JP2019529306A - Method and apparatus for removing organic sulfur compounds from hydrogen enriched gas - Google Patents

Method and apparatus for removing organic sulfur compounds from hydrogen enriched gas Download PDF

Info

Publication number
JP2019529306A
JP2019529306A JP2019511776A JP2019511776A JP2019529306A JP 2019529306 A JP2019529306 A JP 2019529306A JP 2019511776 A JP2019511776 A JP 2019511776A JP 2019511776 A JP2019511776 A JP 2019511776A JP 2019529306 A JP2019529306 A JP 2019529306A
Authority
JP
Japan
Prior art keywords
gas
catalyst
hydrogen
organic sulfur
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019511776A
Other languages
Japanese (ja)
Inventor
リーガー,ミカエル
ティエレート,ホルガー
カンプ,エファ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Industrial Solutions AG
Original Assignee
ThyssenKrupp Industrial Solutions AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Industrial Solutions AG filed Critical ThyssenKrupp Industrial Solutions AG
Publication of JP2019529306A publication Critical patent/JP2019529306A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/34Purifying combustible gases containing carbon monoxide by catalytic conversion of impurities to more readily removable materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/102Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/202Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/308Carbonoxysulfide COS
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/045Purification by catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Industrial Gases (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本発明は、二硫化炭素化合物と酸素とを含有する水素富化ガスから硫黄を分離するための方法に関し、二硫化炭素化合物は触媒を用いて硫化水素に変換され、貴金属触媒が触媒として用いられる。貴金属触媒を使用すると、二硫化炭素化合物の還元と同時に酸素を水に変換することができる。さらに、酸素還元は触媒を加熱するのに必要なエネルギーを提供することができる。本発明はまた、対応する方法を実行するための装置に関する。【選択図】図1The present invention relates to a method for separating sulfur from a hydrogen enriched gas containing a carbon disulfide compound and oxygen, wherein the carbon disulfide compound is converted to hydrogen sulfide using a catalyst, and a noble metal catalyst is used as the catalyst. . When a noble metal catalyst is used, oxygen can be converted into water simultaneously with the reduction of the carbon disulfide compound. Furthermore, oxygen reduction can provide the energy necessary to heat the catalyst. The invention also relates to an apparatus for carrying out the corresponding method. [Selection] Figure 1

Description

本発明は工業用ガスの脱硫の分野にあり、特に貴金属触媒を使用してコークス炉ガスから硫化炭素を除去するための新規な方法およびその使用に関する。   The present invention is in the field of industrial gas desulfurization, and more particularly relates to a novel process and its use for removing carbon sulfide from coke oven gas using a noble metal catalyst.

コークス炉ガスは、瀝青炭の乾留においてコークス炉内で発生する。コークス炉ガスは、典型的には、主成分として約55重量%の水素、25重量%のメタン、10重量%の窒素、および5重量%の一酸化炭素を含有する。このため、コークス炉ガスは化学反応用の合成ガスとして原則的に適している。石炭は特定の割合の硫黄を含有するので、石炭のコーキングは、とりわけ硫化カルボニルおよび二硫化炭素を形成し、これらは例えばその後の反応において触媒毒として作用するので、コークス炉ガスをさらに利用する前に除去される必要がある。硫黄化合物を除去しなければ、これらの触媒は頻繁な洗浄またはさらには交換を必要とし、これはコストおよび複雑さを伴い、さらに設備の停止時間のために望ましくない。   Coke oven gas is generated in the coke oven during the dry distillation of bituminous coal. The coke oven gas typically contains about 55 wt% hydrogen, 25 wt% methane, 10 wt% nitrogen, and 5 wt% carbon monoxide as the main components. For this reason, coke oven gas is in principle suitable as a synthesis gas for chemical reactions. Because coal contains a certain proportion of sulfur, coal coking forms inter alia carbonyl sulfide and carbon disulfide, which act as catalyst poisons in subsequent reactions, for example, before further utilization of coke oven gas. Need to be removed. Without removal of sulfur compounds, these catalysts require frequent cleaning or even replacement, which is costly and complex and is undesirable due to equipment downtime.

望ましくない硫化炭素をコークス炉ガスから解放する1つの方法は、それを接触水素化に供し、そして硫黄化合物を硫化水素に変換することである。このガスも同様に望ましくないが、水性のアルカリ液、例えばアンモニア溶液で掻き出すのは容易である。   One way to release unwanted carbon sulfide from coke oven gas is to subject it to catalytic hydrogenation and to convert sulfur compounds to hydrogen sulfide. This gas is likewise undesirable, but it is easy to scrape with an aqueous alkaline solution, such as an ammonia solution.

硫黄化合物を水素化するための多くの方法が先行技術から既に知られている。したがって、例えば独国特許出願公開第1545470号明細書(Pichler)は、コバルト−モリブデン、ニッケル−モリブデン、またはニッケル−コバルト−モリブデン触媒の存在下で、二段階方法においてコークス炉ガス中で硫化炭素を水素化して硫化水素を得て、その後、従来の方法を用いてガス混合物からこの硫化水素を除去することができる方法を提案している。例における反応温度は550℃より高い。   Many methods for hydrogenating sulfur compounds are already known from the prior art. Thus, for example, DE 15 45 470 (Pichler) describes carbon sulfide in coke oven gas in a two-step process in the presence of a cobalt-molybdenum, nickel-molybdenum or nickel-cobalt-molybdenum catalyst. A method has been proposed in which hydrogen sulfide is obtained to obtain hydrogen sulfide, which can then be removed from the gas mixture using conventional methods. The reaction temperature in the examples is higher than 550 ° C.

同様の方法が、独国特許出願公開第2647690号明細書(Parsons)からも知られている。これは、コバルト、モリブデン、鉄、クロム、バナジウム、トリウム、ニッケル、タングステンおよび/またはウランをベースとする触媒の存在下で硫黄含有炭素化合物を水素化し、アルカリ金属水酸化物溶液を用いて得られた硫化水素を抽出塔で除去することを提案している。ここで提案されている特定の触媒は上記の金属の硫化物である。しかしながら、不利な点は、独国特許出願公開第2647690号明細書に特定された方法の目的のためにも、触媒は260℃の最低温度を必要とし、そして水素化は好ましくは著しく高い温度、場合によっては400℃を超える温度で行わなければならないことである。これはエネルギー消費の理由だけでなく、さらに、ガスの組成もこれらの温度で変化する、すなわちメタン化が既に起こっているため望ましくない。   A similar method is known from German Offenlegungsschrift 26 47 690 (Parsons). This is obtained using hydrogenated sulfur-containing carbon compounds in the presence of catalysts based on cobalt, molybdenum, iron, chromium, vanadium, thorium, nickel, tungsten and / or uranium and using alkali metal hydroxide solutions. It is proposed to remove the hydrogen sulfide with an extraction tower. The specific catalyst proposed here is a sulfide of the above metals. However, the disadvantage is that, for the purposes of the process specified in DE 2647690, the catalyst also requires a minimum temperature of 260 ° C. and the hydrogenation is preferably a significantly higher temperature, In some cases, it must be performed at a temperature exceeding 400 ° C. This is undesirable not only for reasons of energy consumption, but also because the gas composition also changes at these temperatures, i.e. methanation has already taken place.

独国特許出願公開第102013009885号明細書は、硫化コバルト−モリブデン触媒が硫黄化合物を硫化水素に変換するために利用されることになっているコークス炉ガスから硫黄化合物を除去するための方法を記載している。これらは主に硫化モリブデンからなりそして助触媒として硫化物形態のコバルトを含有する触媒である。そのような触媒の使用は、脱硫における操作温度を、メタン形成を抑制するというさらなる利点を有する240℃から260℃の範囲の温度に下げることを可能にした。   DE 102013009885 describes a process for removing sulfur compounds from a coke oven gas in which a cobalt sulfide-molybdenum catalyst is to be used to convert the sulfur compounds to hydrogen sulfide. is doing. These are catalysts mainly composed of molybdenum sulfide and containing cobalt in the sulfide form as cocatalyst. The use of such a catalyst made it possible to lower the operating temperature in desulfurization to a temperature in the range of 240 ° C. to 260 ° C. with the further advantage of suppressing methane formation.

特に高温で行われる場合の脱硫における1つの問題は、工業用ガス、特に硫黄化合物だけでなく特定の割合の酸素も含有するコークス炉ガスの問題である。酸素の存在下で水素含有ガスを加熱すると、制御されていない爆発ガス反応が起こり得、これはコークス炉ガス用の処理プラントを損傷し得る。したがって、脱硫に送られるガスは、脱硫装置に供給される前にできるだけ酸素を含まないようにすべきである。しかしながら、コークス炉ガスのようなガス混合物からの酸素の除去は技術的には比較的複雑であり、したがって費用がかかる。したがって、コークス炉ガスのかなりの割合が現行では熱回収(すなわち焼却)にかけられているが、これは硫黄分のために有害な排出を引き起こす。   One problem in desulfurization, particularly when carried out at high temperatures, is that of industrial gases, particularly coke oven gases that contain not only sulfur compounds but also a certain proportion of oxygen. When heating a hydrogen-containing gas in the presence of oxygen, an uncontrolled explosion gas reaction can occur, which can damage the processing plant for coke oven gas. Therefore, the gas sent to desulfurization should be as free of oxygen as possible before being fed to the desulfurization unit. However, the removal of oxygen from gas mixtures such as coke oven gas is technically relatively complex and therefore expensive. Thus, a significant proportion of coke oven gas is currently subjected to heat recovery (ie, incineration), which causes harmful emissions due to sulfur content.

独国特許出願公開第102013009885号明細書に記載されている触媒は、例えば独国特許出願公開第1545470号明細書から知られている触媒と比較して、硫黄化合物についての反応温度を著しく低下させることを既に可能にしている。しかしながら、ガス混合物を触媒の反応温度に加熱するのに必要とされるエネルギーが脱硫のための費用のかなりの割合を占めるので、例えば200℃などの低温で十分な脱硫を保証する工業用ガスからの硫黄化合物の還元のための触媒が必要である。   The catalyst described in DE 102013009885 significantly reduces the reaction temperature for sulfur compounds compared to, for example, the catalyst known from DE 1545470. It is already possible. However, since the energy required to heat the gas mixture to the reaction temperature of the catalyst accounts for a significant proportion of the cost for desulfurization, it is from industrial gases that guarantee sufficient desulfurization at low temperatures such as 200 ° C. A catalyst for the reduction of sulfur compounds is required.

独国特許出願公開第102011105353号明細書は、貴金属触媒を用いて硫黄含有炭化水素、例えばチオフェン、CHSH、ならびに2−および3−メチルチオフェンを硫化水素に還元的に変換する方法を開示しており、この変換は酸素ガスの存在下で行うことができる。使用される触媒は、例えば酸化セリウム/酸化アルミニウム/酸化ランタン担体上の白金/ルテニウム触媒である。しかしながら、この公知の方法では、水素富化ガスはCOSもCSも含有していない。 German Offenlegungsschrift 10 201 11053353 discloses a method for the reductive conversion of sulfur-containing hydrocarbons, such as thiophene, CH 3 SH, and 2- and 3-methylthiophene to hydrogen sulfide using a noble metal catalyst. This conversion can be carried out in the presence of oxygen gas. The catalyst used is, for example, a platinum / ruthenium catalyst on a cerium oxide / aluminum oxide / lanthanum oxide support. However, in this known method, the hydrogen-enriched gas contains neither COS nor CS 2 .

米国特許出願公開第2002/0121093号明細書は、例えばAl上のPtのような触媒が使用される、COSのHSへの変換を開示している。しかしながら、この文献は、有機硫黄化合物の還元ではなく、COSを水と反応させてCOおよびHSを得るCOSの加水分解に関するものである。したがって、有機硫黄化合物COSは還元されずに酸化される。前記反応は有機硫黄化合物に基づいて全体的に均一な電子バランスを有するので、全体の反応も還元ではない。 US 2002/0121093 discloses the conversion of COS to H 2 S using a catalyst such as Pt on Al 2 O 3 , for example. However, this document does not relate to the reduction of organic sulfur compounds but to the hydrolysis of COS to react COS with water to obtain CO 2 and H 2 S. Therefore, the organic sulfur compound COS is oxidized without being reduced. Since the reaction has an overall uniform electron balance based on the organic sulfur compound, the overall reaction is not reduction.

米国特許第4,981,661号明細書も同様に、COSおよびCSのような有機硫黄化合物を水と組み合わせてHSおよびCOに変換する方法を開示している。しかしながら、この方法は、ある割合の有機硫黄化合物と酸素とを含む水素富化ガスを貴金属触媒で還元することを含まない。さらに、この方法は2つの工程に分けられ、第一工程はガス混合物から酸素を除去することを含む。この工程は、例えばCo−Mo触媒を使用する。Pt系の触媒については、この刊行物は、これらが酸化特性を有し、したがって、酸素と組み合わせて存在するHSのSOへの酸化をもたらすと述べている。これは、残留するHSとの二次反応を介して、装置の閉塞を招く可能性がある硫黄の形成をもたらす。 US Pat. No. 4,981,661 similarly discloses a method for converting organic sulfur compounds such as COS and CS 2 to H 2 S and CO 2 in combination with water. However, this method does not include reducing a hydrogen-enriched gas containing a proportion of organic sulfur compounds and oxygen with a noble metal catalyst. Furthermore, the method is divided into two steps, the first step comprising removing oxygen from the gas mixture. In this step, for example, a Co—Mo catalyst is used. For Pt-based catalysts, this publication states that they have oxidative properties and thus lead to the oxidation of H 2 S present in combination with oxygen to SO 2 . This results in the formation of sulfur, which can lead to equipment clogging through secondary reactions with residual H 2 S.

特開昭59−232175号公報には、不純物としてジエン、酸素、オレフィンおよび硫黄化合物を含有するコークス炉ガスの処理が記載されている。そのようなコークス炉ガスは、Al担体上のパラジウム系触媒の存在下で還元されて、続いてZnOのような吸着剤上に吸収され得るHSを生じる。この刊行物は硫黄化合物の中でCOSおよびCSを列挙していない。さらに、実施例において、組成物は0.01%HSの非常に低い硫黄含有量を有し、したがってここでの処理は粗コークス炉ガスでは行われず、むしろこの文献で報告されていない処理工程が行われたと想定しなければならない。 JP 59-232175 describes the treatment of coke oven gas containing dienes, oxygen, olefins and sulfur compounds as impurities. Such coke oven gas is reduced in the presence of a palladium-based catalyst on an Al 2 O 3 support, yielding H 2 S that can subsequently be absorbed on an adsorbent such as ZnO. This publication does not list COS and CS 2 among the sulfur compounds. Furthermore, in the examples, the composition has a very low sulfur content of 0.01% H 2 S, so that the treatment here does not take place in the crude coke oven gas, but rather a treatment not reported in this document. It must be assumed that the process has been performed.

独国特許出願公開第1545470号明細書German Patent Application Publication No. 1545470 独国特許出願公開第2647690号明細書German Patent Application No. 2647690 独国特許出願公開第102013009885号明細書German Patent Application Publication No. 102013009885 独国特許出願公開第102011105353号明細書German Patent Application Publication No. 1020111053353 米国特許出願公開第2002/0121093号明細書US Patent Application Publication No. 2002/0121093 米国特許第4,981,661号明細書US Pat. No. 4,981,661 特開昭59−232175号公報JP 59-232175 A

したがって、本発明は、工業用ガス中の元素状酸素の除去のコストを削減し、同時に理想的には先行技術と比較して比較的低い温度で、ガス中に存在する硫化炭素および同様に硫化水素中に存在する任意の有機硫黄化合物(例えばチオフェンまたはメルカプタン)の理想的に定量的な変換を確実にする方法を提案することを目的とする。本発明のさらなる目的は、脱硫のためにガス混合物を加熱するために可能な限り少ないエネルギーを費やすことを必要とする方法を提案することである。   Thus, the present invention reduces the cost of removal of elemental oxygen in industrial gases, and at the same time ideally at a relatively low temperature compared to the prior art, carbon sulfide present in the gas and also sulfurized. The aim is to propose a method that ensures an ideal quantitative conversion of any organosulfur compounds present in hydrogen (for example thiophene or mercaptans). A further object of the invention is to propose a method that requires as little energy as possible to heat the gas mixture for desulfurization.

したがって、本発明は、有機硫黄化合物および場合により酸素を含む水素富化ガスから硫黄を除去する方法であって、有機硫黄化合物が触媒の作用下で硫化水素に変換されることを特徴とする方法を提供し、ここで、使用される触媒は貴金属触媒であり、水素富化ガスはCOSおよびCSを含む群から選択される少なくとも1つの化合物を含む。 Accordingly, the present invention is a method for removing sulfur from a hydrogen enriched gas comprising an organic sulfur compound and optionally oxygen, the organic sulfur compound being converted to hydrogen sulfide under the action of a catalyst. Wherein the catalyst used is a noble metal catalyst and the hydrogen-enriched gas comprises at least one compound selected from the group comprising COS and CS 2 .

貴金属触媒を含有する反応器2、水素富化ガスの供給部1、反応器からのガスの排出部3、および反応器の下流に配置されたガスから硫化水素を除去するための装置4を備える本発明の実施態様を示す図である。A reactor 2 containing a noble metal catalyst, a hydrogen-rich gas supply unit 1, a gas discharge unit 3 from the reactor, and an apparatus 4 for removing hydrogen sulfide from a gas arranged downstream of the reactor It is a figure which shows the embodiment of this invention. 貴金属をベースとしない触媒を含み、反応器2の下流に配置された硫化水素を得るための有機硫黄化合物の還元のための反応器6を備える本発明のさらなる実施形態を示す図である。FIG. 3 shows a further embodiment of the invention comprising a reactor 6 for the reduction of an organic sulfur compound to obtain hydrogen sulfide arranged downstream of the reactor 2, which contains a catalyst based on noble metals.

本発明の文脈において、「貴金属」は、水素電極に関して少なくとも0.45Vの正の標準電位(pH7の水溶液中)を有する金属を意味すると理解されるべきであり、本発明の文脈では、好ましくは、金、白金、イリジウム、パラジウム、オスミウム、銀、ルテニウム、およびロジウムであり、特に好ましくは、パラジウム、白金、およびロジウムであり、パラジウムおよび白金が最も好ましい。貴金属は、列挙された金属のうちの1つからなるか、または列挙された複数の金属の混合物であり得る。   In the context of the present invention, “noble metal” is to be understood as meaning a metal having a positive standard potential (in an aqueous solution of pH 7) of at least 0.45 V with respect to the hydrogen electrode, and in the context of the present invention preferably , Gold, platinum, iridium, palladium, osmium, silver, ruthenium and rhodium, particularly preferably palladium, platinum and rhodium, with palladium and platinum being most preferred. The noble metal may consist of one of the listed metals or may be a mixture of listed metals.

本発明の文脈において、「水素富化ガス」は、20%、好ましくは少なくとも40体積%、特に好ましくは少なくとも45体積%の水素の最小含有量を有するガスを意味すると理解されるべきである。コークス炉ガスは一般に60〜65体積%の水素含有量を有し、したがって本発明の文脈において特に適切な水素富化ガスである。   In the context of the present invention, “hydrogen-enriched gas” is to be understood as meaning a gas having a minimum content of hydrogen of 20%, preferably at least 40% by volume, particularly preferably at least 45% by volume. Coke oven gas generally has a hydrogen content of 60-65% by volume and is therefore a particularly suitable hydrogen-enriched gas in the context of the present invention.

本発明の文脈において、「有機硫黄化合物」は、硫黄および炭素原子を含むが、さらに他のヘテロ原子または水素原子も含み得る化合物を意味すると理解されるべきである。   In the context of the present invention, “organic sulfur compounds” are to be understood as meaning compounds which contain sulfur and carbon atoms, but which may also contain other heteroatoms or hydrogen atoms.

貴金属触媒は、好適には固体担体材料に結合している形態である。適切な担体材料には、特に従来の自動車触媒の担体材料としても使用されるような酸化アルミニウム、またはセラミックが含まれる。適切な酸化アルミニウムは、特に高い内部表面積を有するものである。   The noble metal catalyst is preferably in a form bound to a solid support material. Suitable support materials include aluminum oxide or ceramics, which are also used in particular as support materials for conventional automobile catalysts. Suitable aluminum oxides are those with a particularly high internal surface area.

列挙した種類の酸化アルミニウム担体は先行技術からよく知られている。このように、例えば欧州特許第1385786号明細書および欧州特許第1385787号明細書(Axens)は、ハイドラルギライト型の酸化アルミニウムを粉砕し、硝酸アルミニウムおよびギ酸の水溶液を用いて200℃で6時間かけて水熱処理して、得られた生成物を400℃〜1300℃で焼成する酸化アルミニウム担体の製造方法を記載している。担体材料は続いて押し出され、次いで装填する準備が整う。触媒担体の性質および製造が関係している限りにおいて、2つの列挙された文献は、参照により本明細書に引用される。   The listed types of aluminum oxide supports are well known from the prior art. Thus, for example, EP 1 385 786 and EP 1 385 787 (Axens) grind hydrargillite-type aluminum oxide and use an aqueous solution of aluminum nitrate and formic acid at 200 ° C. for 6 hours. It describes a method for producing an aluminum oxide carrier that is hydrothermally treated and calcined at 400 ° C to 1300 ° C. The carrier material is subsequently extruded and then ready to be loaded. As far as the nature and production of the catalyst support are concerned, the two listed documents are hereby incorporated by reference.

担体材料の形状に関連する規格はないが、適切な形状としては、反応器内でダンプ床の形態で使用され得る球体、および触媒の比較的大きな表面積を保証するハニカムが挙げられる。   Although there are no standards related to the shape of the support material, suitable shapes include spheres that can be used in the form of dump beds in the reactor, and honeycombs that ensure a relatively large surface area of the catalyst.

列挙された触媒の従来の用途、例えば水素化反応において、一酸化炭素は触媒毒として作用する。しかしながら、本発明の根底にある研究において、貴金属触媒は、触媒の有効性の著しい損失が観察されることなく、水素富化ガス混合物中で使用可能であることが驚くべきことに見出された。行われた研究の文脈において、生成物中に酸素と水素の危険な混合物が観察されることなく、触媒に酸素含有ガス混合物を供給することもできることがさらに見出された。代わりに、触媒の作用下で酸素が水素と反応して水を生成することが観察されたので、触媒含有反応器から排出されたガス混合物はごくわずかな割合の酸素(<0.01体積%)しか含まなかった。   In conventional applications of the listed catalysts, such as hydrogenation reactions, carbon monoxide acts as a catalyst poison. However, in the work underlying the present invention, it was surprisingly found that noble metal catalysts can be used in hydrogen-enriched gas mixtures without observing a significant loss of catalyst effectiveness. . It has further been found that in the context of the work performed, it is also possible to supply the catalyst with an oxygen-containing gas mixture without observing a dangerous mixture of oxygen and hydrogen in the product. Instead, it was observed that oxygen reacts with hydrogen to form water under the action of a catalyst, so that the gas mixture discharged from the catalyst-containing reactor has a negligible proportion of oxygen (<0.01% by volume). ) Only included.

酸素と水素との触媒反応はさらに、触媒とガス混合物とが爆発性ガス反応からの廃熱によって加熱され、その結果、(いったん最適な運転温度に達すると)触媒の外部加熱が必要ないという利点がある。さらに、高温のオフガスは、触媒含有反応器へのガス供給物を加熱するために熱交換器を使用して利用されてもよく、したがってさらなるエネルギー節減をもたらす。したがって、本発明における水素富化ガスは、ある割合の酸素を含有することが好ましい。   The catalytic reaction of oxygen and hydrogen further has the advantage that the catalyst and gas mixture are heated by waste heat from the explosive gas reaction, so that once the optimum operating temperature is reached, no external heating of the catalyst is required. There is. Further, the hot off-gas may be utilized using a heat exchanger to heat the gas feed to the catalyst-containing reactor, thus providing further energy savings. Accordingly, the hydrogen-enriched gas in the present invention preferably contains a certain proportion of oxygen.

本発明の文脈において考えられる水素富化ガスは、例えば製鋼所ガスを含み、還元ガスまたは合成ガスであるが、特に適切なガスはコークス炉ガスである。さらに、ガスは、50体積%以下、好ましくは40体積%以下、最も好ましくは30体積%以下の割合の炭化水素成分を含有するのが好適である。   Hydrogen-enriched gases contemplated in the context of the present invention include, for example, steel mill gas and are reducing gas or synthesis gas, but a particularly suitable gas is coke oven gas. Furthermore, the gas suitably contains a hydrocarbon component in a proportion of 50% by volume or less, preferably 40% by volume or less, most preferably 30% by volume or less.

特定されているように、水素富化ガスは有機硫黄化合物をさらに含有する。考えられる有機硫黄化合物は、特に硫化カルボニル(COS)および二硫化炭素(CS)であるが、チオフェンのような芳香族硫黄化合物またはメルカプタンのような脂肪族硫黄化合物でもある。硫化カルボニルの典型的な含有量は、1〜100ppm、特に10〜50ppmの範囲であり得る。カルボニルジスルフィドの典型的な含有量は、10〜200ppm、特に5〜100ppmの含有量であり得る。水素富化ガス中の有機硫黄化合物の典型的な総含有量は、20〜300mg/Nm3、特に20〜200mg/Nm3の含有量であり得る。 As specified, the hydrogen-enriched gas further contains an organic sulfur compound. Possible organic sulfur compounds are in particular carbonyl sulfide (COS) and carbon disulfide (CS 2 ), but also aromatic sulfur compounds such as thiophene or aliphatic sulfur compounds such as mercaptans. The typical content of carbonyl sulfide can range from 1 to 100 ppm, in particular from 10 to 50 ppm. A typical content of carbonyl disulfide can be a content of 10 to 200 ppm, in particular 5 to 100 ppm. A typical total content of organic sulfur compounds in the hydrogen-enriched gas can be a content of 20 to 300 mg / Nm3, in particular 20 to 200 mg / Nm3.

水素富化ガスは、さらに酸素を含むことが好ましい。典型的な酸素含有量は、0.2〜3.0体積%、特に0.4〜1.5体積%の範囲であり得る。   The hydrogen-enriched gas preferably further contains oxygen. A typical oxygen content can range from 0.2 to 3.0% by volume, in particular from 0.4 to 1.5% by volume.

上記のように、特定の触媒は実質的な割合の一酸化炭素を含有するガス雰囲気中で制限なく機能する。したがって、水素富化ガスが一酸化炭素を好適には1〜20体積%、特に1〜10体積%の量で含有する場合が好ましい。   As noted above, certain catalysts function without limitation in a gas atmosphere containing a substantial proportion of carbon monoxide. Therefore, it is preferable that the hydrogen-enriched gas contains carbon monoxide in an amount of 1 to 20% by volume, particularly 1 to 10% by volume.

本発明による方法で使用されるコークス炉ガスは、瀝青炭の乾式熱分解によって好適に発生し、主成分として水素、メタン、窒素および一酸化炭素を含み、二次成分として硫化炭素を含むガス混合物を得る。900℃〜1400℃で行われる瀝青炭の乾留/熱分解では、石炭の揮発性成分が遊離し、本質的に炭素のみを含有する多孔質コークスが形成される。粗ガスは続いて、分別凝縮によってタール、硫酸、アンモニア、ナフタレン、ベンゼンおよびコークス炉ガスに分別される。   The coke oven gas used in the method according to the present invention is preferably generated by dry pyrolysis of bituminous coal, comprising a gas mixture containing hydrogen, methane, nitrogen and carbon monoxide as main components and carbon sulfide as secondary components. obtain. In the dry distillation / pyrolysis of bituminous coal performed at 900 ° C. to 1400 ° C., volatile components of the coal are liberated, and porous coke containing essentially only carbon is formed. The crude gas is subsequently fractionated into tar, sulfuric acid, ammonia, naphthalene, benzene and coke oven gas by fractional condensation.

上記に特定したように、貴金属触媒はガス混合物中に存在する酸素を還元的に水に変換する。したがって、本発明による方法の文脈において、ガス中に存在する酸素が有機硫黄化合物の還元と同時に水に変換される場合が好ましい。ガス中に存在する酸素が実質的に、すなわちガス混合物中の酸素の総体積に基づいて少なくとも80体積%、好ましくは少なくとも90体積%、特に好ましくは少なくとも95体積%の程度までである場合に、有機硫黄化合物の還元と同時に水に変換されるのが特に好ましい。   As specified above, the noble metal catalyst reductively converts oxygen present in the gas mixture to water. Therefore, in the context of the process according to the invention, it is preferred if the oxygen present in the gas is converted into water simultaneously with the reduction of the organic sulfur compound. When the oxygen present in the gas is substantially, ie to the extent of at least 80% by volume, preferably at least 90% by volume, particularly preferably at least 95% by volume, based on the total volume of oxygen in the gas mixture, It is particularly preferred that it is converted to water simultaneously with the reduction of the organic sulfur compound.

他方、本発明の文脈では、酸素の一部または相当部分(すなわち、ガス混合物中の酸素の総体積に基づいて少なくとも70体積%)をガス混合物から除去すること、または有機硫黄化合物を還元する前に水素で水に変換することは排除されない。   On the other hand, in the context of the present invention, before removing a part or a substantial part of oxygen (ie at least 70% by volume based on the total volume of oxygen in the gas mixture) from the gas mixture or reducing the organic sulfur compound. Conversion to water with hydrogen is not excluded.

有機硫黄化合物の触媒転化は、少なくとも150℃、好ましくは少なくとも200℃の温度で行われるのが好適である。他方、有機硫黄化合物の触媒転化が270℃以下、好ましくは250℃以下、特に好ましくは230℃以下で行われることが本発明の文脈において好ましい。特に好適であることが証明されている有機硫黄化合物の触媒転化のための温度範囲は、200℃〜250℃、特に200℃〜230℃の範囲である。   Suitably, the catalytic conversion of the organic sulfur compound is carried out at a temperature of at least 150 ° C, preferably at least 200 ° C. On the other hand, it is preferred in the context of the present invention that the catalytic conversion of the organic sulfur compound takes place at 270 ° C. or lower, preferably 250 ° C. or lower, particularly preferably 230 ° C. or lower. The temperature range for the catalytic conversion of organosulfur compounds which has proven particularly suitable is in the range from 200 ° C. to 250 ° C., in particular from 200 ° C. to 230 ° C.

触媒転化を、1〜15バールの範囲で、すなわち大気圧または超大気圧のいずれかでさらに行うことができる。圧力が約1.2〜約5バールの範囲内である一実施形態が好ましい。   Catalytic conversion can be further carried out in the range of 1-15 bar, ie either at atmospheric or superatmospheric pressure. One embodiment wherein the pressure is in the range of about 1.2 to about 5 bar is preferred.

上記に示したように、熱エネルギーはガス混合物中の酸素と水素との反応の過程で放出される。したがって、反応から放出されるエネルギーが温度を所望のレベルに維持するのに十分であるように、水素富化ガス中の酸素の量を調整することが可能であり、そして好ましい。この目的のために、反応混合物中の酸素の量は、例えば有利である場合には酸素の添加により増加させることができる。   As indicated above, thermal energy is released during the reaction of oxygen and hydrogen in the gas mixture. Thus, it is possible and preferred to adjust the amount of oxygen in the hydrogen-enriched gas so that the energy released from the reaction is sufficient to maintain the temperature at the desired level. For this purpose, the amount of oxygen in the reaction mixture can be increased, for example by adding oxygen, if it is advantageous.

ガス流速、触媒の設計およびその構成に応じて、水素富化ガス中の触媒と有機硫黄化合物との反応は不完全であり得、その結果、反応から生じるガスは、ガスをさらに使用すると著しく悪影響を及ぼす有機硫黄化合物の含有量を有する。したがって、ガス混合物中になお存在する有機硫黄化合物が貴金属をベースとしない触媒を用いて硫化水素に変換される段階を触媒転化の下流に配置することが好適であり得る。この変換は、例えば金属が硫化物の形で存在する公知のコバルト−モリブデン触媒またはニッケル−モリブデン触媒を使用することができる。   Depending on the gas flow rate, the catalyst design and its configuration, the reaction between the catalyst and the organosulfur compound in the hydrogen-enriched gas can be incomplete, so that the gas resulting from the reaction is significantly adversely affected by further use of the gas. Having an organic sulfur compound content. Therefore, it may be preferred to arrange the stage where the organic sulfur compound still present in the gas mixture is converted into hydrogen sulfide using a catalyst that is not based on a noble metal, downstream of the catalytic conversion. For this conversion, for example, a known cobalt-molybdenum catalyst or nickel-molybdenum catalyst in which the metal is present in the form of sulfides can be used.

触媒転化は、水素富化ガス中に存在する有機硫黄成分を硫化水素(HS)に変換する。硫化水素の含有量は典型的には50〜300ppmの範囲である。HSの存在は硫化炭素の存在と同じくらい望ましくないが、後者とは対照的に、硫化水素は比較的容易にそして特に定量的にスクラビングすることにより除去され得る。したがって、塩基性媒体中での吸収によりガス混合物から硫化水素を除去することを含む段階を触媒プロセスの下流に配置することが好適である。これは、例えばガスを通過させ、例えば向流で、例えば水酸化ナトリウム水溶液またはアンモニアのような塩基水溶液でガスを処理する吸収塔によって達成することができる。しかしながら、代わりに、ガスの精製に適した他の装置、例えばベンチュリスクラバも考えられる。少量の硫化水素の場合、これは、例えば酸化亜鉛の形態で、固体材料に吸着されることもある。HSは、再生段階において再びそこから放出され得る。 Catalytic conversion converts organic sulfur components present in the hydrogen-enriched gas to hydrogen sulfide (H 2 S). The content of hydrogen sulfide is typically in the range of 50 to 300 ppm. The presence of H 2 S is not as desirable as the presence of carbon sulfide, but in contrast to the latter, hydrogen sulfide can be removed relatively easily and especially by scrubbing quantitatively. Therefore, it is preferred to place a stage downstream of the catalytic process that involves removing hydrogen sulfide from the gas mixture by absorption in a basic medium. This can be achieved, for example, by an absorption tower in which the gas is passed and treated, for example countercurrently, with an aqueous base solution such as aqueous sodium hydroxide or ammonia. However, other devices suitable for gas purification are also conceivable, for example a venturi scrubber. In the case of small amounts of hydrogen sulfide, this may be adsorbed on the solid material, for example in the form of zinc oxide. H 2 S can be released from it again in the regeneration phase.

スクラブまたは吸収を介して除去された硫化水素は、その後、従来のクラウスプロセスにより元素状硫黄に変換され得る。   Hydrogen sulfide removed via scrubbing or absorption can then be converted to elemental sulfur by a conventional Claus process.

さらなる態様において、本発明は、上述の方法を実施するための装置に関し、装置は、水素富化ガスの供給部1、貴金属触媒を含有する反応器2、反応器からのガスの排出部3、および反応器からのガスの排出部の下流に接続されたガスから硫化水素を除去するための装置4を備える。   In a further aspect, the present invention relates to an apparatus for carrying out the above-described method, which comprises a hydrogen-enriched gas supply 1, a reactor 2 containing a noble metal catalyst, a gas discharge 3 from the reactor, And a device 4 for removing hydrogen sulfide from the gas connected downstream of the gas discharge from the reactor.

反応器は好適には、触媒がばらばらのダンプ床または堅い充填物として小片の形態で存在する固定床反応器である。ダンプ床は、チャネル形成、したがって不均一な流れプロファイルをもたらす傾向が大きいので、触媒が反応器内に充填物として配置されている実施形態が好ましい。充填物の形態の触媒のさらなる利点は、低い圧力降下である。   The reactor is preferably a fixed bed reactor in which the catalyst is present in discrete dump beds or in the form of small pieces as a hard packing. Because dump beds are more prone to channel formation and thus non-uniform flow profiles, embodiments in which the catalyst is disposed as a packing in the reactor are preferred. A further advantage of the catalyst in the form of a packing is a low pressure drop.

固定床反応器中での水素化の利点は、高い空時収量が達成可能であり、したがって本発明による方法が約5000〜約30000h−1、好ましくは約10000〜約20000h−1の高いGHSV値でも実施され得ることである。さらなる利点は、水素富化ガスが好ましくは反応器の底部に導入され、触媒床を通って流れて水素化を受け、そして反応器の頂部から生成物の形で再び出るので、生成物排出のための特別な手段が必要ないことである。 The advantage of hydrogenation in a fixed bed reactor is that high space-time yields can be achieved, so that the process according to the invention has a high GHSV value of about 5000 to about 30000 h −1 , preferably about 10000 to about 20000 h −1. But it can be implemented. A further advantage is that the hydrogen discharge gas is preferably introduced at the bottom of the reactor, flows through the catalyst bed, undergoes hydrogenation, and again exits in product form from the top of the reactor, so that product discharge No special means are needed.

記載された装置は、好適には、ガスから硫化水素を除去するための装置4が、液体塩基性媒体を用いたガススクラブとして、または固体吸着媒体を用いた硫化水素のための吸着段階として実施されるようにさらに構成される。   The described apparatus is preferably implemented as apparatus 4 for removing hydrogen sulfide from a gas as a gas scrub using a liquid basic medium or as an adsorption stage for hydrogen sulfide using a solid adsorption medium. Further configured to be.

あるいはまたはそれに加えて、記載された装置は、好適には、貴金属をベースとしない触媒を含み、貴金属触媒を含む反応器2の下流に接続された硫化水素を得るための有機硫黄化合物の還元のための反応器6を含むようにさらに構成され得る。   Alternatively or in addition, the described apparatus preferably comprises a non-noble metal based catalyst for the reduction of organosulfur compounds to obtain hydrogen sulfide connected downstream of the reactor 2 containing the noble metal catalyst. It may be further configured to include a reactor 6 for

硫化水素への最適な変換のためには、有機硫黄化合物の還元は一定の温度、例えば少なくとも150℃を必要とすることが上記で特定されている。したがって、最初から可能な限り完全な有機硫黄化合物の硫化水素への変換を確実にするために、本発明による装置が水素富化ガスの供給部1の上流に接続された熱交換器5を備える場合が好適である。   It has been specified above that for optimal conversion to hydrogen sulfide, the reduction of the organic sulfur compound requires a certain temperature, for example at least 150 ° C. Therefore, in order to ensure the conversion of the organic sulfur compound as complete as possible to hydrogen sulfide from the beginning, the device according to the invention comprises a heat exchanger 5 connected upstream of the supply 1 of hydrogen-enriched gas. The case is preferred.

反応器2内の温度を監視するために、本発明による装置は温度を測定することができる温度測定装置をさらに有することができる。水素富化ガス中の酸素の量による温度の制御を可能にするために、水素富化ガスのための供給部1を酸素のための制御可能な供給装置に接続することができ、前記装置は好適には温度測定装置に接続された制御ループによって制御される。   In order to monitor the temperature in the reactor 2, the device according to the invention can further comprise a temperature measuring device capable of measuring the temperature. In order to be able to control the temperature by the amount of oxygen in the hydrogen-enriched gas, the supply 1 for hydrogen-enriched gas can be connected to a controllable supply device for oxygen, said device being It is preferably controlled by a control loop connected to the temperature measuring device.

さらに、熱交換器は、反応器からのガスの排出部3を介して排出されたガスを反応器に供給されるガスを加熱するために利用することができるように構成され得る。   Furthermore, the heat exchanger can be configured such that the gas discharged via the gas discharge section 3 from the reactor can be used to heat the gas supplied to the reactor.

さらなる態様において、本発明は、硫化水素および水を得るための、有機硫黄化合物および酸素の水素富化ガス中での同時水素化のための貴金属触媒の使用に関し、ここで、水素富化ガスは、COSおよびCSを含む群から選択される少なくとも1つの化合物を含む。上記の記載は、貴金属触媒および水素富化ガスの好ましい実施態様にも同様に当てはまる。 In a further aspect, the present invention relates to the use of a noble metal catalyst for simultaneous hydrogenation of organic sulfur compounds and oxygen in a hydrogen enriched gas to obtain hydrogen sulfide and water, wherein the hydrogen enriched gas is , comprising at least one compound selected from the group comprising COS and CS 2. The above description applies equally to the preferred embodiments of the noble metal catalyst and the hydrogen-enriched gas.

本発明による方法の本質的な利点は、有機硫黄化合物の含有量を約50〜300ppmから1〜5ppm未満、好ましくは約1〜2ppmの残留有機硫黄化合物の含有量まで減少させると同時に、ガス中の酸素比率を問題のないレベルまで減少させることができることである。さらなる好適な態様は、触媒が同様にコークス炉ガス中に存在し得る不飽和炭化水素を水素化または酸化し、それにより下流のユニット(触媒)中でのコーキングを回避することである。   The essential advantage of the process according to the invention is that the content of organic sulfur compounds is reduced from about 50 to 300 ppm to a content of residual organic sulfur compounds of less than 1 to 5 ppm, preferably about 1 to 2 ppm, while at the same time in the gas. It is possible to reduce the oxygen ratio to a level where there is no problem. A further preferred embodiment is that the catalyst also hydrogenates or oxidizes unsaturated hydrocarbons that may be present in the coke oven gas, thereby avoiding coking in downstream units (catalysts).

1 水素富化ガスの供給部
2 反応器
3 ガスの排出部
4 硫化水素を除去するための装置
5 熱交換器
6 有機硫黄化合物の還元のための反応器
DESCRIPTION OF SYMBOLS 1 Supply part of hydrogen rich gas 2 Reactor 3 Gas discharge part 4 Apparatus for removing hydrogen sulfide 5 Heat exchanger 6 Reactor for reduction of organic sulfur compound

Claims (9)

ある割合の有機硫黄化合物および酸素を含む水素富化ガスから硫黄を除去するための方法であって、有機硫黄化合物を硫化水素に還元するための触媒プロセスが実施され、使用される前記触媒は貴金属触媒であり、前記水素富化ガスはCOSおよびCSを含む群から選択される少なくとも1つの化合物を含むことを特徴とする、方法。 A method for removing sulfur from a hydrogen-enriched gas containing a proportion of organic sulfur compounds and oxygen, wherein a catalytic process for reducing the organic sulfur compounds to hydrogen sulfide is carried out, the catalyst used being a noble metal a catalyst, the hydrogen-enriched gas is characterized in that it comprises at least one compound selected from the group comprising COS and CS 2, method. 使用される前記触媒が、好ましくは固体担体材料上のパラジウムおよび/または白金触媒であることを特徴とする、請求項1に記載の方法。   2. Process according to claim 1, characterized in that the catalyst used is a palladium and / or platinum catalyst, preferably on a solid support material. 前記方法で使用される前記ガスがコークス炉ガスであることを特徴とする、請求項1または2に記載の方法。   The method according to claim 1 or 2, characterized in that the gas used in the method is coke oven gas. 前記ガス中に存在する前記酸素が前記有機硫黄化合物の還元と同時に水に変換されることを特徴とする、請求項1〜3のいずれか一項に記載の方法。   The method according to claim 1, wherein the oxygen present in the gas is converted into water simultaneously with the reduction of the organic sulfur compound. 前記触媒プロセスの下流に配置されている段階が、硫化水素が塩基性媒体中での吸収によってガス混合物から除去される段階または固体吸着媒体を用いた硫化水素のための吸着段階として実施されることを特徴とする、請求項1〜4のいずれか一項に記載の方法。   The stage located downstream of the catalytic process is carried out as a stage where hydrogen sulfide is removed from the gas mixture by absorption in a basic medium or as an adsorption stage for hydrogen sulfide using a solid adsorption medium The method according to claim 1, characterized in that 前記触媒プロセスの下流に配置されている段階が、前記ガス混合物中になお存在する有機硫黄化合物が貴金属をベースとしない触媒で硫化水素に変換される段階であることを特徴とする、請求項1〜5のいずれか一項に記載の方法。   2. The step disposed downstream of the catalytic process is a step in which organic sulfur compounds still present in the gas mixture are converted to hydrogen sulfide with a noble metal-based catalyst. The method as described in any one of -5. 前記貴金属をベースとしない触媒が、硫化コバルト−モリブデン触媒またはニッケル−モリブデン触媒であることを特徴とする、請求項6に記載の方法。   The process according to claim 6, characterized in that the noble metal-based catalyst is a cobalt sulfide-molybdenum catalyst or a nickel-molybdenum catalyst. 前記触媒プロセスのために前記水素富化ガスを少なくとも150℃、好ましくは200℃〜250℃の温度に加熱することを特徴とする、請求項1〜7のいずれか一項に記載の方法。   8. A process according to any one of the preceding claims, characterized in that the hydrogen-enriched gas is heated for the catalytic process to a temperature of at least 150 <0> C, preferably from 200 <0> C to 250 <0> C. 水素富化ガス中で有機硫黄化合物と酸素とを同時に水素化して硫化水素と水とを得るための貴金属触媒の使用であって、前記水素富化ガスはCOSおよびCSからなる群から選択される少なくとも1つの化合物を含む、使用。 Use of a noble metal catalyst for simultaneously hydrogenating an organic sulfur compound and oxygen in a hydrogen enriched gas to obtain hydrogen sulfide and water, wherein the hydrogen enriched gas is selected from the group consisting of COS and CS 2 Use comprising at least one compound.
JP2019511776A 2016-09-01 2017-08-25 Method and apparatus for removing organic sulfur compounds from hydrogen enriched gas Pending JP2019529306A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016116306.6 2016-09-01
DE102016116306.6A DE102016116306A1 (en) 2016-09-01 2016-09-01 Method and apparatus for removing organic sulfur compounds from hydrogen-rich gases
PCT/EP2017/071397 WO2018041728A1 (en) 2016-09-01 2017-08-25 Method and device for removing organic sulphur compounds from hydrogen-rich gases

Publications (1)

Publication Number Publication Date
JP2019529306A true JP2019529306A (en) 2019-10-17

Family

ID=59738333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019511776A Pending JP2019529306A (en) 2016-09-01 2017-08-25 Method and apparatus for removing organic sulfur compounds from hydrogen enriched gas

Country Status (7)

Country Link
EP (1) EP3506995A1 (en)
JP (1) JP2019529306A (en)
KR (1) KR102242266B1 (en)
CN (1) CN109641176A (en)
DE (1) DE102016116306A1 (en)
UA (1) UA123236C2 (en)
WO (1) WO2018041728A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196449A (en) * 2021-12-08 2022-03-18 浙江三龙催化剂有限公司 Pre-desulfurization process for blast furnace gas and application thereof
CN116462159A (en) * 2023-05-11 2023-07-21 清华大学 Hydrogen purification system and method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB340016A (en) * 1929-09-16 1930-12-16 Ig Farbenindustrie Ag A process for the catalytic desulphurization of gases
JPS57151693A (en) * 1981-03-13 1982-09-18 Jgc Corp Production of town gas from solid waste
JPS58215488A (en) * 1982-05-25 1983-12-14 アンステイテユ・フランセ・デユ・ペトロ−ル Hydrogenative desulfurization for gas containing oxygen and organic sulfur compound
JPS59232175A (en) * 1983-06-16 1984-12-26 Tokyo Gas Co Ltd Refining of gas
JPS59232174A (en) * 1983-06-16 1984-12-26 Tokyo Gas Co Ltd Method for purifying coke oven gas
JPS619244B2 (en) * 1981-09-21 1986-03-20 Kansai Netsukagaku Kk
JPS6189294A (en) * 1984-10-09 1986-05-07 Kawasaki Steel Corp Method of purifying coke oven gas
JPS61186203A (en) * 1985-02-15 1986-08-19 Tokyo Gas Co Ltd Purification of coke oven gas
JPH04106194A (en) * 1990-08-27 1992-04-08 Kawasaki Steel Corp Process for refining coke oven gas
JPH10211432A (en) * 1997-01-15 1998-08-11 Inst Fr Petrole Catalyst containing sulfide mixture and its applications for hydrofining/hydrogenating conversion of hydrocarbons by hydrogenation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1545470A1 (en) 1966-10-05 1970-02-05 Pichler Dr Phil Helmut Process for converting coke oven gas into a gas that can be exchanged for natural gas
US4041130A (en) 1975-12-29 1977-08-09 The Ralph M. Parsons Company Process for desulfurization of coke oven gas
NL185225C (en) 1988-01-13 1992-03-16 Comprimo Bv METHOD FOR CONVERTING AND REMOVING SULFUR COMPOUNDS FROM A CO-CONTAINING GAS
CA2372652A1 (en) 2001-02-21 2002-08-21 Paul S. Wallace Utilization of cos hydrolysis in high pressure gasification
FR2823193B1 (en) 2001-04-04 2004-02-13 Pro Catalyse ALUMINUM AGGLOMERATES, THEIR PREPARATION PROCESS, AND THEIR USES AS CATALYST SUPPORT, CATALYST OR ABSORBENT
FR2823194B1 (en) 2001-04-10 2004-02-13 Pro Catalyse ALUMINUM AGGLOMERATES FOR USE, IN PARTICULAR, AS CATALYST SUPPORTS, CATALYSTS OR ADSORBENTS, AND THEIR PREPARATION METHODS
GB0916161D0 (en) * 2009-09-15 2009-10-28 Johnson Matthey Plc Desulphurisation process
US8808654B2 (en) * 2009-09-29 2014-08-19 Praxair Technology, Inc. Process for sulfur removal from refinery off gas
DE102011105353A1 (en) 2011-06-22 2012-12-27 Süd-Chemie AG Multifunctional catalyst for the simultaneous removal / conversion of tarry and sulphurous hydrocarbons
CN103372369A (en) * 2012-04-13 2013-10-30 中国石油化工股份有限公司 Method for removing trace impurities from synthesis gas and application of synthesis gas
DE102013009885A1 (en) 2013-01-09 2014-07-10 Thyssenkrupp Uhde Gmbh Manufacture of synthesis gas used for chemical reactions, involves forming gas mixture of hydrogen and methane by pyrolyzing dry coal, hydrogenating gas mixture using cobalt-molybdenum sulfide catalyst and separating hydrogen sulfide

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB340016A (en) * 1929-09-16 1930-12-16 Ig Farbenindustrie Ag A process for the catalytic desulphurization of gases
JPS57151693A (en) * 1981-03-13 1982-09-18 Jgc Corp Production of town gas from solid waste
JPS619244B2 (en) * 1981-09-21 1986-03-20 Kansai Netsukagaku Kk
JPS58215488A (en) * 1982-05-25 1983-12-14 アンステイテユ・フランセ・デユ・ペトロ−ル Hydrogenative desulfurization for gas containing oxygen and organic sulfur compound
JPS59232175A (en) * 1983-06-16 1984-12-26 Tokyo Gas Co Ltd Refining of gas
JPS59232174A (en) * 1983-06-16 1984-12-26 Tokyo Gas Co Ltd Method for purifying coke oven gas
JPS6189294A (en) * 1984-10-09 1986-05-07 Kawasaki Steel Corp Method of purifying coke oven gas
JPS61186203A (en) * 1985-02-15 1986-08-19 Tokyo Gas Co Ltd Purification of coke oven gas
JPH04106194A (en) * 1990-08-27 1992-04-08 Kawasaki Steel Corp Process for refining coke oven gas
JPH10211432A (en) * 1997-01-15 1998-08-11 Inst Fr Petrole Catalyst containing sulfide mixture and its applications for hydrofining/hydrogenating conversion of hydrocarbons by hydrogenation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. YOSHIKAWA, ET AL, KAGAKU ENGINEERING PAPER, vol. 23, no. 6, JPN6021004991, 1997, pages 892 - 898, ISSN: 0004647892 *
MASATAKE HARUTA, SURFACE SCIENCE, vol. 26, no. 10, JPN6021004997, 2005, pages 578 - 584, ISSN: 0004445753 *
SHIGEO NISHIMURA ET AL, SYNTHETIC ORGANIC CHEMISTRY, vol. 22, no. 12, JPN6021004994, 1964, pages 961 - 974, ISSN: 0004445752 *

Also Published As

Publication number Publication date
UA123236C2 (en) 2021-03-03
DE102016116306A1 (en) 2018-03-01
CN109641176A (en) 2019-04-16
KR102242266B1 (en) 2021-04-21
KR20190041520A (en) 2019-04-22
EP3506995A1 (en) 2019-07-10
WO2018041728A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
US4313820A (en) Hydrodesulfurization of organic sulfur compounds and hydrogen sulfide removal with incompletely sulfided zinc titanate materials
Rhodes et al. The low-temperature hydrolysis of carbonyl sulfide and carbon disulfide: a review
US4371507A (en) Catalytic hydrogenation of olefins, hydrodesulfurization of organic sulfur compounds and/or selective removal of hydrogen sulfide from fluid streams
US20060076271A1 (en) Process for the selective desulphurization of olefinic gasolines, comprising a hydrogen purification step
EP2540663B1 (en) Method for adjusting hydrogen to carbon monoxide ratio in synthesis gas
US8043589B2 (en) Process for removing carbonyl sulphide and hydrogen sulphide from a synthesis gas stream
EP1567447B1 (en) Method of desulfurizing a hydrocarbon by partial oxidation
EA010025B1 (en) Process for the removal of cos from a synthesis gas stream comprising hs and cos
EP0920351B1 (en) Process for reducing total sulphur content in gases containing hydrogen sulphide and other sulphur components
US4371728A (en) Selective removal of olefins over zinc titanate promoted with selected metals
KR20100030595A (en) Improved hydrotreatment process
KR20130126492A (en) Gas treatment process
JP7012712B2 (en) Gas desulfurization agent and desulfurization method
JP2019529306A (en) Method and apparatus for removing organic sulfur compounds from hydrogen enriched gas
KR101218929B1 (en) Process for the hydrotreatment of an olefinic gasoline comprising a selective hydrogenation stage
JP2003510176A (en) Method for removing sulfur compounds from gas
AU2003248003A1 (en) Regeneration of partial oxidation catalysts
JP6956679B2 (en) Gas desulfurization agent and desulfurization method
RU2666355C2 (en) Used hydro-treating catalyst regeneration method
Viljava et al. Stability of CoMo/Al2O3 catalysts: Effect of HDO cycles on HDS
JP2006306742A (en) Method for producing methyldecalin
JP4938278B2 (en) Process for selective desulfurization of olefin gasoline including hydrogen purification process
US10610853B2 (en) Method for treatment of gas
WO2002030812A2 (en) Hydrodehalogenation process using a catalyst containing nickel
KR102055036B1 (en) Process for the production of synthesis gas from hard coal

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210615

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210615

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20210629

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210903

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210907

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20211203

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20211207

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220531

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220705

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220906

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20221004

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20221004