JPS59232174A - Method for purifying coke oven gas - Google Patents

Method for purifying coke oven gas

Info

Publication number
JPS59232174A
JPS59232174A JP10661383A JP10661383A JPS59232174A JP S59232174 A JPS59232174 A JP S59232174A JP 10661383 A JP10661383 A JP 10661383A JP 10661383 A JP10661383 A JP 10661383A JP S59232174 A JPS59232174 A JP S59232174A
Authority
JP
Japan
Prior art keywords
coke oven
oven gas
gas
hydrogenation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10661383A
Other languages
Japanese (ja)
Other versions
JPH0347315B2 (en
Inventor
Takefumi Kuroda
武文 黒田
Kuniaki Tomimori
富森 邦明
Hiroyuki Yasui
安井 弘之
Hiroshi Kawagoe
川越 博
Shinpei Matsuda
松田 臣平
Hideo Matsushima
松島 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Gas Co Ltd
Original Assignee
Hitachi Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Tokyo Gas Co Ltd filed Critical Hitachi Ltd
Priority to JP10661383A priority Critical patent/JPS59232174A/en
Publication of JPS59232174A publication Critical patent/JPS59232174A/en
Publication of JPH0347315B2 publication Critical patent/JPH0347315B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Industrial Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To purify coke oven gas efficiently, by bringing coke oven gas contg. a tar oil component and gum as impurities into contact with a porous material to adsorb and remove the impurities. CONSTITUTION:Coke oven gas contg. a tar oil component and gum as impurities at a space velocity of 100-10,000h<-1> is introduced into an adsorption tower 2, where the gas is brought into contact with a porous material (e.g. alumina) having a BET suface area of 10m<2>/g or above and a pore volume of 0.1ml/g or above to adsorb and remove the impurities. The coke oven gas 1 is then introduced into a hydrogenation tower 3 and is directly hydrogenated in the presence of 1-25wt% Ni and/or Co-supported or 2-15wt% Ni and/or Co and 3-40wt% Mo-supported catalyst at 50-450 deg.C and a space velocity of 500- 50,000h<-1> under a pressure of 2-100atm to hydrogenate the impurities.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、不純物として少なくともタール油分及びガム
物質を含有するコークス炉ガスを精製する方法に係り、
特に該タール油分及びガム物質を吸着除去する吸着工程
を包含するコークス炉ガスの精製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for purifying coke oven gas containing at least tar oil and gum substances as impurities.
In particular, the present invention relates to a method for purifying coke oven gas that includes an adsorption step for adsorbing and removing the tar oil and gum substances.

〔発明の背景〕[Background of the invention]

従来のコークス炉ガスの精製方法としては、例えばニッ
ケル及び/又はコバルトとモリブデンとを含有する触媒
系を用いる水添脱硫工程により、ジエン類、酸素、オレ
フ・イン類及び硫黄化合物を水添する方法が知られてい
る。しかしながら、これら従来方法では、コークス炉ガ
ス中に含有されるタール油分及びガム物質が、該触媒の
活性点を覆って、著しく触媒活性を低下させるという問
題がある。
Conventional coke oven gas purification methods include, for example, hydrogenation of dienes, oxygen, olefins, and sulfur compounds through a hydrodesulfurization process using a catalyst system containing nickel and/or cobalt and molybdenum. It has been known. However, these conventional methods have a problem in that tar oil and gum substances contained in the coke oven gas cover the active sites of the catalyst, significantly reducing the catalyst activity.

更に、コークス炉ガス中のジエン類が重合しガ′   
   ム状物質を生成して、触媒活性の低下並びに触媒
層の閉そくを招く欠点があった。
Furthermore, the dienes in the coke oven gas polymerize and the gas
This method has the drawback of producing a mucus-like substance, resulting in a decrease in catalyst activity and clogging of the catalyst layer.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点をなくシ、効
率良くコークス炉ガスを精製する方法を提供することに
ある。
An object of the present invention is to provide a method for efficiently purifying coke oven gas without the above-mentioned drawbacks of the prior art.

〔発明の概要〕[Summary of the invention]

本発明を概説すれば、本発明は、不純物をして少なくと
もタール油分及びガム物質を含有するコークス炉ガスを
精製する方法において、該コークス炉ガスを多孔質物質
と接触させて該タール油分及びガム物質を吸着除去する
吸着工程を包含することを特徴とするコークス炉ガスの
精製方法に関する。
To summarize the invention, the present invention provides a method for purifying coke oven gas containing at least impurities tar oil and gum material by contacting the coke oven gas with a porous material to produce the tar oil and gum material. The present invention relates to a coke oven gas purification method characterized by including an adsorption step for adsorbing and removing substances.

タール油分及びガム物質を除去したコークス炉゛  ガ
スは、各種の原料ガス等として利用することができるが
、上記のような吸着工程から得られるコークス炉ガスを
、更に接触水添して不純物を水素化する水素化工程によ
って処理して、コークス炉ガスを更に精製することも有
用である。
The coke oven gas from which tar oil and gum substances have been removed can be used as various raw material gases, etc., but the coke oven gas obtained from the adsorption process as described above is further catalytically hydrogenated to remove impurities with hydrogen. It is also useful to further purify the coke oven gas by treating it with a hydrogenation step.

したがって本発明は、該吸着工程と水素化工程との組合
せによるコークス炉ガスの精製方法に関するものである
The invention therefore relates to a method for purifying coke oven gas by combining said adsorption step and a hydrogenation step.

しかして、本発明の一実施態様は、上記工程の組合せに
よるコークス炉ガスの精製方法におイテ、精製ガスの一
部を、該吸着工程の前段又は後段に再循環させ、該水素
化工程の温度が450Cを超えないように調節すること
を特徴とする。この方法は、水添触媒の活性保持に有用
である。
Therefore, one embodiment of the present invention is a coke oven gas purification method using a combination of the above steps, in which a part of the purified gas is recycled before or after the adsorption step, and a part of the purified gas is recycled before or after the hydrogenation step. It is characterized by adjusting the temperature so that it does not exceed 450C. This method is useful for maintaining the activity of the hydrogenation catalyst.

本発明の吸着工程で使用する多孔質物質(以下、吸着剤
と略記する)の例には、アルミナ、シリカ、ゼオライト
、酸化鉄(Fe203)、チタニア、マグネシア、ケイ
藻土、酸化カルシウム、ジル゛コニア、活性炭及びそれ
らの混合物よシなる群から選択したものがある。特にア
ルミナ、シリカ、活性炭が好ましい。
Examples of porous materials (hereinafter abbreviated as adsorbents) used in the adsorption process of the present invention include alumina, silica, zeolite, iron oxide (Fe203), titania, magnesia, diatomaceous earth, calcium oxide, selected from the group consisting of carbonia, activated carbon and mixtures thereof. Particularly preferred are alumina, silica, and activated carbon.

吸着剤はBET表面積でiom’/g以上を有し、好ま
しくは20m’〜1000m’/gの範囲である。
The adsorbent has a BET surface area of iom'/g or more, preferably in the range of 20 m' to 1000 m'/g.

細孔容積は0.10mt/g以上を有し、好ましくは0
.15〜0.60mt/gの範囲である。吸着剤は吸湿
性が高く、空気中の水分を吸着して吸着性能が低下する
ので、使用前に適当な温度好ましくは300〜400C
の温度で乾燥するのが好ましい。吸着剤を用いて行われ
る吸着の温度は常温〜300Cの範囲であシ、好ましく
は常温〜200Cの範囲である。300Cを超えると吸
着性能が低下する。この吸着剤に対するコークス炉ガス
の供給速度は、空間速度で100〜10000h”’が
好適である。空間速度が100 h−1未満では使用す
る吸着量が多くなって経済的でなく、10000h−1
を超えると吸着能力が低下する。吸着を行う圧力は2〜
100気圧でよいが、特に限定されない。
The pore volume has a pore volume of 0.10 mt/g or more, preferably 0.
.. It is in the range of 15 to 0.60 mt/g. The adsorbent has high hygroscopicity and adsorbs moisture in the air, reducing its adsorption performance. Therefore, the adsorbent should be kept at an appropriate temperature, preferably 300 to 400C, before use.
It is preferable to dry at a temperature of . The temperature of adsorption performed using an adsorbent is in the range of room temperature to 300C, preferably in the range of room temperature to 200C. When the temperature exceeds 300C, the adsorption performance decreases. The feed rate of coke oven gas to this adsorbent is preferably 100 to 10,000 h"' in terms of space velocity. If the space velocity is less than 100 h-1, the amount of adsorption used becomes large, which is uneconomical;
If it exceeds this, the adsorption capacity will decrease. The pressure for adsorption is 2~
The pressure may be 100 atm, but is not particularly limited.

水素化工程は、使用する触媒によって条件が異なる。使
用する触媒の例には、ニッケル及び/又はコバルトを担
持した触媒、ニッケル及び/又はコバルトとモリブデン
とを担持した触媒、あるいは白金族金属を担持した触媒
がある。これら担体の例には、アルミナ、チタニア又は
マグネシアがある。
The conditions of the hydrogenation step vary depending on the catalyst used. Examples of catalysts used include catalysts supported on nickel and/or cobalt, catalysts supported on nickel and/or cobalt and molybdenum, or catalysts supported on platinum group metals. Examples of these supports are alumina, titania or magnesia.

ニッケル及び/又はコバルトを担持した触媒の組成は、
ニッケル及び/又はコバルトを1〜25重量%、担体を
99〜75重量%の割合で含有することか好ましく、こ
れら触媒によシ、コークス炉ガス中の不純物である、ジ
エン類及び酸素が、はぼ完全に水素化される。
The composition of the catalyst supporting nickel and/or cobalt is:
It is preferable to contain nickel and/or cobalt in a proportion of 1 to 25% by weight and the carrier in a proportion of 99 to 75% by weight. Almost completely hydrogenated.

ニッケル及び/又はコバルトとモリブデンとを担持した
触媒の組成は、ニッケル及び/又はコバルトを2〜15
重量%、モリブデンを3〜40重量%、担体を残部の割
合で含有することが好ましく、これら触媒により、コー
クス炉ガス中の不純物である、オレフィン類及び硫黄化
合物が効率良く水素化される。
The composition of the catalyst supporting nickel and/or cobalt and molybdenum is 2 to 15% of nickel and/or cobalt.
It is preferable to contain molybdenum in a proportion of 3 to 40% by weight and the balance as a carrier, and these catalysts efficiently hydrogenate olefins and sulfur compounds, which are impurities in coke oven gas.

また、白金族金属を担持した触媒の組成は、白金族金属
を0.01〜5重量係、担体を99.99〜95゜O重
量係の割合で含有することが好ましく、これら触媒によ
り、コークス炉ガス中の不純物である、ジエン類、酸素
、オレフィン類及び硫黄化合物は完全に水素化される。
Further, the composition of the catalyst supporting the platinum group metal is preferably such that the platinum group metal is contained in a proportion of 0.01 to 5% by weight and the carrier is contained in a proportion of 99.99 to 95°O by weight. Impurities in the furnace gas, such as dienes, oxygen, olefins, and sulfur compounds, are completely hydrogenated.

白金族金属触媒を除く前記各触媒は、使用前に°   
 は金属触媒成分が酸化物の形態をしているので、普通
還元してから用いる。還元温度は、通常250〜500
Cである。この還元後、該金属触媒成分を硫化してから
使用すると、メタネーション反応の抑制、及び水添活性
の向上のために好適である。
Each of the above catalysts except platinum group metal catalysts should be
Since the metal catalyst component is in the form of an oxide, it is usually reduced before use. The reduction temperature is usually 250 to 500
It is C. After this reduction, the metal catalyst component is sulfurized before use, which is suitable for suppressing methanation reaction and improving hydrogenation activity.

上記水素化工程の反応温度は、触媒によシ若干の差があ
るが、50〜450Cの温度が一般的である。
The reaction temperature in the above hydrogenation step varies slightly depending on the catalyst, but is generally 50 to 450C.

コークス炉ガス中には酸素が0.1〜2.0容量係含有
されておシ、酸素が1.0容量ヂ反応すると、150C
の温度上昇がある。また、コークス炉ガス中にはオレフ
ィン類が3.0〜5.0容量チ含有するがオレフィンが
1.0容量チ反応すると、30Cの温度上昇がある。
Coke oven gas contains 0.1 to 2.0 volume of oxygen, and when 1.0 volume of oxygen reacts, 150C
There is a temperature rise. Further, coke oven gas contains 3.0 to 5.0 volumes of olefins, but when olefins react with 1.0 volumes, the temperature rises by 30C.

水添触媒層の温度が500Cを超えると、−酸化炭素、
二酸化炭素のメタネーション反応の暴走、オレフィン類
の熱分解による炭素析出、触媒の半融現象による失活及
び反応器の損傷が生じる。
When the temperature of the hydrogenation catalyst layer exceeds 500C, -carbon oxide,
Runaway methanation reaction of carbon dioxide, carbon precipitation due to thermal decomposition of olefins, deactivation of the catalyst due to half-melting phenomenon, and damage to the reactor occur.

この反応熱を抑制するには触媒層の温度上昇を監視して
、精製後のガスの一部を再循環して入口の酸素、オレフ
ィン濃度を希釈すればよい。
In order to suppress this reaction heat, it is sufficient to monitor the temperature rise of the catalyst layer and recirculate a portion of the purified gas to dilute the oxygen and olefin concentrations at the inlet.

水添塔におけるコークス炉ガスの供給速度は空間速度で
500〜50000h”1が好適である。空間速度が5
00 h”未満では使用する触媒量が多くなって経済的
でなくなる。50000h−1を超えると水添活性が十
分でなくなる。水添反応を行う圧力は、2〜100気圧
でよいが特に限定されない。
The feed rate of coke oven gas in the hydrogenation tower is preferably 500 to 50,000 h''1 in terms of space velocity.
If it is less than 000 h", the amount of catalyst used becomes large and becomes uneconomical. If it exceeds 50000 h, the hydrogenation activity will not be sufficient. The pressure for carrying out the hydrogenation reaction may be 2 to 100 atm, but is not particularly limited. .

硫黄化合物が水素化されて硫化水素が生成する場合、公
知の吸着除去方法によって除去するのが好ましい。その
吸着剤の例には、Z ” O* Fes Os及びCu
Oなどがある。
When hydrogen sulfide is produced by hydrogenation of a sulfur compound, it is preferably removed by a known adsorption removal method. Examples of such adsorbents include Z ” O* Fes Os and Cu
There are O, etc.

次に本発明を実施するためのプロセスを図面によって具
体的に説明する。すなわち第1図は、本発明の一実施の
態様を示す工程図であシ、1はコークス炉ガス、2は吸
着塔、3は水添塔、5は精製ガスを意味する。また、第
2図は、本発明において精製ガスの一部を吸着工程の入
口へ再循環させた場合の一実施の態様を示す工程図であ
シ、1〜3及び5は第1図と同義であシ、4は循環ライ
ンを意味する。なお、精製ガスの一部を矢印で示すよう
に吸着塔の後段へ再循環させてもよい。図面は本発明を
理解するために必要な主要部のみを(9) 含み、それ以外の加熱炉、ポンプ、冷却器、測定器及び
制御装置、その他の装置は省略されている。
Next, a process for carrying out the present invention will be specifically explained with reference to the drawings. That is, FIG. 1 is a process diagram showing one embodiment of the present invention, where 1 means coke oven gas, 2 means adsorption tower, 3 means hydrogenation tower, and 5 means purified gas. Furthermore, FIG. 2 is a process diagram showing an embodiment of the present invention in which a part of the purified gas is recirculated to the inlet of the adsorption process, and 1 to 3 and 5 have the same meanings as in FIG. 1. Ashi, 4 means circulation line. Note that a part of the purified gas may be recirculated to the latter stage of the adsorption tower as shown by the arrow. The drawings include only the main parts (9) necessary for understanding the present invention, and other devices such as a heating furnace, a pump, a cooler, a measuring device, a control device, and other devices are omitted.

〔発明の実施例〕[Embodiments of the invention]

次に本発明を実施例によシ更に説明するが、本発明はこ
れによシ限定されない。
Next, the present invention will be further explained using Examples, but the present invention is not limited thereto.

実施例1 第1図において、コークス炉ガス1は約150〜200
Cの温度に加熱されて吸着塔2に導入される。この吸着
塔2には、BET表面積320rr?/gs平均細孔容
積0.18mt/gのアルミナが充てんされている。
Example 1 In FIG. 1, the coke oven gas 1 is about 150 to 200
It is heated to a temperature of C and introduced into the adsorption tower 2. This adsorption tower 2 has a BET surface area of 320rr? /gs is filled with alumina having an average pore volume of 0.18 mt/g.

コークス炉ガスの主な成分の組成は、Htが53.72
%、Coが5.83%、Cowが2.181、CHaが
30.37%、C* H4が1581、C5Haカ1.
58%、02が0.5(1,04H11が0.101、
硫黄化合物0.01チ、N2が4.13チであり、ター
ル油分及びガム物質は10 m g7Nm”  であっ
た。アルミナはコークス炉ガス中のタール油分及びガム
物質を吸着除去する。吸着塔出口のガス中のタール油分
及びガム物質の量は0.1 m g / Nml(10
) 以下であり、99チ以上のタール油及びガム物質が吸着
除去されていた。
The composition of the main components of coke oven gas is Ht: 53.72
%, Co 5.83%, Cow 2.181, CHa 30.37%, C*H4 1581, C5Ha Ka1.
58%, 02 is 0.5 (1,04H11 is 0.101,
The sulfur compound was 0.01%, the N2 was 4.13%, and the tar oil and gum substances were 10 mg 7Nm''. Alumina adsorbs and removes the tar oil and gum substances in the coke oven gas. At the outlet of the adsorption tower The amount of tar oil and gum substances in the gas is 0.1 mg/Nml (10
) and more than 99 inches of tar oil and gum substances were adsorbed and removed.

実施例2 本実施例ではアルミナ以外の吸着剤を用いたときのター
ル油分及びガム物質の吸着除去性能を調べた結果を示す
。吸着温度180C,空間速度2000h−1で行った
。得られた結果を第1表に示す。
Example 2 This example shows the results of investigating the adsorption and removal performance of tar oil and gum substances when using adsorbents other than alumina. The adsorption temperature was 180C and the space velocity was 2000h-1. The results obtained are shown in Table 1.

第1表 (11) 実施例3 本実施例ではBgT表面積320&/gのアルミナを用
いて、空間速度5000h−1で吸着温度とタール油分
及びガム物質の吸着除去性能の関係を調べた。結果を第
2素に示す。
Table 1 (11) Example 3 In this example, using alumina with a BgT surface area of 320 g, the relationship between adsorption temperature and adsorption removal performance of tar oil and gum substances was investigated at a space velocity of 5000 h-1. The results are shown in the second element.

第2表 実施例4 実施例1に記載の組成を持つ原料コークス炉ガスを約1
50〜200Cの温度で、BET表面積300靜/ g
 s細孔容積0.15mt/Hのアルミナ吸着剤を充て
んした吸着塔に導入する。タール油分及びガム物質はほ
ぼ完全に吸着除去される。
Table 2 Example 4 The raw material coke oven gas having the composition described in Example 1 was
At a temperature of 50-200C, BET surface area 300 m/g
It is introduced into an adsorption tower filled with an alumina adsorbent having a pore volume of 0.15 mt/H. Tar oil and gum substances are almost completely adsorbed and removed.

吸着塔出口のガス組成は、H!が53.25チ、COが
5.89チ、CO2が2.20チ、CH4が30.67
チ、C2H4が1.60チ、C3H6が1.60チ、0
□(12) が0.50チ、C4H6が0.10%、硫黄化合物0.
01チ、N2が4.18チである。吸着塔を出たガスは
、約150〜200Cの温度で水添塔3に導入される。
The gas composition at the outlet of the adsorption tower is H! is 53.25 inches, CO is 5.89 inches, CO2 is 2.20 inches, CH4 is 30.67 inches.
Chi, C2H4 is 1.60 chi, C3H6 is 1.60 chi, 0
□(12) is 0.50%, C4H6 is 0.10%, and sulfur compound is 0.
01chi, N2 is 4.18chi. The gas leaving the adsorption tower is introduced into the hydrogenation tower 3 at a temperature of about 150-200C.

水添塔の触媒は、アルミナ担体に、ニッケルを約23重
量%担持したものである。この処理でコークス炉ガス中
のジエン類及び酸素は、はぼ完全に水添除去される。精
製されたコークス炉ガスは、250〜300Cの温度で
水添塔3を出る。
The catalyst for the hydrogenation tower is an alumina carrier with approximately 23% by weight of nickel supported thereon. In this treatment, dienes and oxygen in the coke oven gas are almost completely hydrogenated and removed. The purified coke oven gas leaves the hydrogenation column 3 at a temperature of 250-300C.

かくして精製された精製ガス5の主な成分の組成は、H
2が53.52チ、COが5.92%(Cotが2.2
1チ、C)T4が30.82チ、C,H,が1.61チ
、C5Hsが1.61 %、C4H16が0.101、
硫黄化合物0.01チ、N!が4.20チとなる。
The composition of the main components of the purified gas 5 thus purified is H
2 is 53.52 cm, CO is 5.92% (Cot is 2.2
1 chi, C) T4 is 30.82 chi, C, H, is 1.61 chi, C5Hs is 1.61%, C4H16 is 0.101,
Sulfur compound 0.01%, N! becomes 4.20chi.

なお、第2図に示した工程(但し実線で示した工程)を
用い、原料コークス炉ガスのガス量に対して循環ガスを
100’j!!循環することによシ、吸着塔入口の酸素
は希釈され、水添塔温度は、200〜250Cの温度に
調節された。
In addition, using the process shown in FIG. 2 (however, the process shown by the solid line), the amount of circulating gas is 100'j for the amount of raw coke oven gas! ! By circulating, the oxygen at the inlet of the adsorption tower was diluted, and the hydrogenation tower temperature was adjusted to a temperature of 200 to 250C.

更に、本発明によシ吸着塔を設けると、水添触媒寿命が
飛躍的に向上した。例えば、吸着塔を設(13) けないと、約1000時間で触媒が使用不能となったが
、本発明の実施例の場合、4000時間以上も支障なく
運転を行うことができた。
Furthermore, by providing an adsorption tower according to the present invention, the life of the hydrogenation catalyst was dramatically improved. For example, if an adsorption tower was not installed (13), the catalyst would become unusable after about 1000 hours, but in the case of the example of the present invention, it was possible to operate without trouble for more than 4000 hours.

実施例5 前記実施例4と同じコークス炉ガスを同じ条件で処理し
て吸着塔を出たガスは、約150〜200Cの温度で水
添塔に導入される。このガスは、アルミナを担体とし、
それにパラジウムを約0.5重量%担持した触媒によシ
水素化されて、不純物であるジエン類、酸素、オレフィ
ン類及び硫黄化合物は完全に水添される。水添塔出口に
おける主な成分の組成は、H2が53.52優、COが
5.92%、C02カ121%、CH4が30.82 
% 、CxHsが1.61%、C3H8が1.611、
C4H16が0.101、H2S が0.01チ、N2
が4.20チであった。上記生成ガスは、270〜35
0Cの温度で水添塔を出る。水添塔を出たガスは約35
0Cの温度で硫化水素除去塔に導入され、コークス炉ガ
ス中の硫化水素が吸収除去される。かくして精製された
精製ガスの主な成分の組成は、H2φ!53.53’f
i、住4) COが5.92%、CO2が2.21チ、C)−I4が
30.82チ、C2H6が1,611%、C3l−T、
が1.61チ、C4Hs oが0.10%、N2が4.
20 %である。
Example 5 The same coke oven gas as in Example 4 was treated under the same conditions and the gas exiting the adsorption tower was introduced into the hydrogenation tower at a temperature of about 150-200C. This gas uses alumina as a carrier,
It is hydrogenated using a catalyst carrying about 0.5% by weight of palladium, and impurities such as dienes, oxygen, olefins and sulfur compounds are completely hydrogenated. The composition of the main components at the hydrogenation tower outlet is 53.52% H2, 5.92% CO, 121% CO2, and 30.82% CH4.
%, CxHs 1.61%, C3H8 1.611,
C4H16 is 0.101, H2S is 0.01ch, N2
was 4.20 cm. The above generated gas is 270 to 35
It leaves the hydrogenation column at a temperature of 0C. The gas leaving the hydrogenation tower is approximately 35
The coke oven gas is introduced into a hydrogen sulfide removal column at a temperature of 0C, and hydrogen sulfide in the coke oven gas is absorbed and removed. The composition of the main components of the purified gas thus purified is H2φ! 53.53'f
i, 4) CO is 5.92%, CO2 is 2.21%, C)-I4 is 30.82%, C2H6 is 1,611%, C3l-T,
is 1.61 cm, C4Hso is 0.10%, and N2 is 4.
20%.

実施例6 主な成分の組成で、Hzが53.58ヂ、COが5.9
2俤、C02が2.21係、CH4が30.86係、C
2H4が1.60チ、C3H6が1.60チ、硫黄化合
物0.01係、N2が4.23係であシ、タール油分及
びガム物質が10mg/Nm”であるコークス炉ガスを
、約150〜200Cの温度で吸着塔に導入する。吸着
塔において、BET表面積300m?/gs側孔容積o
、x5mA/gのアルミナ吸着剤によシ、ガス中のター
ル油分及びガム物質は、はぼ完全に吸着除去される。
Example 6 The composition of the main components is 53.58 Hz and 5.9 CO.
2 yen, C02 for 2.21, CH4 for 30.86, C
Coke oven gas containing 1.60 g of 2H4, 1.60 g of C3H6, 0.01 g of sulfur compounds, 4.23 g of N2, and 10 mg/Nm of tar oil and gum matter was heated to about 150 g. Introduced into the adsorption tower at a temperature of ~200 C. In the adsorption tower, BET surface area 300 m?/gs side pore volume o
, x5 mA/g alumina adsorbent, tar oil and gum substances in the gas are almost completely adsorbed and removed.

吸着塔を出たガスは、加熱炉で約250〜350Cの温
度に加熱されて水添塔に導入される。アルミナを担体と
し、それにコバルトを約3重量慢及・    びモリブ
デンを約14重量%担持させた触媒によって、コークス
炉ガス中のオレフィン類はパラフィン類に、硫黄化合物
は硫化水素に転化される。
The gas leaving the adsorption tower is heated to a temperature of about 250 to 350C in a heating furnace and then introduced into the hydrogenation tower. Olefins in the coke oven gas are converted to paraffins and sulfur compounds to hydrogen sulfide by a catalyst made of alumina as a carrier, on which about 3% by weight of cobalt and about 14% by weight of molybdenum are supported.

(15) 水添塔出口のガス中の主な成分の組成は、Hzが53.
58%、coが5.92%、CO2が2.21%、CH
4が30.86チ、C2H6が1,60チ、C5Hsが
1.60優、I(28が0.01%、I’lhが4.2
2%となった。水添塔を出たガスは、水添塔出口のガス
温度を維持しながら、硫化水素除去塔に導入される。と
の塔で、ガス中の硫化水素が吸収除去される。かくして
精製された精製ガスの主な成分の組成ハ、Hz カ53
.59%、CCl3.92%、CO2が2.21チ、C
H4が30.86チ、C鵞H6が1.60チ、C3H8
が1.60チ、N!が4.22チとなった。
(15) The composition of the main components in the gas at the hydrogenation tower outlet is 53.
58%, CO 5.92%, CO2 2.21%, CH
4 is 30.86 chi, C2H6 is 1.60 chi, C5Hs is 1.60 well, I (28 is 0.01%, I'lh is 4.2
It became 2%. The gas exiting the hydrogenation tower is introduced into the hydrogen sulfide removal tower while maintaining the gas temperature at the hydrogenation tower outlet. In the tower, hydrogen sulfide in the gas is absorbed and removed. The composition of the main components of the purified gas thus purified is Hz.
.. 59%, CCl 3.92%, CO2 2.21%, C
H4 is 30.86 inches, C goose H6 is 1.60 inches, C3H8
is 1.60chi, N! became 4.22 inches.

第2図に示した工程(但し実線で示した工程)によシ、
原料コークス炉ガス量に対して循環ガスを100係循環
することによって、吸着塔入口のオレフィン類は希釈さ
れ、水添塔温度は、300〜400Cの温度に調節され
る。
By the process shown in Figure 2 (however, the process shown by the solid line),
By circulating the circulating gas at a rate of 100 times the amount of raw material coke oven gas, the olefins at the entrance of the adsorption tower are diluted, and the hydrogenation tower temperature is adjusted to a temperature of 300 to 400C.

本実施例によれば、4000時間以上、支障なく触媒を
使用することができたが、吸着塔によるタール油分及び
ガム物質除去をしない場合、1000時間程度で触媒は
使用不能となった。
According to this example, the catalyst could be used for more than 4,000 hours without any problems, but if the tar oil and gum substances were not removed using an adsorption tower, the catalyst became unusable after about 1,000 hours.

(16) 〔発明の効果〕 以上詳細に説明したように、本発明によれば、コークス
炉ガス中のタール油及びガム物質が効率良く除去される
。そして水添による水素化工程と組合せると、水添触媒
の寿命を大幅に延長するととができると共に、よシ温和
な条件で、不純物を効率良く除去することができる。し
たがって、それぞれの生成ガスは、相当する用途に有利
に利用することができるという顕著な効果が奏せられる
(16) [Effects of the Invention] As described above in detail, according to the present invention, tar oil and gum substances in coke oven gas are efficiently removed. When combined with a hydrogenation step using hydrogenation, the life of the hydrogenation catalyst can be greatly extended, and impurities can be efficiently removed under very mild conditions. Therefore, a remarkable effect is achieved in that each generated gas can be advantageously used for the corresponding purpose.

第1図は本発明の一実ρ態様を示す工程図、第2図は本
発明において精製ガスの一部を吸着工程の入口へ再循環
させた場合の一実施の態様を示す工程図である。
FIG. 1 is a process diagram showing one embodiment of the present invention, and FIG. 2 is a process diagram showing an embodiment in which a part of the purified gas is recirculated to the inlet of the adsorption process in the present invention. .

1・・・コークス炉ガス、2・・・吸着塔、3・・・水
添塔、4・・・循環ライン、5・・・精製ガス。
1... Coke oven gas, 2... Adsorption tower, 3... Hydrogenation tower, 4... Circulation line, 5... Purified gas.

代理人 弁理士 中本 宏 (17) 第1図 ろ 第7121 日立市幸町3丁目1番1号株式 会社日立製作所日立研究所内 0発 明 者 松田臣平 日立市幸町3丁目1番1号株式 %式% 目6番地株式会社日立製作所内 (圧出 願 人 株式会社日立製作所 東京都千代田区丸の内−丁目5 番1号 1、 手続補正書(方式) %式% を事件の表示  昭和58年特許願第106613号Z
発明の名称  コークス炉ガスの精製法五・補正をする
者 事件との関係 特許出願人 住 所   東京都中央区八重洲−丁目2番16号名称
 東京瓦斯株式会社 代表者  渡 辺   宏 (ほか1名) 2補正の内容 明細書の発明の名称の欄の「コークス炉ガスの精製方法
」を「コークス炉ガスの精製法」と補正する。
Agent: Patent Attorney Hiroshi Nakamoto (17) Figure 1, No. 7121, 3-1-1 Saiwai-cho, Hitachi City, Hitachi Research Institute, Hitachi, Ltd. Author: Omihira Matsuda, 3-1-1 Saiwai-cho, Hitachi City Stock % Formula % No. 6 Hitachi, Ltd. (Publicant: Hitachi Ltd., Marunouchi-5-chome-1, Chiyoda-ku, Tokyo, 1-1, Procedural Amendment (Method) % Formula % Indication of Case 1981 Patent Application No. 106613Z
Title of the invention Relationship with the Coke Oven Gas Refining Method 5/Amendment Case Patent Applicant Address 2-16 Yaesu-chome, Chuo-ku, Tokyo Name Tokyo Gas Co., Ltd. Representative Hiroshi Watanabe (and one other person) 2. Amend "Method for refining coke oven gas" in the title column of the description of the amendment to "Method for refining coke oven gas."

Claims (1)

【特許請求の範囲】 1、不純物として少なくともタール油分及びガム物質を
含有するコークス炉ガスを精製する方法において、該コ
ークス炉ガスを多孔質物質と接触させて該タール油分及
びガム物質を吸着除去する吸着工程を包含することを特
徴とするコークス炉ガスの精製方法。 2、該精製方法が、該吸着工程、及び該吸着工程よジの
コークス炉ガスを接触水添して不純物を水素化する水素
化工程の各工程を包含するものである特許請求の範囲第
1項記載のコークス炉ガスの精製方法。 3、該水素化工程からの精製ガスの一部を、該吸着工程
の前段に再循環させ、該水素化工程の温度が450Cを
超えないように調節する特許請求の範囲第2項記載のコ
ークス炉ガスの精製方法。 4゜該水素化工程からの精製ガスの一部を、該吸着工程
の後段に再循環させ、該水素化工程の温度が450Cを
超えないように調節する特許請求の範囲第2項記載のコ
ークス炉ガスの精製方法。 5、該多孔質物質のBET表面積が10−/g以上であ
り、細孔容積が0.10mt/g以上である特許請求の
範囲第1項〜第4項のいずれかに記載のコークス炉ガス
の精製方法。 6、該吸着工程の温度を、常温〜aooCの範囲内に調
節する特許請求の範囲第1項〜第5項のいずれかに記載
のコークス炉ガスの精製方法。 7、該多孔質物質が、アルミナ、シリカ、活性炭及びそ
れらの混合物よりなる群から選択したものである特許請
求の範囲第1項〜第6項のいずれかに記載のコークス炉
ガスの精製方法。 8、該水素化工程に使用する触媒が、ニッケル及び/又
はコバルトを担持した触媒、ニッケル及び/又はコバル
トとモリブデンとを担持した触媒、あるいは白金族金属
を担持した触媒である特許請求の範囲第2項〜第7項の
いずれかに記載のコークス炉ガスの精製方法。
[Claims] 1. A method for purifying coke oven gas containing at least tar oil and gum substances as impurities, in which the coke oven gas is brought into contact with a porous material to adsorb and remove the tar oil and gum substances. A method for purifying coke oven gas, comprising an adsorption step. 2. The purification method includes the steps of the adsorption step and the hydrogenation step of hydrogenating impurities by catalytic hydrogenation of the coke oven gas after the adsorption step. A method for purifying coke oven gas as described in . 3. The coke according to claim 2, wherein a part of the purified gas from the hydrogenation step is recycled to the previous stage of the adsorption step, and the temperature of the hydrogenation step is adjusted so as not to exceed 450C. Furnace gas purification method. 4. The coke according to claim 2, wherein a part of the purified gas from the hydrogenation step is recycled to the latter stage of the adsorption step, and the temperature of the hydrogenation step is adjusted so as not to exceed 450C. Furnace gas purification method. 5. The coke oven gas according to any one of claims 1 to 4, wherein the porous material has a BET surface area of 10-/g or more and a pore volume of 0.10 mt/g or more. Purification method. 6. The method for purifying coke oven gas according to any one of claims 1 to 5, wherein the temperature of the adsorption step is adjusted within the range of room temperature to aooC. 7. The method for purifying coke oven gas according to any one of claims 1 to 6, wherein the porous material is selected from the group consisting of alumina, silica, activated carbon, and mixtures thereof. 8. The catalyst used in the hydrogenation step is a catalyst supporting nickel and/or cobalt, a catalyst supporting nickel and/or cobalt and molybdenum, or a catalyst supporting a platinum group metal. The method for purifying coke oven gas according to any one of items 2 to 7.
JP10661383A 1983-06-16 1983-06-16 Method for purifying coke oven gas Granted JPS59232174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10661383A JPS59232174A (en) 1983-06-16 1983-06-16 Method for purifying coke oven gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10661383A JPS59232174A (en) 1983-06-16 1983-06-16 Method for purifying coke oven gas

Publications (2)

Publication Number Publication Date
JPS59232174A true JPS59232174A (en) 1984-12-26
JPH0347315B2 JPH0347315B2 (en) 1991-07-18

Family

ID=14437967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10661383A Granted JPS59232174A (en) 1983-06-16 1983-06-16 Method for purifying coke oven gas

Country Status (1)

Country Link
JP (1) JPS59232174A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035430A1 (en) * 2008-09-24 2010-04-01 新日本製鐵株式会社 Method for producing catalyst for reforming tar-containing gas, method for reforming tar and method for regenerating catalyst for reforming tar-containing gas
JP2011521773A (en) * 2008-04-30 2011-07-28 エクソンモービル アップストリーム リサーチ カンパニー Method and apparatus for removing oil from a utility gas stream
US8906138B2 (en) 2007-11-12 2014-12-09 Exxonmobil Upstream Research Company Methods of generating and utilizing utility gas
US8921637B2 (en) 2010-11-15 2014-12-30 Exxonmobil Upstream Research Company Kinetic fractionators, and cycling processes for fractionation of gas mixtures
US9017457B2 (en) 2011-03-01 2015-04-28 Exxonmobil Upstream Research Company Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto
US9034079B2 (en) 2011-03-01 2015-05-19 Exxonmobil Upstream Research Company Methods of removing contaminants from hydrocarbon stream by swing adsorption and related apparatus and systems
US9034078B2 (en) 2012-09-05 2015-05-19 Exxonmobil Upstream Research Company Apparatus and systems having an adsorbent contactor and swing adsorption processes related thereto
US9067168B2 (en) 2010-05-28 2015-06-30 Exxonmobil Upstream Research Company Integrated adsorber head and valve design and swing adsorption methods related thereto
US9120049B2 (en) 2011-03-01 2015-09-01 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US9162175B2 (en) 2011-03-01 2015-10-20 Exxonmobil Upstream Research Company Apparatus and systems having compact configuration multiple swing adsorption beds and methods related thereto
US9168485B2 (en) 2011-03-01 2015-10-27 Exxonmobil Upstream Research Company Methods of removing contaminants from a hydrocarbon stream by swing adsorption and related apparatus and systems
US9352269B2 (en) 2011-03-01 2016-05-31 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US9358493B2 (en) 2011-03-01 2016-06-07 Exxonmobil Upstream Research Company Apparatus and systems having an encased adsorbent contactor and swing adsorption processes related thereto
US9675925B2 (en) 2014-07-25 2017-06-13 Exxonmobil Upstream Research Company Apparatus and system having a valve assembly and swing adsorption processes related thereto
US9713787B2 (en) 2014-12-10 2017-07-25 Exxonmobil Upstream Research Company Adsorbent-incorporated polymer fibers in packed bed and fabric contactors, and methods and devices using same
US9744521B2 (en) 2014-12-23 2017-08-29 Exxonmobil Upstream Research Company Structured adsorbent beds, methods of producing the same and uses thereof
US9751041B2 (en) 2015-05-15 2017-09-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US9861929B2 (en) 2015-05-15 2018-01-09 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
KR20180073205A (en) * 2016-12-22 2018-07-02 주식회사 포스코 A method and an apparatus for removing impurities in cokes oven gas
US10040022B2 (en) 2015-10-27 2018-08-07 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10080992B2 (en) 2015-09-02 2018-09-25 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10220345B2 (en) 2015-09-02 2019-03-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10220346B2 (en) 2015-10-27 2019-03-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
KR20190041520A (en) * 2016-09-01 2019-04-22 티센크루프 인더스트리얼 솔루션스 아게 Method and apparatus for removing organosulfur compounds from hydrogen-rich gases
US10322365B2 (en) 2015-10-27 2019-06-18 Exxonmobil Upstream Reseach Company Apparatus and system for swing adsorption processes related thereto
US10328382B2 (en) 2016-09-29 2019-06-25 Exxonmobil Upstream Research Company Apparatus and system for testing swing adsorption processes
US10427091B2 (en) 2016-05-31 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10427088B2 (en) 2016-03-18 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10427089B2 (en) 2016-05-31 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10434458B2 (en) 2016-08-31 2019-10-08 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10549230B2 (en) 2016-12-21 2020-02-04 Exxonmobil Upstream Research Company Self-supporting structures having active materials
US10603626B2 (en) 2016-09-01 2020-03-31 Exxonmobil Upstream Research Company Swing adsorption processes using zeolite structures
US10675615B2 (en) 2014-11-11 2020-06-09 Exxonmobil Upstream Research Company High capacity structures and monoliths via paste imprinting
US10710053B2 (en) 2016-12-21 2020-07-14 Exxonmobil Upstream Research Company Self-supporting structures having active materials
US10744449B2 (en) 2015-11-16 2020-08-18 Exxonmobil Upstream Research Company Adsorbent materials and methods of adsorbing carbon dioxide
US11318410B2 (en) 2018-12-21 2022-05-03 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
US11331620B2 (en) 2018-01-24 2022-05-17 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US11376545B2 (en) 2019-04-30 2022-07-05 Exxonmobil Upstream Research Company Rapid cycle adsorbent bed
US11413567B2 (en) 2018-02-28 2022-08-16 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US11433346B2 (en) 2019-10-16 2022-09-06 Exxonmobil Upstream Research Company Dehydration processes utilizing cationic zeolite RHO
US11655910B2 (en) 2019-10-07 2023-05-23 ExxonMobil Technology and Engineering Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201893A (en) * 1982-05-19 1983-11-24 Nippon Sanso Kk Preliminary purification of coke oven gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201893A (en) * 1982-05-19 1983-11-24 Nippon Sanso Kk Preliminary purification of coke oven gas

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906138B2 (en) 2007-11-12 2014-12-09 Exxonmobil Upstream Research Company Methods of generating and utilizing utility gas
JP2011521773A (en) * 2008-04-30 2011-07-28 エクソンモービル アップストリーム リサーチ カンパニー Method and apparatus for removing oil from a utility gas stream
US10035096B2 (en) 2008-04-30 2018-07-31 Exxonmobil Upstream Research Company Method and apparatus for removal of oil from utility gas stream
US9126138B2 (en) 2008-04-30 2015-09-08 Exxonmobil Upstream Research Company Method and apparatus for removal of oil from utility gas stream
US9090465B2 (en) 2008-09-24 2015-07-28 Nippon Steel & Sumitomo Metal Corporation Method for producing catalyst reforming tar-containing gas, method for reforming tar and method for regenerating catalyst for reforming tar-containing gas
JPWO2010035430A1 (en) * 2008-09-24 2012-02-16 新日本製鐵株式会社 Method for producing catalyst for reforming tar-containing gas, method for reforming tar, and method for regenerating catalyst for reforming tar-containing gas
JP5009419B2 (en) * 2008-09-24 2012-08-22 新日本製鐵株式会社 Method for producing catalyst for reforming tar-containing gas, method for reforming tar, and method for regenerating catalyst for reforming tar-containing gas
WO2010035430A1 (en) * 2008-09-24 2010-04-01 新日本製鐵株式会社 Method for producing catalyst for reforming tar-containing gas, method for reforming tar and method for regenerating catalyst for reforming tar-containing gas
US9067168B2 (en) 2010-05-28 2015-06-30 Exxonmobil Upstream Research Company Integrated adsorber head and valve design and swing adsorption methods related thereto
US8921637B2 (en) 2010-11-15 2014-12-30 Exxonmobil Upstream Research Company Kinetic fractionators, and cycling processes for fractionation of gas mixtures
US10016715B2 (en) 2011-03-01 2018-07-10 Exxonmobil Upstream Research Company Apparatus and systems having an encased adsorbent contactor and swing adsorption processes related thereto
US9034079B2 (en) 2011-03-01 2015-05-19 Exxonmobil Upstream Research Company Methods of removing contaminants from hydrocarbon stream by swing adsorption and related apparatus and systems
US9017457B2 (en) 2011-03-01 2015-04-28 Exxonmobil Upstream Research Company Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto
US9162175B2 (en) 2011-03-01 2015-10-20 Exxonmobil Upstream Research Company Apparatus and systems having compact configuration multiple swing adsorption beds and methods related thereto
US9168485B2 (en) 2011-03-01 2015-10-27 Exxonmobil Upstream Research Company Methods of removing contaminants from a hydrocarbon stream by swing adsorption and related apparatus and systems
US9352269B2 (en) 2011-03-01 2016-05-31 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US9358493B2 (en) 2011-03-01 2016-06-07 Exxonmobil Upstream Research Company Apparatus and systems having an encased adsorbent contactor and swing adsorption processes related thereto
US9593778B2 (en) 2011-03-01 2017-03-14 Exxonmobil Upstream Research Company Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto
US9120049B2 (en) 2011-03-01 2015-09-01 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US9034078B2 (en) 2012-09-05 2015-05-19 Exxonmobil Upstream Research Company Apparatus and systems having an adsorbent contactor and swing adsorption processes related thereto
US9675925B2 (en) 2014-07-25 2017-06-13 Exxonmobil Upstream Research Company Apparatus and system having a valve assembly and swing adsorption processes related thereto
US10675615B2 (en) 2014-11-11 2020-06-09 Exxonmobil Upstream Research Company High capacity structures and monoliths via paste imprinting
US9713787B2 (en) 2014-12-10 2017-07-25 Exxonmobil Upstream Research Company Adsorbent-incorporated polymer fibers in packed bed and fabric contactors, and methods and devices using same
US10464009B2 (en) 2014-12-10 2019-11-05 Exxonmobil Upstream Research Company Adsorbent-incorporated polymer fibers in packed bed and fabric contactors, and methods and devices using same
US9744521B2 (en) 2014-12-23 2017-08-29 Exxonmobil Upstream Research Company Structured adsorbent beds, methods of producing the same and uses thereof
US10512893B2 (en) 2014-12-23 2019-12-24 Exxonmobil Upstream Research Company Structured adsorbent beds, methods of producing the same and uses thereof
US9861929B2 (en) 2015-05-15 2018-01-09 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US9751041B2 (en) 2015-05-15 2017-09-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10293298B2 (en) 2015-09-02 2019-05-21 Exxonmobil Upstream Research Company Apparatus and system for combined temperature and pressure swing adsorption processes related thereto
US10080992B2 (en) 2015-09-02 2018-09-25 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10080991B2 (en) 2015-09-02 2018-09-25 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10124286B2 (en) 2015-09-02 2018-11-13 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10220345B2 (en) 2015-09-02 2019-03-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10220346B2 (en) 2015-10-27 2019-03-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10322365B2 (en) 2015-10-27 2019-06-18 Exxonmobil Upstream Reseach Company Apparatus and system for swing adsorption processes related thereto
US10040022B2 (en) 2015-10-27 2018-08-07 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10744449B2 (en) 2015-11-16 2020-08-18 Exxonmobil Upstream Research Company Adsorbent materials and methods of adsorbing carbon dioxide
US11642619B2 (en) 2015-11-16 2023-05-09 Georgia Tech Research Corporation Adsorbent materials and methods of adsorbing carbon dioxide
US10427088B2 (en) 2016-03-18 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US11260339B2 (en) 2016-03-18 2022-03-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10427091B2 (en) 2016-05-31 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10427089B2 (en) 2016-05-31 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US11033854B2 (en) 2016-05-31 2021-06-15 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US11033852B2 (en) 2016-05-31 2021-06-15 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10434458B2 (en) 2016-08-31 2019-10-08 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US11110388B2 (en) 2016-08-31 2021-09-07 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
JP2019529306A (en) * 2016-09-01 2019-10-17 ティッセンクルップ インダストリアル ソリューションズ アクツィエンゲゼルシャフトThyssenKrupp Industrial Solutions AG Method and apparatus for removing organic sulfur compounds from hydrogen enriched gas
US11318413B2 (en) 2016-09-01 2022-05-03 Exxonmobil Upstream Research Company Swing adsorption processes using zeolite structures
US10603626B2 (en) 2016-09-01 2020-03-31 Exxonmobil Upstream Research Company Swing adsorption processes using zeolite structures
KR20190041520A (en) * 2016-09-01 2019-04-22 티센크루프 인더스트리얼 솔루션스 아게 Method and apparatus for removing organosulfur compounds from hydrogen-rich gases
US10328382B2 (en) 2016-09-29 2019-06-25 Exxonmobil Upstream Research Company Apparatus and system for testing swing adsorption processes
US11707729B2 (en) 2016-12-21 2023-07-25 ExxonMobil Technology and Engineering Company Self-supporting structures having active materials
US10549230B2 (en) 2016-12-21 2020-02-04 Exxonmobil Upstream Research Company Self-supporting structures having active materials
US10710053B2 (en) 2016-12-21 2020-07-14 Exxonmobil Upstream Research Company Self-supporting structures having active materials
US11148091B2 (en) 2016-12-21 2021-10-19 Exxonmobil Upstream Research Company Self-supporting structures having active materials
KR101879090B1 (en) * 2016-12-22 2018-07-16 주식회사 포스코 A method and an apparatus for removing impurities in cokes oven gas
KR20180073205A (en) * 2016-12-22 2018-07-02 주식회사 포스코 A method and an apparatus for removing impurities in cokes oven gas
US11331620B2 (en) 2018-01-24 2022-05-17 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US11857913B2 (en) 2018-01-24 2024-01-02 ExxonMobil Technology and Engineering Company Apparatus and system for swing adsorption processes
US11413567B2 (en) 2018-02-28 2022-08-16 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US11318410B2 (en) 2018-12-21 2022-05-03 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
US11376545B2 (en) 2019-04-30 2022-07-05 Exxonmobil Upstream Research Company Rapid cycle adsorbent bed
US11655910B2 (en) 2019-10-07 2023-05-23 ExxonMobil Technology and Engineering Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves
US11433346B2 (en) 2019-10-16 2022-09-06 Exxonmobil Upstream Research Company Dehydration processes utilizing cationic zeolite RHO

Also Published As

Publication number Publication date
JPH0347315B2 (en) 1991-07-18

Similar Documents

Publication Publication Date Title
JPS59232174A (en) Method for purifying coke oven gas
US4986898A (en) Method of removing mercury from hydrocarbon oils
US6278033B1 (en) Catalyst and process for purifying streams of materials
KR100976438B1 (en) Adsorption mass and method for removing carbon monoxide from flows of material
CA1313939C (en) Desulphurisation by using separation stage for producing concentrate steam having high sulphur compound&#39;s content
US6610264B1 (en) Process and system for desulfurizing a gas stream
US5229091A (en) Process for desulfurizing Claus tail-gas
US5514351A (en) Desulfurizing tailgas from sulfur recovery unit
JP2004504143A (en) Regeneration of hydrogen sulfide sorbent
JP2010525036A (en) Method for reducing carbon monoxide in olefin-containing hydrocarbon feedstocks
JP2003502477A (en) Adsorption method for producing ultra low sulfur hydrocarbon streams
US6723230B1 (en) Regeneration of iron-based hydrogen sulfide sorbents
JP2007508383A (en) Purification of tertiary butyl alcohol
JP2911961B2 (en) High concentration alcohol purification method and adsorbent for purification
EP2561916A1 (en) Method for naphthalene removal
WO1995021146A1 (en) Removal of carbon monoxide from hydrocarbon streams
RU2147918C1 (en) Hydrogen sulfide-containing gas desulfurization method
US3186789A (en) Method of removing hydrogen sulfide from gases
JPH0469082B2 (en)
JP2004516927A (en) Regeneration method of heterogeneous catalyst and adsorbent
JPH0469083B2 (en)
JP2000044228A (en) Method for purifying ammonia
JPH08171B2 (en) Fluid desulfurization method
JPS59232175A (en) Refining of gas
JPS6039417B2 (en) Method for regenerating solid reactants