JPS6188910A - Control method of sheet crown by adaptive control of work-roll bender - Google Patents

Control method of sheet crown by adaptive control of work-roll bender

Info

Publication number
JPS6188910A
JPS6188910A JP59211081A JP21108184A JPS6188910A JP S6188910 A JPS6188910 A JP S6188910A JP 59211081 A JP59211081 A JP 59211081A JP 21108184 A JP21108184 A JP 21108184A JP S6188910 A JPS6188910 A JP S6188910A
Authority
JP
Japan
Prior art keywords
stand
rolling load
rolling
crown
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59211081A
Other languages
Japanese (ja)
Other versions
JPH0261845B2 (en
Inventor
Mikie Tokunaga
徳長 幹恵
Noriyuki Hosomi
細見 紀幸
Masanobu Hongo
本郷 政信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59211081A priority Critical patent/JPS6188910A/en
Publication of JPS6188910A publication Critical patent/JPS6188910A/en
Publication of JPH0261845B2 publication Critical patent/JPH0261845B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/38Control of flatness or profile during rolling of strip, sheets or plates using roll bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/14Reduction rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To improve the accuracy of crown control by obtaining a correction factor of rolling load, obtained from an estimated value of rolling load and a measured value thereof, etc. at the stand of front stage, as well as estimating the changing amount of crown of the next and subsequent stages, and correcting the setting of a roll-bender pressure. CONSTITUTION:When a sheet 10 is bitten by the (i)th stand, a load deviation is obtained from a measured rolling load PMi and a calculated rolling load PSi, to calculate a mill elongation. Next, a correction factor Ri of rolling load is obtained from the changing amount DELTAPPi of rolling load. Rolling loads P'i+1, P'i+2 corrected by multiplying the calculated rolling loads PSi+1, Pi+2 of the next stand 14 and the next but one stand by this factor Ri are obtained to correct the rolling reduction and the roll bender pressure. In this way, both of the accuracies of sheet thickness and crown control are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はロールベンダーの適応制御による板クラウン制
御方法に関し、板クラウン制御における設定側1ffl
l 積度を一層向上させようとするものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a plate crown control method by adaptive control of a roll bender, and relates to a setting side 1ffl in plate crown control.
l This is an attempt to further improve the degree of accumulation.

〔従来の技術〕[Conventional technology]

多段連続圧延設備では圧延スケジュールに従って各圧延
機の圧延荷重の配分、ロール間隙及びロール速度の設定
を行なうが、この設定計算に必要な圧延荷重は予測値を
使用する。しかし予測値は実測値と必らずしも等しくな
いから、実際に坂が圧延機に噛み込んだ時の圧延荷重を
実測し、予測値との偏差を求めて該偏差により後段側圧
延機の圧下及び速度の設定の修正を行なう適応制御が行
なわれている。
In multi-stage continuous rolling equipment, the rolling load of each rolling mill is distributed, the roll gap and the roll speed are set according to the rolling schedule, and the rolling load required for this setting calculation uses predicted values. However, the predicted value is not necessarily equal to the measured value, so we actually measure the rolling load when the slope is caught in the rolling mill, find the deviation from the predicted value, and use this deviation to adjust the rolling force of the subsequent rolling mill. Adaptive control is provided to modify the reduction and speed settings.

圧延荷重の予測値と実測値との偏差は、特定の】スタン
ドで求める、または仕上圧延設備の各スタンドで求める
、等の方式があるが、後者では次のように、実測荷重及
び板厚変化より荷重修正係数を求め、これにより予測荷
重を修正する。即ぢiスタン″ドの実測圧延荷重をPM
i、予測(計算)圧延荷重をPSi、計算に用いた塑性
曲線の勾配をQi、これが実際にはQ′iであったこと
によるFj、厚変化皇をΔHiとする(この方式では計
算値と実測値のずれは塑性曲線の勾配変化によると考え
る)と、第2図fa)から明らかなようにQ′i/Qt
=PMi/ (PS i+Qi・ΔHi)の関係が成立
するので、Ri=Q’i/Qiとして、荷重修正係数R
iを PSE+QiΔHi とし、この係数Riを後段スタンドの計算圧延荷重PS
jに乗じて、即ち該スタンドの計算荷重として補正を行
なう。
The deviation between the predicted value and the measured value of the rolling load can be determined at a specific stand or at each stand of the finishing rolling equipment. A load correction coefficient is obtained from this, and the predicted load is corrected based on this. PM the actual measured rolling load of the i-stand.
i, the predicted (calculated) rolling load is PSi, the slope of the plasticity curve used in the calculation is Qi, Fj is because this was actually Q'i, and the thickness change is ΔHi (in this method, the calculated value and The deviation in the measured value is considered to be due to the change in the slope of the plasticity curve), and as is clear from Figure 2 fa), Q'i/Qt
=PMi/(PS i+Qi・ΔHi) holds, so as Ri=Q'i/Qi, the load correction coefficient R
i is PSE+QiΔHi, and this coefficient Ri is the calculated rolling load PS of the rear stand.
The correction is made by multiplying j by the calculated load of the stand.

なお、iスタンド噛み込み時にオペレータ等による圧下
スクリューの修正が行なわれているとミル剛性曲線は第
2図fblの点線の如くなり、動作点はBからB′へ移
る。この場合の板厚変化量△H1は塑性曲線の変化によ
る分とロールギャップ変更(ミル剛性曲線の変化)によ
る分との和であり、圧延荷重の変化ΔPi=PSi−P
Mi、ミル剛性率Mi、およびロールギヤ・7プ変更量
ΔS1□=SS IS M l を用いてΔHi=ΔS
11+ΔS、2、但しΔ5I0−ΔPi/Mと表わすこ
とができる。
If the reduction screw is corrected by the operator or the like when the i-stand is engaged, the mill rigidity curve will become as shown by the dotted line in FIG. 2 fbl, and the operating point will move from B to B'. In this case, the plate thickness change ΔH1 is the sum of the change in the plasticity curve and the change in the roll gap (change in the mill stiffness curve), and the change in rolling load ΔPi=PSi−P
Using Mi, mill rigidity Mi, and roll gear/7 gear change amount ΔS1□=SS IS M l, ΔHi=ΔS
11+ΔS, 2, but can be expressed as Δ5I0−ΔPi/M.

またlスタンドで生じた板厚変化ΔHiは次の1+1ス
タンドの入側板厚誤差になり、この場合塑性曲線は第2
図(C)の点線に示すように平行移動する。ΔL(は入
側板厚変化、ΔSiは塑性曲線の変化(入側板厚変化)
による出側板厚変化であり、これば圧延荷重変化ΔPi
=PSi−PMiに対しΔP=M・ΔSの関係にある。
In addition, the plate thickness change ΔHi that occurred in the l stand becomes the entry side plate thickness error of the next 1+1 stand, and in this case, the plasticity curve is the second
It moves in parallel as shown by the dotted line in Figure (C). ΔL (is the change in plate thickness on the entry side, ΔSi is the change in the plasticity curve (change in plate thickness on the entry side)
This is the change in plate thickness on the exit side due to the rolling load change ΔPi
There is a relationship of ΔP=M·ΔS for =PSi−PMi.

またΔSは(C)図から明らかなようにΔS (M+Q
)=QΔHの関係があるから圧延荷重変化ΔPはΔP=
MQΔH/(M−1−Q)となる。このΔPも考慮する
と次スタンド(i+1スタンド、これを」とする)の補
正後圧延荷重PSjは 第3図は多段連続圧延設備に上記制御を施した説明図で
、10は被圧延材である鋼板、12,14.16.・・
・・・・は第i、第i+1.第i+2・・・・・・各圧
延スタンド、1日はこれらの圧延スタンドに圧下設定な
どを行なう計算機(プロセス コンピュータ)である。
Also, ΔS is ΔS (M+Q
)=QΔH, so the rolling load change ΔP is ΔP=
MQΔH/(M-1-Q). Considering this ΔP, the corrected rolling load PSj of the next stand (referred to as "i+1 stand") is Fig. 3, which is an explanatory diagram of the multi-stage continuous rolling equipment subjected to the above control, and 10 is a steel plate which is the material to be rolled. , 12, 14. 16.・・・
... is the i-th, i-th+1. i+2... Each rolling stand, 1 day is a computer (process computer) that performs rolling settings, etc. for these rolling stands.

i+lスタンド、i+2スタンドの修正後のスクリュー
値Si+I +  Si+2は修正圧延荷重P++I、
Pi+2修正前のスクリュー値Ss1+ l+ Ss、
+ 2を用いて次式により算出される。
The corrected screw value Si+I + Si+2 of the i+l stand and i+2 stand is the corrected rolling load P++I,
Pi+2 Screw value before correction Ss1+ l+ Ss,
It is calculated by the following formula using +2.

M1+2 このような適応制御を行なうと板厚制御:I’i’を度
を一層高めることができる。なお入側板厚変化を考慮す
ると(3)式の補正をしなければならないが、この補正
は測定段12の次段14にのみ必要なので、こ\では(
3)式による補正は省略している。
M1+2 By performing such adaptive control, the plate thickness control: I'i' can be further improved. In addition, when considering the change in the thickness of the entrance side plate, it is necessary to make the correction in equation (3), but this correction is only necessary for the next stage 14 after the measurement stage 12, so here, (
3) Correction using formula is omitted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

圧延荷重の計算値と実測値のずれは被圧延材の温度11
11定及び成分変化などによる(近似的に言えば直線化
した塑性曲線の勾配変化による)が、適応制御をして該
計算圧延荷重を修正する、具体的には1:1−ル設定ギ
ャップを修正すると板形状特に板クラウンが変る。本発
明はかかる荷重予測誤差に起因するクラウン予測誤差な
らびにこの適応板厚制御による板クラウンの変動を抑え
て、板クラウンの設定制御精度を所望範囲内に収めよう
とするものである。
The difference between the calculated value and the measured value of the rolling load is due to the temperature of the rolled material11
11 constant and component changes (approximately speaking, due to changes in the gradient of the linearized plasticity curve), the calculated rolling load is corrected through adaptive control. Specifically, the 1:1-rule setting gap is adjusted. If you modify it, the plate shape, especially the plate crown, will change. The present invention aims to suppress crown prediction errors caused by such load prediction errors and fluctuations in the plate crown due to this adaptive plate thickness control, thereby keeping the plate crown setting control accuracy within a desired range.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、板厚制御とクラウンの設定制御が同時に行な
われる多段連続圧延設備において、前段lスタンドの圧
延荷重の予測値PSiと実測値PMi、および板厚変化
による圧延荷重変化ΔPPiより圧延荷重1i1i正保
数Riを求める演算手段と、咳圧延荷重補正係数Riを
用いて次段1+1スタンド以降のスタンドのロールギャ
ップを修正すると共に1.該補正係数Riおよび修正後
のロールギャップS i+ I を用いて次段i −j
−1スタンド以後のクラウン変化を予測し、それらが零
になるように(i+1)スタンド噛込み前に当該スタン
ドのロールヘンダー圧力の設定値変更を行なう修正手段
を備えダイナミンクな設定機能を有することを特徴とす
るものである。
In a multi-stage continuous rolling facility where plate thickness control and crown setting control are performed simultaneously, the present invention is based on the predicted value PSi and actual measurement value PMi of the rolling load of the front stage L stand, and the rolling load change ΔPPi due to the change in plate thickness. 1. Correcting the roll gaps of the stands after the next stage 1+1 stand using the calculation means for calculating the positive constant Ri and the cough rolling load correction coefficient Ri. Using the correction coefficient Ri and the corrected roll gap S i+ I, the next stage i −j
- It has a dynamic setting function that includes a correction means that predicts the crown changes after the 1st stand and changes the set value of the roll hender pressure of the stand before the (i + 1) stand engages so that the changes become zero. It is characterized by:

クラウンCは圧延荷重P10−ルペンディング力F10
−ル(a平cf、ロールプロフィルCoに関係しており
、制御モデル式は次のように表わされる。
Crown C is rolling load P10 - pending force F10
It is related to the roll profile Co, and the control model equation is expressed as follows.

C=f  (P、F、Cf、Co) このクラウン制御モデルによりクラウンの自動制御を行
なう場合従来は仕上設定計算による予測荷重(前記計算
荷重)を使用していた。本発明はクラウン設定制御精度
の向上を実現するために、前段スタンドの実測圧延荷重
と予測圧延荷重との誤差からクラウン偏差を予測し、さ
らに適応板厚制御によるクラウン変化の非干渉化を図り
つつこれを0にするように後段スタンドのワークロール
ベンダー力の設定値修正を行なう。
C=f (P, F, Cf, Co) When automatically controlling the crown using this crown control model, a predicted load (the above-mentioned calculated load) based on finish setting calculation has conventionally been used. In order to improve crown setting control accuracy, the present invention predicts crown deviation from the error between the measured rolling load and the predicted rolling load of the front stand, and furthermore, non-interference of crown changes through adaptive plate thickness control. Modify the setting value of the work roll bender force of the rear stage stand so that this becomes 0.

第1図で説明すると、この図で第3図と同じ部分には同
し符号を付してあり、10は被圧延材である鋼板、12
,14.16は第i、第i ” 1 +第i + 2各
圧延スタンドである。この多段連続圧延設備は仕上圧延
段であり、図では3段のみ示すが一般には6段、7段な
どからなる。iスタンド(ここでは初段スタンド)12
に板10が噛み込まれたとき実測圧延荷重PMiと計算
圧延荷重PSiとの荷重偏差ΔPi=PMi−PSiを
計算し、この荷重偏差をミル定数Mで割ってミル伸びΔ
5il−ΔPi/MMiを求める。また前述のSsとs
MO差からスクリュー偏差Δ5t2=Ss1−3M1 
を求め、圧延荷重変化量ΔPPiを次式により求める。
To explain this with reference to FIG. 1, the same parts in this figure as in FIG.
, 14 and 16 are the i-th, i-th ``1 + i-th + 2 rolling stands.This multi-stage continuous rolling equipment is a finishing stage, and although only 3 stages are shown in the figure, generally there are 6 stages, 7 stages, etc. Consists of 12 i-stands (first-stage stands here)
When the plate 10 is bitten, calculate the load deviation ΔPi=PMi−PSi between the measured rolling load PMi and the calculated rolling load PSi, and divide this load deviation by the mill constant M to obtain the mill elongation Δ
Find 5il-ΔPi/MMi. Also, the aforementioned Ss and s
Screw deviation Δ5t2=Ss1-3M1 from MO difference
is calculated, and the rolling load change amount ΔPPi is calculated using the following formula.

ΔPP1=Qix(ΔSil+ΔS、2)・・・・・・
(6)圧延荷重及び圧下の実測並びに上記ΔPi、  
ΔS11゜ΔS12.ΔPPiの計算は各スタンド噛込
毎に次スタンド以降のスタンドについて行い次式を用い
て圧延荷重修正係数R1を求める。
ΔPP1=Qix(ΔSil+ΔS, 2)...
(6) Actual measurement of rolling load and rolling reduction and the above ΔPi,
ΔS11°ΔS12. Calculation of ΔPPi is performed for each stand after the next stand, and the rolling load correction coefficient R1 is determined using the following formula.

圧延荷重修正係数Riが求まれば、これを計算圧延荷重
P S1++ 、P S++2に乗じて次段i+lスタ
ンド14及びその次の1+2スタンド16の修〜 正された計算圧延荷重P、、++  =R1−PS1+
1+P、+2 =R1−PS;+2を求め、これより前
述のように圧下修正を行なうが、本発明ではこれに加え
てロールヘンダー圧力修正を行なう。
Once the rolling load correction coefficient Ri is determined, this is multiplied by the calculated rolling loads P S1++ and P S++2 to correct the next stage i+l stand 14 and the next 1+2 stand 16. Corrected calculated rolling load P,, ++ = R1 -PS1+
1+P,+2=R1-PS; +2 is determined and the reduction is corrected as described above, but in the present invention, in addition to this, the roll hender pressure is corrected.

即らか−る修正を行なえば計算圧延荷重には偏差ΔP 
i+l =P 、+I  P Si+1・ΔPi+2=
Pi+2・P S 、+ 2が生じ、この偏差により板
クラウンの変化を生じ、また適応板厚制御によるクラウ
ン変動ΔC*も生じる、これらの和をOにするにはベン
ダー力を変化させて逆方向の板クラウン変化を生じさせ
ればよい。即ち なるベングー力修正値ΔFi+l+  ΔF1+2を発
生させ、i+lスタンド、i+2スタンドのワークロー
ル。コ\T: (81式(7) (aC/ ap ) 
1+ t  、(aC/ap)、+ 2はi+l、i+
2スタンドの播圧延荷重変化に対するクラウン変化、(
aC/aF )、+ 1.(aCろE)、や2はi+l
、i+2スタンドのロールベンダーカの変化に対するク
ラウン変化を示し、また(7)式のF1+1F1+2は
i+l、i+2各スタンドの計算ロールヘンダー力を示
し、Δc*i+ 1 +  ΔC*1+ 2はi+1゜
i+2各スタンドの適応板厚制御によるクラウン変化分
である。
If the appropriate correction is made, the calculated rolling load will have a deviation ΔP.
i+l =P, +I P Si+1・ΔPi+2=
Pi+2・P S , +2 occurs, and this deviation causes a change in the plate crown, and crown variation ΔC* due to adaptive plate thickness control also occurs.In order to make the sum of these O, change the bender force and move in the opposite direction. It is sufficient to cause a change in the plate crown. That is, the Bengu force correction value ΔFi+l+ΔF1+2 is generated, and the work rolls of the i+l stand and i+2 stand are generated. Ko\T: (81 formula (7) (aC/ap)
1+ t , (aC/ap), + 2 is i+l, i+
Crown change due to change in seeding and rolling load of two stands, (
aC/aF), +1. (aCroE), 2 is i+l
, shows the crown change with respect to the change in the roll bending force of the i+2 stand, and F1+1F1+2 in equation (7) shows the calculated roll bending force of each stand i+l and i+2, and Δc*i+ 1 + ΔC*1+ 2 represents the change in the roll bending force of the i+1゜i+2 each. This is the amount of crown change due to adaptive plate thickness control of the stand.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明では、前段スタンド圧延荷重
の予測値Psiと実測値、PMi、及び板厚変化に伴な
う圧延荷重変化ΔPPiから圧延荷重補正係数Riを求
め、これを用いて次段以降の圧延機の圧下修正をすると
共にクラウン変化量を予測し、これがOになるようにロ
ールヘンダー圧力の設定イn正を行なうので、板厚と共
に坂クラランを正確に制御でき、甚だ有効である。
As explained above, in the present invention, the rolling load correction coefficient Ri is determined from the predicted value Psi and the measured value of the rolling load of the first stage stand, PMi, and the rolling load change ΔPPi due to the change in plate thickness, and this is used to calculate the rolling load correction coefficient Ri of the rolling load of the next stage stand. In addition to correcting the subsequent rolling reduction of the rolling mill, the amount of crown change is predicted and the roll hender pressure setting is corrected so that this value becomes O, so it is possible to accurately control the plate thickness and slope cradle, which is extremely effective. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の説明図、第2図は動作説明図、第3図
は適応板厚制御の説明図である。 図面で10は被圧延鋼板、12.14.・・・・・・は
多段連続圧延設備の各スタンドである。
FIG. 1 is an explanatory diagram of the present invention, FIG. 2 is an explanatory diagram of the operation, and FIG. 3 is an explanatory diagram of adaptive plate thickness control. In the drawing, 10 is a rolled steel plate, 12.14. . . . is each stand of the multi-stage continuous rolling equipment.

Claims (1)

【特許請求の範囲】 板厚制御とクラウン制御が同時に行なわれる多段連続圧
延設備の制御方法において、 前段iスタンドの圧延荷重の予測値PSiとiスタンド
噛込時の実測値PMi、および板厚変化による圧延荷重
変化ΔPPより圧延荷重補正係数Riを求めて、 該圧延荷重補正係数Riを用いて次段i+1スタンド以
降のスタンドのロールギャップを修正すると共に、該補
正係数Riを用いて次段i+1スタンド以後のクラウン
変化を予測しさらに上記適応板厚制御に基づくクラウン
変化分を予測し、それらの和が零になるように(i+1
)スタンド噛込前に(i+1)スタンド以降のスタンド
のロールベンダー圧力の設定値変更を行なうことを特徴
とするワークロールベンダー適応制御による板クラウン
制御方法。
[Claims] In a control method for a multi-stage continuous rolling facility in which plate thickness control and crown control are performed at the same time, a predicted value PSi of the rolling load of a previous stage i-stand, an actual value PMi when the i-stand is bitten, and a change in plate thickness. Calculate the rolling load correction coefficient Ri from the rolling load change ΔPP due to the rolling load correction coefficient Ri, use the rolling load correction coefficient Ri to correct the roll gap of the stands after the next stage i+1 stand, and use the correction coefficient Ri to correct the roll gap of the next stage i+1 stand The subsequent crown change is predicted, and the crown change based on the adaptive plate thickness control is predicted, and the sum of these changes is set to zero (i+1
) A plate crown control method using work roll bender adaptive control, characterized by changing the set value of the roll bender pressure of stands after the (i+1) stand before the stand bites.
JP59211081A 1984-10-08 1984-10-08 Control method of sheet crown by adaptive control of work-roll bender Granted JPS6188910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59211081A JPS6188910A (en) 1984-10-08 1984-10-08 Control method of sheet crown by adaptive control of work-roll bender

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59211081A JPS6188910A (en) 1984-10-08 1984-10-08 Control method of sheet crown by adaptive control of work-roll bender

Publications (2)

Publication Number Publication Date
JPS6188910A true JPS6188910A (en) 1986-05-07
JPH0261845B2 JPH0261845B2 (en) 1990-12-21

Family

ID=16600092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59211081A Granted JPS6188910A (en) 1984-10-08 1984-10-08 Control method of sheet crown by adaptive control of work-roll bender

Country Status (1)

Country Link
JP (1) JPS6188910A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177818A (en) * 1981-04-24 1982-11-01 Nippon Steel Corp Controlling method of rolling

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177818A (en) * 1981-04-24 1982-11-01 Nippon Steel Corp Controlling method of rolling

Also Published As

Publication number Publication date
JPH0261845B2 (en) 1990-12-21

Similar Documents

Publication Publication Date Title
JP4452323B2 (en) Learning method of rolling load prediction in hot strip rolling.
JPH10192929A (en) Method and device for control of rolling mill
JPH04167910A (en) Method and apparatus for controlling rolling mill
JP5418244B2 (en) Control method for cold tandem rolling mill
JPH11104721A (en) Plate crown/shape controlling method in hot rolling
KR20050028293A (en) Control apparatus for controlling load distribution in continuous rolling mill
JPS6188910A (en) Control method of sheet crown by adaptive control of work-roll bender
JP3067879B2 (en) Shape control method in strip rolling
KR950010599B1 (en) Control device & method for rolling
JPS6124082B2 (en)
JPS6129806B2 (en)
JPH059166B2 (en)
JPH0413413A (en) Method for controlling strip thickness at passing time on hot continuous rolling mill
SU1731320A1 (en) System for combined controlling of thickness and profile of strip, being rolled
JPH02117709A (en) Method for controlling sheet thickness in rolling mill
JP2001293510A (en) Method for controlling flying thickness change in continuous hot-rolling mill
JP3125660B2 (en) Strip width control method in hot continuous rolling
JP2661515B2 (en) Strip crown control method in hot rolling
JP3205175B2 (en) Strip width control method in hot rolling
JPH05111712A (en) Method for controlling sheet thickness/crown in continuous mill
JP2697573B2 (en) Control method of continuous rolling mill
JPH08150406A (en) Thickness controller for cold tandem mill
JP2021137825A (en) Meandering control device for rolled material
JP3048867B2 (en) Target Thickness Correction Method in Automatic Thickness Control of Continuous Rolling Mill
JPH0531517A (en) Method for controlling plate thickness in tandem rolling mill