JPH0261845B2 - - Google Patents

Info

Publication number
JPH0261845B2
JPH0261845B2 JP59211081A JP21108184A JPH0261845B2 JP H0261845 B2 JPH0261845 B2 JP H0261845B2 JP 59211081 A JP59211081 A JP 59211081A JP 21108184 A JP21108184 A JP 21108184A JP H0261845 B2 JPH0261845 B2 JP H0261845B2
Authority
JP
Japan
Prior art keywords
stand
change
crown
rolling
rolling load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59211081A
Other languages
Japanese (ja)
Other versions
JPS6188910A (en
Inventor
Mikie Tokunaga
Noryuki Hosomi
Masanobu Ppongo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59211081A priority Critical patent/JPS6188910A/en
Publication of JPS6188910A publication Critical patent/JPS6188910A/en
Publication of JPH0261845B2 publication Critical patent/JPH0261845B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/38Control of flatness or profile during rolling of strip, sheets or plates using roll bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/14Reduction rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はロールベンダーの適応制御による板ク
ラウン制御方法に関し、板クラウン制御における
設定制御精度を一層向上させようとするものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a sheet crown control method using adaptive control of a roll bender, and is intended to further improve setting control accuracy in sheet crown control.

〔従来の技術〕[Conventional technology]

多段連続圧延設備では圧延スケジユールに従つ
て各圧延機の圧延荷重の配分、ロール間隙及びロ
ール速度の設定を行なうが、この設定計算に必要
な圧延荷重は予測値を使用する。しかし予測値は
実測値と必らずしも等しくないから、実際に板が
圧延機に噛み込んだ時の圧延荷重を実測し、予測
値との偏差を求めて該偏差により後段側圧延機の
圧下及び速度の設定の修正を行なう適応制御が行
なわれている。
In multi-stage continuous rolling equipment, the rolling load distribution, roll gap, and roll speed of each rolling mill are set according to the rolling schedule, and the rolling load required for this setting calculation uses predicted values. However, the predicted value is not necessarily equal to the actual value, so we actually measure the rolling load when the plate is caught in the rolling mill, find the deviation from the predicted value, and use this deviation to adjust the rolling force of the subsequent rolling mill. Adaptive control is provided to modify the reduction and speed settings.

圧延荷重の予測値と実測値との偏差は、特定の
1スタンドで求める、または仕上圧延設備の各ス
タンドで求める、等の方式があるが、後者では次
のように、実測荷重及び板厚変化より荷重修正係
数を求め、これにより予測荷重を修正する。即ち
iスタンドの実測圧延荷重をPMi、予測(計算)
圧延荷重をPSi、計算に用いた塑性曲線の勾配を
Qi、これが実際にはQ′iであつたことによる板厚
変化量をΔHiとする(この方式では計算値と実測
値のずれは塑性曲線の勾配変化によると考える)
と、第2図aから明らかなようにQ′i/Qi=
PMi/(PSi+Qi・ΔHi)の関係が成立するの
で、Ri=Q′i/Qiとして、荷重修正係数Riを Ri=PMi/PSi+QiΔHi とし、この係数Riを後段スタンドの計算圧延荷
重PSjに乗じて、即ち該スタンドの計算荷重(補
正後計算荷重)PS/〜jを PS〜j=Ri×PSj ………(2) として補正を行なう。
The deviation between the predicted value and the measured value of the rolling load can be determined at one specific stand or at each stand of the finishing rolling equipment. A load correction coefficient is obtained from this, and the predicted load is corrected based on this. In other words, the actual rolling load of i-stand is predicted (calculated) as PMi.
The rolling load is PSi, and the slope of the plasticity curve used in the calculation is
Qi, and the change in plate thickness due to this being actually Q′i is ΔHi (in this method, the deviation between the calculated value and the measured value is considered to be due to a change in the slope of the plasticity curve)
And, as is clear from Figure 2a, Q′i/Qi=
Since the relationship PMi/(PSi+Qi・ΔHi) holds, Ri=Q′i/Qi, the load correction coefficient Ri is set as Ri=PMi/PSi+QiΔHi, and this coefficient Ri is multiplied by the calculated rolling load PSj of the rear stand. That is, the calculated load (corrected calculated load) PS/~j of the stand is corrected as PS~j=Ri×PSj (2).

なお、iスタンド噛み込み時にオペレータ等に
よる圧下スクリユーの修正が行なわれているとミ
ル剛性曲線は第2図bの点数の如くなり、動作点
はBからB′へ移る。この場合の板厚変化量ΔHiは
塑性曲線の変化による分とロールギヤツプ変更
(ミル剛性曲線の変化)による分との和であり、
圧延荷重の変化ΔPi=PSi−PMi、ミル剛性率
Mi、およびロールギヤツプ変更量ΔSi2=SSi−SMi
を用いてΔHi=ΔSi1+ΔSi2、但しΔSi1=ΔPi/M
と表わすことができる。またiスタンドで生じた
板厚変化ΔHiは次のi+1スタンドの入側板厚誤
差になり、この場合塑性曲線は第2図cの点線に
示すように平行移動する。ΔHは入側板厚変化、
ΔSiは塑性曲線の変化(入側板厚変化)による出
側板厚変化であり、これは圧延荷重変化ΔPi=
PSi−PMiに対しΔP=M・ΔSの関係にある。ま
たΔSはc図から明らかなようにΔS(M+Q)=
QΔHの関係があるから圧延荷重変化ΔPはΔP=
MQΔH/(M+Q)となる。このΔPも考慮する
と次スタンド(i+1スタンド、これをjとす
る)の補正後圧延荷重PSjは PSj=Ri(PSj+ΔP) ………(3) 第3図は多段連続圧延設備に上記制御を施した
説明図で、10は被圧延材である鋼板、12,1
4,16,…は第i、第i+1、第i+2…各圧
延スタンド、18はこれらの圧延スタンドに圧下
設定などを行なう計算機(プロセス コンピユー
タ)である。i+1スタンド、i+2スタンドの
修正後のスクリユー値Si+1、Si+2は修正圧延荷重
P〓i+1、Pi+2〜修正前のスクリユー値SSi+1、SSi+2

いて次式により算出される。
Incidentally, if the reduction screw is corrected by the operator or the like when the i-stand is engaged, the mill rigidity curve becomes like the points shown in FIG. 2b, and the operating point moves from B to B'. In this case, the plate thickness change ΔHi is the sum of the change in plasticity curve and the change in roll gap (change in mill stiffness curve).
Change in rolling load ΔPi=PSi−PMi, mill rigidity
Mi, and roll gap change amount ΔS i2 = S Si −S Mi
Using ΔHi=ΔS i1 +ΔS i2 , where ΔS i1 =ΔPi/M
It can be expressed as Further, the plate thickness change ΔHi occurring in the i-stand becomes the entry-side plate thickness error of the next i+1 stand, and in this case, the plasticity curve moves in parallel as shown by the dotted line in FIG. 2c. ΔH is the thickness change on the entrance side,
ΔSi is the change in plate thickness on the exit side due to the change in the plasticity curve (change in plate thickness on the input side), and this is the change in rolling load ΔPi=
There is a relationship of ΔP=M·ΔS for PSi−PMi. Also, as is clear from diagram c, ΔS (M+Q)=
Since there is a relationship of QΔH, the rolling load change ΔP is ΔP=
MQΔH/(M+Q). Considering this ΔP, the corrected rolling load PSj of the next stand (stand i + 1, this is j) is PSj = Ri (PSj + ΔP) ...... (3) Figure 3 shows the above control applied to multi-stage continuous rolling equipment. In the explanatory diagram, 10 is a steel plate that is a material to be rolled, 12, 1
4, 16, . . . are the i-th, i+1, i+2, . . . rolling stands, and 18 is a computer (process computer) for setting the rolling reduction in these rolling stands. The corrected screw values S i+1 and S i+2 of the i+1 stand and i+2 stand are the corrected rolling loads.
P〓 i+1 , P i+2 to the screw values before correction S Si+1 , S Si+2 are used to calculate the following equation.

このような適応制御を行なうと板厚制御精度を
一層高めることができる。なお入側板厚変化を考
慮すると(3)式の補正をしなければならないが、こ
の補正は測定段12の次段14にのみ必要なの
で、こゝでは(3)式による補正は省略している。
Performing such adaptive control can further improve plate thickness control accuracy. Note that in consideration of the change in plate thickness on the entrance side, it is necessary to make a correction using equation (3), but since this correction is only necessary for the next stage 14 after the measuring stage 12, the correction using equation (3) is omitted here. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

圧延荷重の計算値と実測値のずれは被圧延材の
温度推定及び成分変化などによる(近似的に言え
ば直線化した塑性曲線の勾配変化による)が、適
応制御をして該計算圧延荷重を修正する、具体的
にはロール設定ギヤツプを修正すると板形状特に
板クラウンが変る。本発明はかかる荷重予測誤差
に起因するクラウン予測誤差ならびにこの適応板
厚制御による板クラウンの変動を抑えて、板クラ
ウンの設定制御精度を所望範囲内に収めようとす
るものである。
The deviation between the calculated value and the measured value of the rolling load is due to temperature estimation and changes in the components of the rolled material (approximately speaking, it is due to a change in the slope of the linearized plasticity curve), but the calculated rolling load can be adjusted by adaptive control. If you modify the roll setting gap, the shape of the plate, especially the crown of the plate, will change. The present invention aims to suppress the crown prediction error caused by such a load prediction error and the fluctuation of the plate crown due to this adaptive plate thickness control, thereby keeping the plate crown setting control accuracy within a desired range.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、板厚制御とクラウンの設定制御が同
時に行なわれる多段連続圧延設備において、前段
iスタンドの圧延荷重の予測値PSiと実測値
PMi、および板厚変化による圧延荷重変化ΔPPi
より圧延荷重補正係数Riを求める演算手段と、
該圧延荷重補正係数Riを用いて次段i+1スタ
ンド以降のスタンドのロールギヤツプを修正する
と共に、該補正係数Riおよび修正後のロールギ
ヤツプSi+1を用いて次段i+1スタンド以後のク
ラウン変化を予測し、それらが零になるように
(i+1)スタンド噛込み前に当該スタンドのロ
ールベンダー圧力の設定値変更を行なう修正手段
を備えダイナミツクな設定機能を有することを特
徴とするものである。
The present invention is a multi-stage continuous rolling facility where plate thickness control and crown setting control are performed at the same time.
PMi, and rolling load change ΔPPi due to plate thickness change
a calculation means for calculating a rolling load correction coefficient Ri;
The rolling load correction coefficient Ri is used to correct the roll gap of the stands after the next stage i+1 stand, and the crown change after the next stage i+1 stand is predicted using the correction coefficient Ri and the corrected roll gap S i+1 . , and has a dynamic setting function, including a correction means for changing the setting value of the roll bender pressure of the stand before the stand is engaged (i+1) so that these become zero.

クラウン〓は圧延荷重P、ロールベンデイング
力F、ロール偏平Cf、ロールプロフイルC0に関
係しており、制御モデル式は次のように表わされ
る。
The crown is related to the rolling load P, roll bending force F, roll flatness Cf, and roll profile C0 , and the control model equation is expressed as follows.

〓=f(P、F、Cf、C0) このクラウン制御モデルによりクラウンの自動
制御を行なう場合従来は仕上設定計算による予測
荷重(前記計算荷重)を使用していた。本発明は
クラウン設定制御精度の向上を実現するために、
前段スタンドの実測圧延荷重と予測圧延荷重との
誤差からクラウン偏差を予測し、さらに適応板厚
制御によるクラウン変化の非干渉化を図りつつこ
れを0にするように後段スタンドのワークロール
ベンダー力の設定値修正を行なう。
= f (P, F, Cf, C 0 ) When automatically controlling the crown using this crown control model, the predicted load (the above-mentioned calculated load) based on finish setting calculation has conventionally been used. In order to improve crown setting control accuracy, the present invention has the following features:
The crown deviation is predicted from the error between the measured rolling load and the predicted rolling load of the front stage stand, and the work roll bender force of the rear stage stand is adjusted to eliminate crown deviation by adaptive plate thickness control and reduce this to zero. Correct the setting value.

第1図で説明すると、この図で第3図と同じ部
分には同じ符号を付してあり、10は被圧延材で
ある鋼板、12,14,16は第i、第i+1、
第i+2各圧延スタンドである。この多段連続圧
延設備は仕上圧延段であり、図では3段のみ示す
が一般には6段、7段などからなる。iスタンド
(ここでは初段スタンド)12に板10が噛み込
まれたとき実測圧延荷重PMiと計算圧延荷重PSi
との荷重偏差ΔPi=PMi−PSiを計算し、この荷
重偏差をミル定数Mで割つてミル伸びΔSi1
ΔPi/MMiを求める。また前述のSSとSMの差か
らスクリユー偏差ΔSi2=SSi−SMiを求め、圧延荷
重変化量ΔPPiを次式により求める。
To explain this with reference to FIG. 1, the same parts in this figure as in FIG.
This is the (i+2)th rolling stand. This multi-stage continuous rolling equipment is a finishing rolling stage, and although only three stages are shown in the figure, it generally consists of six, seven, etc. stages. When the plate 10 is caught in the i-stand (here, the first stage stand) 12, the measured rolling load PMi and the calculated rolling load PSi
Calculate the load deviation ΔPi=PMi−PSi and divide this load deviation by the mill constant M to get the mill elongation ΔS i1 =
Find ΔPi/MMi. Further, the screw deviation ΔS i2 =S Si −S Mi is determined from the difference between S S and S M described above, and the rolling load change amount ΔPPi is determined by the following formula.

ΔPPi=Qi×(ΔSi1+ΔSi2) ………(6) 圧延荷重及び圧下の実測並びに上記ΔPi、ΔSil
ΔSi2、ΔPPiの計算は各スタンド噛込毎に次スタ
ンド以降のスタンドについて行い次式を用いて圧
延荷重修正係数Riを求める。
ΔPPi=Qi×(ΔS i1 +ΔS i2 ) ………(6) Actual measurement of rolling load and rolling reduction, and the above ΔPi, ΔS il ,
ΔS i2 and ΔPPi are calculated for each stand after the next stand, and the rolling load correction coefficient Ri is determined using the following formula.

Ri=ΣPMi/Σ(PSi−ΔPPi) ………(7) 圧延荷重修正係数Riが求まれば、これを計算
圧延荷重PSi+1、PSi+2に乗じて次第i+1スタン
ド14及びその次のi+2スタンド16の修正さ
れた計算圧延荷重P〓i+1=Ri・PSi+1、P〓i+2=Ri・
PSi+2を求め、これより前述のように圧下修正を
行なうが、本発明ではこれに加えてロールベンダ
ー圧力修正を行なう。
Ri=ΣPMi/Σ(PSi−ΔPPi)……(7) Once the rolling load correction coefficient Ri is determined, this is multiplied by the calculated rolling loads PS i+1 and PS i+2 , and then the i+1 stand 14 and the next Corrected calculation rolling load of i+2 stand 16 P〓 i+1 = Ri・PS i+1 , P〓 i+2 = Ri・
PS i+2 is determined, and from this the reduction is corrected as described above, but in the present invention, in addition to this, the roll bender pressure is corrected.

即ちかゝる修正を行なえば計算圧延荷重には偏
差ΔP〓i+1=P〓i+1−PSi+1、ΔP〓i+2=P〓i+2、PSi+2
が生
じ、この偏差により板クラウンの変化を生じ、ま
た適応板厚制御によるクラウン変動ΔC*も生じ
る、これらの和を0にするにはベンダー力を変化
させて逆方向の板クラウン変化を生じさせればよ
い。即ち なるベンダー力修正値ΔFi+1、ΔFi+2を発生させ、
i+1スタンド、i+2スタンドのワークロール
のベンダー力設定値F〓i+1、F〓i+2を F〓i+1=Fi+1+ΔFi+1 ……(9) F〓i+2=Fi+2+ΔFi+2 にする。こゝで(8)式の(∂C/∂P)i+1、(∂C/∂P)
i+2はi+1、i+2スタンドの圧延荷重変化に
対するクラウン変化、(∂C/∂F)i+1、(∂C/∂F)i
+

はi+1、i+2スタンドのロールベンダー力
の変化に対するクラウン変化を示し、また(7)式の
Fi+1、Fi+2はi+1、i+2各スタンドの計算ロ
ールベンダー力を示し、ΔC* i+1、ΔC* i+2は、i+
1、i+2各スタンドの適応板厚制御によるクラ
ウン変化分である。
In other words, if such correction is made, the calculated rolling load will have a deviation ΔP〓 i+1 = P〓 i+1 −PS i+1 , ΔP〓 i+2 = P〓 i+2 , PS i+2
This deviation causes a change in the plate crown, and also causes a crown variation ΔC * due to adaptive plate thickness control. In order to reduce the sum of these to 0, the bending force must be changed to cause a change in the plate crown in the opposite direction. That's fine. That is, Generate bender force correction values ΔF i+1 and ΔF i+2 to be
Work roll bending force setting value of i+1 stand and i+2 stand F〓 i+1 , F〓 i+2 as F〓 i+1 = F i+1 +ΔF i+1 ...(9) F〓 i+2 = Set F i+2 +ΔF i+2 . Here, (∂C/∂P) i+1 , (∂C/∂P) in equation (8)
i+2 is the crown change due to rolling load change of stands i+1 and i+2, (∂C/∂F) i+1 , (∂C/∂F) i
+

2 shows the crown change in response to the change in the roll bending force of stands i+1 and i+2, and also
F i+1 and F i+2 indicate the calculated roll bending force of each stand i+1 and i+2, and ΔC * i+1 and ΔC * i+2 are i+
1 and i+2 This is the amount of crown change due to adaptive plate thickness control of each stand.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明では、前段スタンド
圧延荷重の予測値PSiと実測値、PMi、及び板厚
変化に伴なう圧延荷重変化ΔPPiから圧延荷重補
正係数Riを求め、これを用いて次段以降の圧延
機の圧下修正をすると共にクラウン変化量を予測
し、これが0になるようにロールベンダー圧力の
設定修正を行なうので、板厚と共に板クラウンを
正確に制御でき、甚だ有効である。
As explained above, in the present invention, the rolling load correction coefficient Ri is determined from the predicted value PSi of the first stage stand rolling load, the actual value, PMi, and the rolling load change ΔPPi due to the change in plate thickness, and this is used to calculate the rolling load correction coefficient Ri for the next stage stand. Since the rolling reduction of the subsequent rolling mill is corrected, the amount of crown change is predicted, and the setting of the roll bender pressure is corrected so that this amount becomes zero, the plate thickness and plate crown can be accurately controlled, which is extremely effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の説明図、第2図は動作説明
図、第3図は適応板厚制御の説明図である。 図面で10は被圧延鋼板、12,14,…は多
段連続圧延設備の各スタンドである。
FIG. 1 is an explanatory diagram of the present invention, FIG. 2 is an explanatory diagram of the operation, and FIG. 3 is an explanatory diagram of adaptive plate thickness control. In the drawing, 10 is a steel plate to be rolled, and 12, 14, . . . are stands of a multi-stage continuous rolling facility.

Claims (1)

【特許請求の範囲】 1 板厚制御とクラウン制御が同時に行なわれる
多段連続圧延設備の制御方法において、 前段iスタンドの圧延荷重の予測値PSiとiス
タンド噛込時の実測値PMi、および板厚変化によ
る圧延荷重変化ΔPPiより圧延荷重補正係数Riを
求めて、 該圧延荷重補正係数Riを用いて次段i+1ス
タンド以降のスタンドのロールギヤツプを修正す
ると共に、該補正係数Riを用いて次段i+1ス
タンド以後のクラウン変化を予測しさらに上記適
応板厚制御に基づくクラウン変化分を予測し、そ
れらの和が零になるように(i+1)スタンド噛
込前に(i+1)スタンド以降のスタンドのロー
ルベンダー圧力の設定値変更を行なうことを特徴
とするワークロールベンダー適応制御による板ク
ラウン制御方法。
[Claims] 1. In a control method for a multi-stage continuous rolling facility in which plate thickness control and crown control are performed simultaneously, the predicted value PSi of the rolling load of the front i-stand, the actual value PMi when the i-stand is bitten, and the plate thickness. Calculate the rolling load correction coefficient Ri from the rolling load change ΔPPi due to the change, use the rolling load correction coefficient Ri to correct the roll gap of the stands after the next stage i+1 stand, and use the correction coefficient Ri to correct the roll gap of the next stage i+1 stand. The subsequent crown change is predicted, and the crown change based on the above adaptive plate thickness control is predicted, and the roll bender pressure of the stands after the (i+1) stand is adjusted before the (i+1) stand bites so that the sum of these changes becomes zero. A plate crown control method using work roll bender adaptive control characterized by changing set values of.
JP59211081A 1984-10-08 1984-10-08 Control method of sheet crown by adaptive control of work-roll bender Granted JPS6188910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59211081A JPS6188910A (en) 1984-10-08 1984-10-08 Control method of sheet crown by adaptive control of work-roll bender

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59211081A JPS6188910A (en) 1984-10-08 1984-10-08 Control method of sheet crown by adaptive control of work-roll bender

Publications (2)

Publication Number Publication Date
JPS6188910A JPS6188910A (en) 1986-05-07
JPH0261845B2 true JPH0261845B2 (en) 1990-12-21

Family

ID=16600092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59211081A Granted JPS6188910A (en) 1984-10-08 1984-10-08 Control method of sheet crown by adaptive control of work-roll bender

Country Status (1)

Country Link
JP (1) JPS6188910A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177818A (en) * 1981-04-24 1982-11-01 Nippon Steel Corp Controlling method of rolling

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177818A (en) * 1981-04-24 1982-11-01 Nippon Steel Corp Controlling method of rolling

Also Published As

Publication number Publication date
JPS6188910A (en) 1986-05-07

Similar Documents

Publication Publication Date Title
JP4452323B2 (en) Learning method of rolling load prediction in hot strip rolling.
JPH10192929A (en) Method and device for control of rolling mill
JP5418244B2 (en) Control method for cold tandem rolling mill
JPH0261845B2 (en)
JP3067879B2 (en) Shape control method in strip rolling
KR950010599B1 (en) Control device & method for rolling
JPH0569021A (en) Method and device for controlling rolling mill
JP3348409B2 (en) Method for controlling crown and shape of rolling mill
JPH05111712A (en) Method for controlling sheet thickness/crown in continuous mill
JPS6054216A (en) Rolling controlling method
JPH03138013A (en) Control method for work roll bending in rolling of metal plate
JPH08150406A (en) Thickness controller for cold tandem mill
SU1731320A1 (en) System for combined controlling of thickness and profile of strip, being rolled
JPH08187504A (en) Manufacture of tapered steel sheet
JPH0413413A (en) Method for controlling strip thickness at passing time on hot continuous rolling mill
KR950009985B1 (en) Thickness control method for cold rolling steel plate
JP2001293510A (en) Method for controlling flying thickness change in continuous hot-rolling mill
JP2697573B2 (en) Control method of continuous rolling mill
JP4140316B2 (en) Metal plate manufacturing method
JP2003290808A (en) Method for controlling sheet width in tandem cold rolling
JPH06226322A (en) Method for controlling plate thickness in rolling
JPH0531517A (en) Method for controlling plate thickness in tandem rolling mill
JPH10175007A (en) Method for controlling roll gap in rolling mill
JPH10230310A (en) Method for controlling cold-rolling mill
JPH11290920A (en) Method for controlling flying change of rolling mill and device therefor