013-06-07 2014-12-18 サンドビック.マイニング.アンド.コンストラクション.オイ Arrangement and method in rock breaking

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318240A (en) * 1986-07-10 1988-01-26 Nippon Telegr & Teleph Corp <Ntt> Scleroscope measure with angle self-correcting function
JPH0444226B2 (en) * 1986-07-10 1992-07-21 Nippon Telegraph & Telephone
JP2002267583A (en) * 2001-03-09 2002-09-18 Fuji Tekku Kk Compression strength estimation method for concrete and compression strength estimation method for concrete of structure
KR20020086836A (en) * 2002-09-12 2002-11-20 서 치 호 The face hitting rebound test machine for nondestructive test of concrete compressive strength
WO2011046687A1 (en) * 2009-10-16 2011-04-21 The Boeing Company Damage impactor
JP2014237217A (en) * 2013-06-07 2014-12-18 サンドビック.マイニング.アンド.コンストラクション.オイ Arrangement and method in rock breaking

Similar Documents

Publication Publication Date Title
JPS6190037A (en) Method and device for measuring compressive strength of concrete
JPH01219555A (en) Impact tester
JP2023123831A (en) Concrete placement method and formwork
WO2011132024A1 (en) Embedded material testing device and method
CN100485357C (en) Method and device for measuring resiliometer impact kinetic energy
JP2007263921A (en) Method and instrument for measuring available time of concrete
JP2000206017A (en) Estimation method for strength of concrete in structure
CN110146594A (en) A kind of device and measuring method of METHOD FOR CONTINUOUS DETERMINATION cement setting hardening rate
JP2673236B2 (en) Concrete shear strength measuring method and measuring instrument
JP2020041879A (en) Impact elastic wave measuring method of cement hardened body
JPS56649A (en) Measuring method for hardening degree of concrete
JPH08334446A (en) Early strength measuring method for shotcrete
JP2001289829A (en) Non-destructively measuring technique of concrete deterioration by impulse elastic wave
CN110146378A (en) A kind of cement-based material is uniaxially stretched measurement device and measuring method
CN215297675U (en) Laser range finder with transmitting end angle adjusting function
KR20020087900A (en) The line hitting rebound test method for nondestructive test of concrete compressive strength
SU1499166A1 (en) Apparatus for determining strength characteristics of materials
SU1530986A1 (en) Device for inspecting mechanical strength of wooden structures
JP2004163227A (en) Method for measuring neutralized thickness of concrete
CN219870795U (en) Hydraulic engineering quality detection equipment
SU439729A1 (en) Device for determining the strength of concrete
SU706774A1 (en) Concrete strength determining method
SU881613A1 (en) Method of testing reinforcing rod in pulling it out of a concrete specimen
SU1668876A1 (en) Method of determining mechanical stresses in tendons of reinforced concrete structures
JPH0618962U (en) Hammer with trigger for elastic wave test