JPS6189294A - Method of purifying coke oven gas - Google Patents

Method of purifying coke oven gas

Info

Publication number
JPS6189294A
JPS6189294A JP21037284A JP21037284A JPS6189294A JP S6189294 A JPS6189294 A JP S6189294A JP 21037284 A JP21037284 A JP 21037284A JP 21037284 A JP21037284 A JP 21037284A JP S6189294 A JPS6189294 A JP S6189294A
Authority
JP
Japan
Prior art keywords
coke oven
oven gas
catalyst
palladium catalyst
unsaturated hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21037284A
Other languages
Japanese (ja)
Other versions
JPH0349960B2 (en
Inventor
Noboru Hirooka
広岡 昇
Hiroo Matsuoka
松岡 洋夫
Senji Takenaka
竹中 戦児
Koichi Fujie
藤江 宏一
Tsutomu Toida
戸井田 努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
JFE Steel Corp
Original Assignee
JGC Corp
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Kawasaki Steel Corp filed Critical JGC Corp
Priority to JP21037284A priority Critical patent/JPS6189294A/en
Publication of JPS6189294A publication Critical patent/JPS6189294A/en
Publication of JPH0349960B2 publication Critical patent/JPH0349960B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Industrial Gases (AREA)

Abstract

PURPOSE:To purify a coke oven gas in such a way that it is suitable for producing hydrogen or as a synthesis gas, by hydrogenating selectively unsaturated hydrocarbons and oxygen in the coke oven gas by the use of a Pd catalyst. CONSTITUTION:A coke oven gas, preferably previously, sent to a hot bottle, subjected to oil washing, and cooled, so that it is pretreated. Then, it is brought into contact with a Pd catalyst, and unsaturated hydrocarbons such as dienes, olefins, etc. and oxygen are selectively hydrogenated. Then, sulfides are subjected to desulfurized through hydrogenation in the presence of a catalyst, and hydrogen is separated and recovered with an adsorbent such as zeolite, etc., to purify the coke oven gas.

Description

【発明の詳細な説明】 (発明の属する分野) 本発明はコークス炉ガスの精製法に関し、詳しくはコー
クス炉ガスの高度利用の障害となるジエン類等の不飽和
炭化水素や酸素等の徹退残存物質を選択的にパラジウム
触媒で水添し、コークス炉ガスを水素製造用原料ガスあ
るいは合成ガス用に供せしめ得るようにしたコークス炉
ガスのm WIJ法に関する。
[Detailed Description of the Invention] (Field to which the invention pertains) The present invention relates to a method for purifying coke oven gas, and more specifically to a method for eliminating unsaturated hydrocarbons such as dienes, oxygen, etc. that impede the advanced utilization of coke oven gas. The present invention relates to a coke oven gas mWIJ method in which residual substances are selectively hydrogenated with a palladium catalyst so that the coke oven gas can be used as a raw material gas for hydrogen production or as synthesis gas.

(発明の背景) コークスの製造に際し、生ずる高温乾留ガスには多種多
様の物質が含まれているが、急冷(水洗を含む)による
タール除去、アンモニアの除去、脱硫、吸収油による芳
香族化合物の除去等の処理を経て、水素を50〜60%
、COを5〜10%、低級炭化水素を20〜35%程度
含むコークス炉ガスとなる。このコークス炉ガスは原料
石炭、乾留条(’F J3よび乾留ガスの処理手段によ
って組成に多少の変動はあるものの、上記したように水
素、−酸化炭素、低級炭化水素を主成分としている点で
は異同はない。しかし、これ等コークス炉ガスには車台
し易いジエン類等の不飽和炭化水素や不飽和炭化水素の
重合の引き金的役割りをする窒素酸化物や酸素、微量の
有機硫黄化合物や硫化水素のほか、未除去の芳香族化合
物等も含まれている。
(Background of the Invention) During the production of coke, the high-temperature carbonization gas generated contains a wide variety of substances. After processing such as removal, 50-60% of hydrogen is removed.
, the coke oven gas contains about 5 to 10% CO and about 20 to 35% lower hydrocarbons. Although the composition of this coke oven gas varies slightly depending on the raw material coal, carbonization column ('F J3), and the treatment method of carbonization gas, as mentioned above, it is mainly composed of hydrogen, carbon oxide, and lower hydrocarbons. There is no difference. However, these coke oven gases contain unsaturated hydrocarbons such as dienes, which are easy to transport, nitrogen oxides and oxygen, which act as triggers for the polymerization of unsaturated hydrocarbons, and trace amounts of organic sulfur compounds. In addition to hydrogen sulfide, it also contains unremoved aromatic compounds.

そのためコークス炉ガスは水素、−酸化炭素に富むにか
かわらず、水素あるいは合成ガス用原料にはそのままで
は供し得ず燃料として使用されているのが実情である。
Therefore, although coke oven gas is rich in hydrogen and carbon oxide, the reality is that it cannot be directly used as a raw material for hydrogen or synthesis gas, and is instead used as a fuel.

それはコークス炉ガスを原料ガスに供しようとすると、
不飽和炭化水素の重合生成物あるいはNOxに起因する
重合生成物による)1器の閉塞あるいは酸素−硫化水素
の共存のために生ずる元素硫黄の析出およびそれに基づ
く機器の閉塞等のトラブルが生ずるからである。
When trying to use coke oven gas as raw material gas,
Troubles such as blockage of one vessel (due to polymerization products of unsaturated hydrocarbons or polymerization products caused by NOx) or precipitation of elemental sulfur caused by the coexistence of oxygen and hydrogen sulfide and resulting blockage of equipment may occur. be.

(従来技術の説明〉 コークス炉ガスをより[1しようとする試みとしては、
コークス炉ガスを腎圧昇温してNOxを除去し、吸収油
処理によるタールミストや芳香IJ’A化合物を除くこ
とは知られている。すなわち、上記処理によればNOx
や芳香族化合物、オイルミストはほぼ完全に除去される
。しかし硫化水素、有機硫黄やジエン類および酸素は残
留する。このような硫化水素と酸素の並存はコークス炉
ガスの精製にゼオライト吸着法を用いる場合に元素硫黄
が析出することから好ましくない。
(Description of the prior art) As an attempt to reduce the amount of coke oven gas,
It is known to remove NOx by increasing the temperature of coke oven gas, and to remove tar mist and aromatic IJ'A compounds by treatment with absorption oil. That is, according to the above process, NOx
, aromatic compounds, and oil mist are almost completely removed. However, hydrogen sulfide, organic sulfur, dienes, and oxygen remain. Such coexistence of hydrogen sulfide and oxygen is not preferable because elemental sulfur will precipitate when zeolite adsorption is used to purify coke oven gas.

このコークス炉ガスをさらに精製する方法として特公昭
58−12318号公報に開示の方法がある。同公報に
開示の発明は、コークス炉ガスを昇温、背圧、油洗浄、
急冷等の面処理を施した後に、コークス炉ガスを水添脱
硫触媒に接触させてジエン類、酸素、硫化物を選択的に
水添するものである。しかしながら、この方法において
は、水添脱硫触媒を用いているために、反応を100〜
200℃の低温で行なうと、アセチンン、ジエン等の不
飽和炭化水素の水添は行なわれるが、亜硫酸ガスが副生
じてしまうので腐食の問題が発生する恐れがある。
As a method for further purifying this coke oven gas, there is a method disclosed in Japanese Patent Publication No. 58-12318. The invention disclosed in the publication involves heating coke oven gas, applying back pressure, oil washing,
After surface treatment such as rapid cooling, the coke oven gas is brought into contact with a hydrodesulfurization catalyst to selectively hydrogenate dienes, oxygen, and sulfides. However, in this method, since a hydrodesulfurization catalyst is used, the reaction is
When carried out at a low temperature of 200° C., unsaturated hydrocarbons such as acetin and diene can be hydrogenated, but sulfur dioxide gas is produced as a by-product, which may lead to corrosion problems.

また、反応を200℃以上で行なうと有機酸が副生じ配
管の腐食を生じ、さらにオレフィン類の水添が不充分な
ため、生成した硫化水素が不飽和炭化水素に付加して新
たに有機硫黄化合物を合成してしまうことがある。
Additionally, if the reaction is carried out at temperatures above 200°C, organic acids will be produced as by-products, leading to corrosion of pipes, and since hydrogenation of olefins is insufficient, the hydrogen sulfide produced will be added to unsaturated hydrocarbons, creating new organic sulfur. Compounds may be synthesized.

このように、コークス炉ガスからジエン類、アセチレン
類、オレフィン等の不飽和炭化水素や硫化物、Wmを有
効に除去する方法は改蕾が必要とされているのが実情で
ある。
As described above, the reality is that a method for effectively removing unsaturated hydrocarbons such as dienes, acetylenes, and olefins, sulfides, and Wm from coke oven gas needs to be improved.

(発明の目的) 本発明はかかる問題点に鑑みなされたもので、コークス
炉ガスから不飽和炭化水素等の不純物を有効に除去づ−
ることを目的とする。
(Object of the Invention) The present invention has been made in view of the above problems, and is a method for effectively removing impurities such as unsaturated hydrocarbons from coke oven gas.
The porpose is to do.

(発明の構成) 本発明者らは上記目的をコークス炉ガスを、パラジウム
触媒によって水添することにより解決したものである。
(Structure of the Invention) The present inventors have solved the above object by hydrogenating coke oven gas using a palladium catalyst.

ザなわら本発明は、コークス炉ガスを、パラジウム触媒
により不飽和炭化水素および酸素を水添することを特徴
とするコークス炉ガスのVJ製法にある。
The present invention resides in a VJ manufacturing method for coke oven gas, which is characterized by hydrogenating coke oven gas to remove unsaturated hydrocarbons and oxygen using a palladium catalyst.

本発明においては、コークス炉ガスを先ず60〜150
℃に昇温する。コークス炉ガス中に、芳香族化合物、窒
素酸化物が含まれている場合には、5〜50/(g/ 
ctrr Gに昇圧後ホットボトルにて、NOxやアセ
チレン類、ジエン類を重合させて除去し、次いでガス油
の如き吸収油で油洗浄して重質炭化水素、ナフタリン、
芳香族化合物等を除去し、ざらに冷却してナフタリン等
を析出除去する。このような処理をされたコークス炉ガ
ス中にはもはやNOxや芳香族化合物は実質的に残存し
ていない。
In the present invention, the coke oven gas is first heated to 60 to 150
Increase temperature to ℃. If the coke oven gas contains aromatic compounds and nitrogen oxides, 5 to 50/(g/
After increasing the pressure to CTRR G, NOx, acetylenes, and dienes are polymerized and removed in a hot bottle, and then washed with absorbing oil such as gas oil to remove heavy hydrocarbons, naphthalene,
Aromatic compounds and the like are removed, and the mixture is roughly cooled to precipitate and remove naphthalene and the like. Substantially no NOx or aromatic compounds remain in the coke oven gas that has been treated in this way.

次いで、このコーク炉ガスを、パラジウム触媒に接触さ
せジエン類、オレフィン類等の不飽和炭化水素や酸素を
選択的に水添する。パラジウム触媒は有機硫黄化合物の
存在下でも触媒層入口温度を1′00〜200℃に上げ
ることにより、オレフィン類、ジエン類等の不飽和炭化
水素や酸素が充分に水添される。このため残留オレフィ
ン類等に硫化水素が付加し、新たに有81硫黄化合物を
副生することがなく、またオレフィン類等と一酸化炭素
および水蒸気によって有機酸を副生ずることが少ないた
め1店食の問題が生じない。また、パラジウム触媒は1
00〜200℃で充分高い触媒活性を発揮ずる。従って
、パラジウム触媒の入口温度をこの範囲の温度にすると
、パラジウム触媒における水添反応はIIRM素反応お
よびエチレン等の水添反応であり発熱反応であることか
ら、コークス炉ガス中の組成により多少の変動はあるが
、パラジウム触媒出口温度は270〜330℃となる。
Next, this coke oven gas is brought into contact with a palladium catalyst to selectively hydrogenate unsaturated hydrocarbons such as dienes and olefins and oxygen. Even in the presence of an organic sulfur compound, the palladium catalyst can sufficiently hydrogenate unsaturated hydrocarbons such as olefins and dienes and oxygen by raising the catalyst layer inlet temperature to 1'00 to 200°C. For this reason, hydrogen sulfide is not added to residual olefins, etc., and new 81-sulfur compounds are not produced as by-products, and organic acids are not produced as by-products from olefins, etc., carbon monoxide, and water vapor. No problems arise. In addition, the palladium catalyst is 1
It exhibits sufficiently high catalytic activity at temperatures of 00 to 200°C. Therefore, when the inlet temperature of the palladium catalyst is set within this range, the hydrogenation reaction in the palladium catalyst is an IIRM elementary reaction and a hydrogenation reaction of ethylene, etc., and is an exothermic reaction. Although there are fluctuations, the palladium catalyst outlet temperature is 270 to 330°C.

このことから、本発明においては、通常の水添に用いら
れる外部冷却型反応器を必要とせず、断熱反応器を用い
て断熱的に水添反応を行なわせることができる。
Therefore, in the present invention, the hydrogenation reaction can be carried out adiabatically using an adiabatic reactor without requiring an externally cooled reactor that is normally used for hydrogenation.

ここに用いられるパラジウム触媒は特に制限はないが、
一般に残留塩素の少ないパラジウム触媒を用いるべきで
あって、塩化パラジウムをアルミナに含浸させ、水素還
元によって塩素イオンを除去したものは、低温にて重合
物を作りやすく、酸の副生も大である。しかしながら、
塩化パラジウムを用いても特願昭59−43981号公
報に開示の方法によって得られたものは高活性であった
。また、1it’[パラジウムをアルミナに含浸し、分
解して硝酸イオンを除去したものも高活性であった。
The palladium catalyst used here is not particularly limited, but
In general, palladium catalysts with low residual chlorine should be used, and those in which alumina is impregnated with palladium chloride and chlorine ions are removed by hydrogen reduction are easy to form polymers at low temperatures and produce a large amount of acid as a by-product. . however,
Even when palladium chloride was used, the product obtained by the method disclosed in Japanese Patent Application No. 59-43981 had high activity. In addition, 1it' [palladium impregnated into alumina and decomposed to remove nitrate ions was also highly active.

このようにしてオレフィン類やジエン類等の不飽和炭化
水素や酸素が水添されたコークス炉ガスは、次に水添脱
硫し有機硫黄化合物等の硫化物を脱硫したり、ゼオライ
ト吸45により水素を分は1する。
The coke oven gas in which unsaturated hydrocarbons such as olefins and dienes and oxygen have been hydrogenated is then subjected to hydrodesulfurization to desulfurize sulfides such as organic sulfur compounds, and hydrogenated by zeolite absorption 45. The minute is 1.

水添脱硫に用いらる触媒はニッケル触媒、Ni1ylo
触媒、Co Mo触媒等の通常の水添脱硫触媒が用いら
れる。この水添脱硫においては、コークス炉ガス中のオ
レフィン類等の不飽和炭化水素がパラジウム触媒の水添
によって、充分水添されているため、オレフィン等と硫
化水素が反応して有機硫黄化合物が生成することがない
The catalyst used for hydrodesulfurization is a nickel catalyst, Ni1ylo.
A conventional hydrodesulfurization catalyst such as a CoMo catalyst is used. In this hydrodesulfurization, unsaturated hydrocarbons such as olefins in coke oven gas are sufficiently hydrogenated by hydrogenation using a palladium catalyst, so olefins and hydrogen sulfide react to form organic sulfur compounds. There's nothing to do.

ここに用いられろ水添脱硫触媒は予備硫化することが好
ましく、また脱硫温度は270〜330℃稈度が好まし
い。この理由は、−酸化炭素が共存すると右は硫黄の水
添速度が著しく低下J゛る。そのため、ガス空塔速度を
小さくする必要があるが、330℃以上の高温では、水
添脱硫触媒でもメタン化が併発する恐れがある。従って
、脱硫fA度は      “1270〜330℃に設
定することが望ましい。またパラジウム触媒とNiMo
触媒等の水添脱硫触媒との間で予熱が不要となるという
利点も生じる。
The hydrodesulfurization catalyst used here is preferably presulfurized, and the desulfurization temperature is preferably 270 to 330°C. The reason for this is that when carbon oxide coexists, the hydrogenation rate of sulfur decreases significantly. Therefore, it is necessary to reduce the superficial gas velocity, but at high temperatures of 330° C. or higher, there is a risk that methanation will occur even with the hydrodesulfurization catalyst. Therefore, it is desirable to set the desulfurization fA degree to 1270 to 330°C.
There is also the advantage that preheating with a hydrodesulfurization catalyst such as a catalyst is not required.

さらに、上述のごとくパラジウム触媒を用いた水添反応
が発熱反応であることから、パラジウム触媒出口におい
ては、270〜330℃程度になる。
Furthermore, since the hydrogenation reaction using a palladium catalyst is an exothermic reaction as described above, the temperature at the outlet of the palladium catalyst is approximately 270 to 330°C.

このことから、パラジウム触媒と水添脱硫触媒との間に
おいては、加熱が不要となる。また、水添脱硫において
は、オレフィン類等の不飽和炭化水素の水添やメタン化
が生ぜず、これに伴なう発熱も生じないので、温度上昇
防止のためのリサイクルも不必要である。
For this reason, heating is not required between the palladium catalyst and the hydrodesulfurization catalyst. Furthermore, in hydrodesulfurization, unsaturated hydrocarbons such as olefins are not hydrogenated or methanated, and no accompanying heat is generated, so there is no need for recycling to prevent temperature rise.

パラジウム触媒による水添の後、ゼオライト等の吸着に
より水素を分離する場合には、酸素と硫化水素が並存す
ることがないので、元素硫黄が析出するという問題も生
じない。また、深冷分離法、分離膜による方法の何れに
よってもトラブルなく水素を回収することが可能である
When hydrogen is separated by adsorption using zeolite or the like after hydrogenation using a palladium catalyst, oxygen and hydrogen sulfide do not coexist, so the problem of elemental sulfur precipitating does not occur. Further, hydrogen can be recovered without any trouble by either the cryogenic separation method or the method using a separation membrane.

(実施例および比較例の説明) 以下、実施例および比較例に基づき本発明を具体的に説
明する。
(Description of Examples and Comparative Examples) The present invention will be specifically described below based on Examples and Comparative Examples.

比  較  例 第1表に示す組成のコークス炉ガスを第1図に示すフロ
ーに従って、ホットボトル、油洗浄、冷却という前処理
を施した後、NiMo触媒で水添を行なった。このN1
M0触媒層出口のコークス炉ガスの組成を第1表に示し
た。なお、NiMo触媒層は外部冷却型反応器を用い、
280℃、圧力17に’j/ ci−G 、  S V
 = 30001/ hrテ行なツタ。
Comparative Example Coke oven gas having the composition shown in Table 1 was subjected to pretreatment of hot bottling, oil washing, and cooling according to the flow shown in FIG. 1, and then hydrogenated using a NiMo catalyst. This N1
Table 1 shows the composition of the coke oven gas at the outlet of the M0 catalyst bed. Note that the NiMo catalyst layer uses an externally cooled reactor,
280℃, pressure 17'j/ci-G, SV
= 30001/hr Te row ivy.

実  施  例 第1表に示す組成のコークス炉ガスを第2図に示すフロ
ーに従って、ホットボトル、油洗浄、冷却という前処理
を施した後、断熱反応器を設【ノ、パラジウム触媒を充
填し、入口温度を150℃に設定した結果、出口温度は
280℃になり、そのままN1M0触媒層に送入し、水
添脱硫を行なった。
Example Coke oven gas having the composition shown in Table 1 was subjected to pretreatment of hot bottling, oil washing, and cooling according to the flow shown in Figure 2, and then an adiabatic reactor was set up and filled with palladium catalyst. As a result of setting the inlet temperature to 150° C., the outlet temperature became 280° C., and the material was directly fed into the N1M0 catalyst bed for hydrodesulfurization.

このパラジウム触媒層出口およびNIMO触媒PI’>
出口のコークス炉ガスの組成を第1表に示した。
This palladium catalyst layer outlet and NIMO catalyst PI'>
The composition of the coke oven gas at the outlet is shown in Table 1.

なお、NiMo触媒層は冷却する必要がなかった。Note that there was no need to cool the NiMo catalyst layer.

81表に示されるごとく、比較例におけるN1M0触媒
層出口のコークス炉ガス組成はオレフィン類、化1幾酸
や有機硫黄化合物がかなり含有されているが、実施例の
パラジウム触媒層出口のコークス炉ガス組成はオレフィ
ン類や有機酸が含有されてJ>らず、オレフィン類は完
全に水添され、有機酸は副生しないことが判った。また
、実施例のNiMo触媒層出口のコークス炉ガス組成に
おいては、有機硫黄化合物が完全に水添されていること
が判った。
As shown in Table 81, the composition of the coke oven gas at the outlet of the N1M0 catalyst layer in the comparative example contains a considerable amount of olefins, dioxylic acids, and organic sulfur compounds, but the composition of the coke oven gas at the outlet of the palladium catalyst layer in the example It was found that the composition contained no olefins or organic acids, that the olefins were completely hydrogenated, and that no organic acids were produced as by-products. Furthermore, it was found that the organic sulfur compounds were completely hydrogenated in the coke oven gas composition at the outlet of the NiMo catalyst layer in the example.

(発明の効果) 以上のごとく、コークス炉ガスを、パラジウム触媒によ
ってオレフィン等の不飽和炭化水素および酸素を選択水
添する本発明のコークス炉の精製法においては、次のご
とき効果を奏する。
(Effects of the Invention) As described above, the coke oven refining method of the present invention, in which coke oven gas is selectively hydrogenated to remove unsaturated hydrocarbons such as olefins and oxygen using a palladium catalyst, has the following effects.

■:パラジウム触媒の水添に63いて、有11酸の副生
が少ない。
(2): 63% in hydrogenation using palladium catalyst, less by-product of 11 acids.

■:後工程で有機硫黄化合物の水添膜I11!1を行な
うことが容易である。
(2): It is easy to form a hydrogenated film I11!1 of an organic sulfur compound in a subsequent step.

■:パラジウム触媒の水添反応が発熱反応であるため、
外部冷却型反応器が不要で、断熱反応器で可能となった
■: Since the hydrogenation reaction of palladium catalyst is an exothermic reaction,
An externally cooled reactor is not required, making it possible to use an adiabatic reactor.

【図面の簡単な説明】 第1図は比較例に用いたコークス炉ガスの精製法の70
−1および 第2図は実施例に用いたコークス炉ガスの精)J法のフ
ローである。
[Brief explanation of the drawings] Figure 1 shows 70 of the coke oven gas purification methods used in the comparative example.
1 and 2 are the flowcharts of method J for coke oven gas used in the examples.

Claims (1)

【特許請求の範囲】 1、コークス炉ガスを、パラジウム触媒により不飽和炭
化水素および酸素を水添することを特徴とするコークス
炉ガスの精製法。 2、前記パラジウム触媒による水添の前に、前処理とし
てホットボトル、油洗浄、冷却を行なう前記特許請求の
範囲第1項記載のコークス炉ガスの精製法。 3、前記パラジウム触媒による水添の後に、水添脱硫触
媒により硫化物を水添脱硫する前記特許請求の範囲第1
項または第2項記載のコークス炉ガスの精製法。 4、前記パラジウム触媒による水添の後に、吸着剤によ
り吸着分離を行ない、水素を回収する前記特許請求の範
囲第1項または第2項記載のコークス炉ガスの精製法。 5、前記吸着剤がゼオライトである前記特許請求の範囲
第4項記載のコークス炉ガスの精製法。
[Claims] 1. A method for purifying coke oven gas, which comprises hydrogenating coke oven gas to remove unsaturated hydrocarbons and oxygen using a palladium catalyst. 2. The method for refining coke oven gas according to claim 1, wherein hot bottling, oil washing, and cooling are performed as pretreatments before the hydrogenation using the palladium catalyst. 3. After the hydrogenation using the palladium catalyst, the sulfide is hydrodesulfurized using a hydrodesulfurization catalyst.
The method for purifying coke oven gas according to item 1 or 2. 4. The coke oven gas purification method according to claim 1 or 2, wherein after hydrogenation using the palladium catalyst, adsorption separation is performed using an adsorbent to recover hydrogen. 5. The method for purifying coke oven gas according to claim 4, wherein the adsorbent is zeolite.
JP21037284A 1984-10-09 1984-10-09 Method of purifying coke oven gas Granted JPS6189294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21037284A JPS6189294A (en) 1984-10-09 1984-10-09 Method of purifying coke oven gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21037284A JPS6189294A (en) 1984-10-09 1984-10-09 Method of purifying coke oven gas

Publications (2)

Publication Number Publication Date
JPS6189294A true JPS6189294A (en) 1986-05-07
JPH0349960B2 JPH0349960B2 (en) 1991-07-31

Family

ID=16588258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21037284A Granted JPS6189294A (en) 1984-10-09 1984-10-09 Method of purifying coke oven gas

Country Status (1)

Country Link
JP (1) JPS6189294A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446648B1 (en) * 2000-08-24 2004-09-04 주식회사 포스코 Method for purifying coke oven gas by cooling down to freezing point of water
JP2006257351A (en) * 2005-03-18 2006-09-28 Toyota Motor Corp Catalyst reactor for post-treating gasification gas and system and method for post-treating gasification gas using the same catalyst reactor
JP2008239443A (en) * 2007-03-28 2008-10-09 Mitsubishi Chemicals Corp Method and system for producing synthesis gas
CN109641176A (en) * 2016-09-01 2019-04-16 蒂森克虏伯工业解决方案股份公司 Method and apparatus for removing organosulfur compound from hydrogen-rich gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367702A (en) * 1976-11-30 1978-06-16 Mitsubishi Kakoki Kaisha Ltd Purification of coke oven gas
JPS57205483A (en) * 1981-06-09 1982-12-16 Sumitomo Chem Co Ltd Selective hydrogenation without isomerization
JPS59230090A (en) * 1983-06-13 1984-12-24 Tokyo Gas Co Ltd Purification of gas
JPS59232175A (en) * 1983-06-16 1984-12-26 Tokyo Gas Co Ltd Refining of gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367702A (en) * 1976-11-30 1978-06-16 Mitsubishi Kakoki Kaisha Ltd Purification of coke oven gas
JPS57205483A (en) * 1981-06-09 1982-12-16 Sumitomo Chem Co Ltd Selective hydrogenation without isomerization
JPS59230090A (en) * 1983-06-13 1984-12-24 Tokyo Gas Co Ltd Purification of gas
JPS59232175A (en) * 1983-06-16 1984-12-26 Tokyo Gas Co Ltd Refining of gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446648B1 (en) * 2000-08-24 2004-09-04 주식회사 포스코 Method for purifying coke oven gas by cooling down to freezing point of water
JP2006257351A (en) * 2005-03-18 2006-09-28 Toyota Motor Corp Catalyst reactor for post-treating gasification gas and system and method for post-treating gasification gas using the same catalyst reactor
JP2008239443A (en) * 2007-03-28 2008-10-09 Mitsubishi Chemicals Corp Method and system for producing synthesis gas
CN109641176A (en) * 2016-09-01 2019-04-16 蒂森克虏伯工业解决方案股份公司 Method and apparatus for removing organosulfur compound from hydrogen-rich gas
KR20190041520A (en) * 2016-09-01 2019-04-22 티센크루프 인더스트리얼 솔루션스 아게 Method and apparatus for removing organosulfur compounds from hydrogen-rich gases
JP2019529306A (en) * 2016-09-01 2019-10-17 ティッセンクルップ インダストリアル ソリューションズ アクツィエンゲゼルシャフトThyssenKrupp Industrial Solutions AG Method and apparatus for removing organic sulfur compounds from hydrogen enriched gas

Also Published As

Publication number Publication date
JPH0349960B2 (en) 1991-07-31

Similar Documents

Publication Publication Date Title
US4457834A (en) Recovery of hydrogen
US2979384A (en) Process for production of hydrogen and sulfur
JPH05508432A (en) Method for Adsorbing Sulfur Species from Propylene/Propane Using Renewable Adsorbents
US2116061A (en) Purification of mineral oils, tars, their distillation products, and the like
US4066739A (en) Process for recovering hydrogen and elemental sulfur from hydrogen sulfide and/or mercaptans-containing gases
SU751318A3 (en) Method of producing elementary sulfur from hydrogen sulfide
JPS5845101A (en) Method of reducing total sulfur content of charge gas having high carbon dioxide content
US3864465A (en) Production Of High Purity Hydrogen
JP2001058964A (en) Purification of diolefin hydrocarbon steam
KR20230002026A (en) Direct oxidation of hydrogen sulphide in a hydrotreating recycle gas stream with hydrogen purification
JPS6189294A (en) Method of purifying coke oven gas
US2830880A (en) Catalytic treatment of sulfur-contaminated hydrocarbons for the production of hydrogen
US3691063A (en) Residual fuel oil hydrocracking process
CN1040452C (en) Refining process for hydrodesulfurization, hydrodenitrification and hydrodearsenication of naphtha and saturation of aromatic hydrocarbon
US3595965A (en) Purification of petroleum coke
US5674379A (en) Process for removing carbonyl-sulfide from liquid hydrocarbon feedstocks
JPS6310693A (en) Method of separating and recovering olefins from low boiling gas formed as by-product in catalytic cracker
US3851049A (en) Method for preparing hydrogen sulfide
US1990708A (en) Production of valuable hydrocarbons
US3085972A (en) Production of high octane gasoline
JPS5812318B2 (en) Coke oven gas purification method
US4013637A (en) Water injection in a hydrodesulfurization process
CA1142871A (en) Hydrogenation of high boiling hydrocarbons
JPH07102265A (en) Process for hydrogenating unsaturated hydrocarbon and organic sulfide in hydrocarbon
US1766763A (en) Process of producing gases for the manufacture of oxygenated organic compounds

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees