JPH11290920A - Method for controlling flying change of rolling mill and device therefor - Google Patents

Method for controlling flying change of rolling mill and device therefor

Info

Publication number
JPH11290920A
JPH11290920A JP10099236A JP9923698A JPH11290920A JP H11290920 A JPH11290920 A JP H11290920A JP 10099236 A JP10099236 A JP 10099236A JP 9923698 A JP9923698 A JP 9923698A JP H11290920 A JPH11290920 A JP H11290920A
Authority
JP
Japan
Prior art keywords
rolling
stand
learning
change
rolled material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10099236A
Other languages
Japanese (ja)
Inventor
Sadayuki Mitsuyoshi
貞行 三吉
Takayuki Kachi
孝行 加地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10099236A priority Critical patent/JPH11290920A/en
Publication of JPH11290920A publication Critical patent/JPH11290920A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/24Automatic variation of thickness according to a predetermined programme
    • B21B37/26Automatic variation of thickness according to a predetermined programme for obtaining one strip having successive lengths of different constant thickness

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To elevate the yield of rolled stocks by elevating dimensional accuracy before and behind the flying changing point of the rolled stock. SOLUTION: Rolling load is calculated with a rolling load calculating part 18 based on actual value data which is acquired and processed by an actual value acquiring processing part 17. Based on the rolling load acquired by the rolling load acquiring part 16 and rolling load calculated by the rolling load calculating part 18, a learning factor is calculated by a learning factor calculation part 19. The optimum learning factor is determined from the latest learning factor calculated and the past learning factor by a learning part 20. When the thickness of the rolled stock (a) is changed by the change of a manufacturing specification during rolling the rolled stock (a), each changing amount of the screw-down location of each stand 1-7 is determined by a screw-down location changing amount calculating part 21 based on the learning factor which is previously learned in a learning part 20. Each screw-down location of each stand is adjusted by each calculated changing amount with a screw-down location adjusting device 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、少なくとも1つの
スタンドを有する圧延機の走間変更制御方法及びその走
間変更制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a running change control method and a running change control device for a rolling mill having at least one stand.

【0002】[0002]

【従来の技術】近年、圧延材の歩留まりの向上および品
質の向上のため、複数の圧延材を接合し連続的に圧延す
る完全連続圧延が行われている。この方式では、接合さ
れた圧延材から複数種類の製品を製造するため、圧延材
の走行中に製造仕様(板厚、板幅、クラウン等)を変更
する走間変更制御が実施される。
2. Description of the Related Art In recent years, in order to improve the yield and quality of rolled materials, complete continuous rolling in which a plurality of rolled materials are joined and continuously rolled has been performed. In this method, in order to manufacture a plurality of types of products from the joined rolled material, a running distance change control for changing a manufacturing specification (a thickness, a width, a crown, and the like) is performed while the rolled material is running.

【0003】この走間変更制御においては、板厚制御を
例にとると、走間変更点の先行材尾端および走間変更点
の後行材先端の圧延荷重を予測し、その各々に対して既
知のゲージメータ式を用いて必要な圧下位置を演算し、
接合点の圧延機通過時にその圧下位置の差分を変更する
ことが一般的である(例えば、「板圧延の理論と実際」
(昭和59年9月社団法人日本鉄鋼協会発行)第5.6
章)。
[0003] In this running change control, taking the thickness control as an example, the rolling load at the tail end of the preceding material at the running change point and the leading end of the succeeding material at the running change point is predicted. Calculate the required rolling position using a known gauge meter formula,
It is common to change the difference between the rolling positions when the joining point passes through a rolling mill (for example, “theory and practice of sheet rolling”
(Published by The Iron and Steel Institute of Japan in September 1984) No. 5.6
chapter).

【0004】上記の走間変更制御において、接合点前後
の寸法精度の向上のために、圧延荷重の予測時に既圧延
材の実績データをもとに圧延荷重予測式のパラメータを
修正するモデル式の学習制御を併せて実施する場合が多
い。完全連続圧延が最初に実施された冷間圧延において
は、その学習制御を既圧延材の走間変更点の後行材先端
の実績データをもとに実施することが一般的に行われて
いる(例えば、特開平6−15318号公報に記載の発
明)。
[0004] In the above running distance change control, in order to improve the dimensional accuracy before and after the joining point, a model formula for correcting the parameters of the rolling load prediction formula based on the actual data of the rolled material at the time of rolling load prediction is used. In many cases, learning control is also performed. In cold rolling where full continuous rolling is first performed, it is common practice to perform learning control based on the actual data of the leading edge of the succeeding material at the change point between running distances of the already rolled material. (For example, the invention described in JP-A-6-15318).

【0005】[0005]

【発明が解決しようとする課題】ところが、近年開発さ
れた熱間圧延における走間変更において上記の方法を適
用すると、走間変更点の先行材尾端と走間変更点の後行
材先端では、圧延機入り側での圧延温度のレベルが異な
ることにより、圧延荷重の予測精度が悪化して接合点前
後の寸法精度が必ずしも良くないという不都合がある。
例えば、特開平9−192714号公報に記載の発明の
ように、先行材と後行材とを仕上圧延機の入り側で接合
する場合には不都合が生じていた。
However, when the above-mentioned method is applied to the change of the running distance in hot rolling, which has been developed in recent years, when the preceding material tail end of the running change point and the trailing material front end of the running change point are changed. In addition, the difference in the level of the rolling temperature at the entry side of the rolling mill deteriorates the prediction accuracy of the rolling load, and thus has a disadvantage that the dimensional accuracy before and after the joining point is not always good.
For example, as in the invention described in Japanese Patent Application Laid-Open No. 9-192714, inconvenience occurs when a preceding material and a following material are joined on the entrance side of a finishing mill.

【0006】そこで、本発明の目的は、圧延材の走行変
更点の前後の寸法精度の改善を図ることにより圧延材の
歩留りの向上を図るようにした圧延機の走間変更制御方
法及びその装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method and an apparatus for controlling a running distance change of a rolling mill in which the dimensional accuracy before and after a change point of the rolling material is improved to improve the yield of the rolling material. Is to provide.

【0007】[0007]

【課題を解決するための手段】上記課題を解決し、本発
明の目的を達成するために、請求項1記載の発明によれ
ば、少なくとも1つのスタンドを有する圧延機の走間変
更制御方法において、圧延材の製造仕様が変更される走
間変更点が前記スタンドを通過する前後の圧延に関する
データをそれぞれ獲得し、この獲得したデータに基づい
て学習を行って学習係数を予め求めておき、圧延機の製
造仕様の変更を行う際に、その求めてある学習係数に基
づいて前記圧延材の走間変更点の前後の圧延荷重を予測
する圧延機の走間変更制御方法が提供される。
In order to solve the above problems and to achieve the object of the present invention, according to the first aspect of the present invention, there is provided a method for controlling a change in running distance of a rolling mill having at least one stand. The data on the rolling before and after the point where the production specification of the rolled material changes during the run passes through the stand is acquired, learning is performed based on the acquired data, and a learning coefficient is obtained in advance. When the manufacturing specification of the rolling mill is changed, a running distance change control method for a rolling mill is provided which predicts a rolling load before and after a running distance change point of the rolled material based on the obtained learning coefficient.

【0008】請求項2記載の発明は、請求項1に記載の
圧延機の走間変更制御方法において、前記圧延材の走間
変更点が前記スタンドに到着したときに、その予測した
圧延荷重に基づいて前記スタンドの圧下を調節するよう
にした。
According to a second aspect of the present invention, in the method for controlling a running distance change of a rolling mill according to the first aspect, when the running distance change point of the rolled material arrives at the stand, the predicted rolling load is reduced. The pressure of the stand was adjusted based on this.

【0009】さらに、本発明では、以下のような対応も
提供される。すなわち、請求項3記載の発明によれば、
少なくとも1つのスタンドを有し、かつ熱間圧延中に前
記スタンドの圧下を調節可能な圧延機の走間変更制御装
置において、圧延材の製造仕様が変更される走間変更点
が前記スタンドを通過する前後の圧延に関するデータを
それぞれ獲得するデータ獲得手段と、このデータ獲得手
段が獲得したデータに基づいて学習を行って学習係数を
予め求める学習係数算出手段と、圧延機の製造仕様の変
更を行う際に、前記学習係数算出手段で求めてある学習
係数に基づいて前記圧延材の走間変更点の前後の圧延荷
重を予測する圧延荷重予測手段と、を備えた圧延機の走
間変更制御装置が提供される。
Further, the present invention also provides the following measures. That is, according to the third aspect of the invention,
In a running change control device for a rolling mill having at least one stand and capable of adjusting a reduction of the stand during hot rolling, a running change point at which a manufacturing specification of a rolled material is changed passes through the stand. Data acquisition means for acquiring data on rolling before and after rolling, learning coefficient calculation means for learning in advance based on the data acquired by the data acquisition means to obtain a learning coefficient, and changing the manufacturing specifications of the rolling mill. A rolling load estimating means for predicting a rolling load before and after a running change point of the rolled material based on a learning coefficient obtained by the learning coefficient calculating means; Is provided.

【0010】請求項4記載の発明は、請求項3に記載の
圧延機の走間変更制御装置において、製造仕様の変更に
かかる圧延材の走間変更点が前記スタンドに到着したと
きに、前記圧延荷重予測手段が予測した圧延荷重に基づ
いて前記スタンドの圧下を調節する手段を備えるように
した。
According to a fourth aspect of the present invention, in the running distance change control device for a rolling mill according to the third aspect, when a running change point of a rolled material according to a change in manufacturing specifications arrives at the stand, A means for adjusting the rolling reduction of the stand based on the rolling load predicted by the rolling load predicting means is provided.

【0011】[0011]

【発明の実施の形態】以下、本発明の好適な実施形態に
ついて、図面を参照しつつ説明する。本発明の圧延機の
走間変更制御方法および圧延機の走間変更制御装置を、
複数のスタンドを有する仕上熱間圧延機の完全連続圧延
の圧下位置変更(板厚変更)に適用した場合について説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. The running change control method and the running change control device of the rolling mill of the present invention,
A description will be given of a case where the present invention is applied to a change in a rolling position (change in a sheet thickness) in complete continuous rolling of a finishing hot rolling mill having a plurality of stands.

【0012】図1に示すように、仕上熱間圧延機8は、
第1スタンド1〜第7スタンド7を備えている。この第
1スタンド1〜第7スタンド7の各スタンドは、圧延材
aを挟む1対のワークロール9と、この一対のワークロ
ール9をそれぞれバックアップするバックアップロール
10とを備えている。
As shown in FIG. 1, the finishing hot rolling mill 8 comprises:
First to seventh stands 7 are provided. Each of the first to seventh stands 7 includes a pair of work rolls 9 sandwiching the rolled material a, and backup rolls 10 for backing up the pair of work rolls 9, respectively.

【0013】第1スタンド1の入側には、圧延材aの入
側の板厚を測定する入側板厚計11と圧延材aの入側の
温度を測定する温度計14とが設置されている。また、
第7スタンド7の出側には、圧延材aの出側の板厚を測
定する出側板厚計12と圧延材aの出側の温度を測定す
る温度計15とが設置されている。さらに、第1スタン
ド1〜第7スタンド7の各スタンドには、圧延材aの圧
延荷重を測定する荷重計13がそれぞれ設置されてい
る。
On the entry side of the first stand 1, an entry side thickness gauge 11 for measuring the entry side thickness of the rolled material a and a thermometer 14 for measuring the entry side temperature of the rolled material a are provided. I have. Also,
On the output side of the seventh stand 7, an output side thickness gauge 12 for measuring the thickness of the output side of the rolled material a and a thermometer 15 for measuring the temperature of the output side of the rolled material a are installed. Further, each of the first to seventh stands 7 is provided with a load meter 13 for measuring the rolling load of the rolled material a.

【0014】次に、このように構成される仕上熱間圧延
機8に適用される本発明の圧延機の走間変更制御装置の
実施形態について説明する。この実施形態の走間変更制
御装置30は、実際にはコンピュータから構成されその
制御をソフトウエアにより実現するものであり、その実
現のために各機能を有する次のような構成要素から構成
される。すなわち、この走間変更制御装置30は、図1
に示すように、実測値獲得部16、実績値獲得処理部1
7、圧延荷重算出部18、学習係数算出部19、学習部
20、圧下位置変更量算出部21からから構成される。
Next, an embodiment of a running distance change control device for a rolling mill of the present invention applied to the finishing hot rolling mill 8 configured as described above will be described. The running distance change control device 30 of this embodiment is actually constituted by a computer and realizes its control by software, and is constituted by the following components having various functions for the realization. . That is, the running distance change control device 30 is configured as shown in FIG.
As shown in the figure, the actual measurement value acquisition unit 16 and the actual value acquisition processing unit 1
7, a rolling load calculating unit 18, a learning coefficient calculating unit 19, a learning unit 20, and a rolling position change amount calculating unit 21.

【0015】実測値獲得部16は、第1スタンド1〜第
7スタンド7に設置される各荷重計13で測定される実
測値としての圧延荷重を獲得するようになっている。実
績値獲得処理部17は、入側板厚計11および出側板厚
計12の各測定板厚と、入側温度計14および出側温度
計15の各測定温度を獲得できるようになっている。さ
らに、実績値獲得処理部17は、圧延材aの走間板厚変
更点a1が、第1スタンド1〜第7スタンド7の各スタ
ンドを通過する前後の板厚、圧延材温度、ロール速度な
どの圧延に関する実績値データを獲得するようになって
いる。
The actual measurement value acquiring section 16 acquires a rolling load as an actual measurement value measured by each load cell 13 installed in the first to seventh stands 7. The actual value acquisition processing unit 17 can acquire each measured plate thickness of the entrance side thickness gauge 11 and the exit side thickness gauge 12, and each measured temperature of the entrance side thermometer 14 and the exit side thermometer 15. Further, the actual value acquisition processing unit 17 determines the sheet thickness, rolled material temperature, roll speed, etc. before and after the running sheet thickness change point a1 of the rolled material a passes through each of the first to seventh stands 7. The actual value data relating to the rolling is obtained.

【0016】圧延荷重算出部18は、実績値獲得処理部
17で獲得処理された実績値データに基づき、後述のよ
うに圧延荷重を算出するようになっている。学習係数算
出部19は、実測値獲得部16で獲得された圧延荷重
と、圧延荷重算出部18で算出された圧延荷重とに基づ
いて、後述のように学習係数を算出するようになってい
る。学習部20は、学習係数算出部19で算出された最
新の学習係数と過去の学習係数とから最適な学習係数を
求めるような処理を行うようになっている。
The rolling load calculating section 18 calculates the rolling load based on the actual value data acquired by the actual value acquiring section 17 as described later. The learning coefficient calculating unit 19 calculates a learning coefficient based on the rolling load acquired by the actual measurement value acquiring unit 16 and the rolling load calculated by the rolling load calculating unit 18 as described later. . The learning unit 20 performs processing for obtaining an optimal learning coefficient from the latest learning coefficient calculated by the learning coefficient calculation unit 19 and the past learning coefficient.

【0017】圧下位置変更量算出部21は、圧延材aの
圧延中に製造仕様の変更により圧延材aの板厚変更がさ
れた場合に、学習部20で予め学習されている学習係数
を用いて、後述のように第1スタンド1〜第7スタンド
7の圧下位置の各変更量を求めるようになっている。圧
下位置調節装置22は、圧下位置変更量算出部21で算
出された各変更量だけ第1スタンド1〜第7スタンド7
の各圧下位置を調節するようになっている。
The rolling position change amount calculating unit 21 uses a learning coefficient previously learned by the learning unit 20 when the thickness of the rolled material a is changed due to a change in manufacturing specifications during rolling of the rolled material a. Thus, as will be described later, the amounts of change in the pressing positions of the first to seventh stands 7 to 7 are determined. The rolling position adjustment device 22 is configured to change the first stand to the seventh stand 7 by the change amount calculated by the rolling position change amount calculating unit 21.
Each of the rolling positions is adjusted.

【0018】このような構成からなる実施形態の走間変
更制御装置30では、例えば圧延中に製造仕様(板厚)
の変更があるたびに、図2に示すように、圧延材aの走
間板厚変更点a1が第1スタンド1〜第7スタンド7を
通過する前後の圧延に関するデータをそれぞれ獲得し、
この獲得したデータに基づいて学習を行って学習係数を
あらかじめ求めるので、この学習係数を求める処理手順
について、図1および図2を参照して説明する。
In the running distance change control device 30 according to the embodiment having such a configuration, for example, during rolling, the production specification (sheet thickness)
Each time there is a change, as shown in FIG. 2, data on the rolling before and after the running thickness change point a1 of the rolled material a passes through the first to seventh stands 7 are obtained,
Since a learning coefficient is obtained in advance by performing learning based on the acquired data, a processing procedure for obtaining the learning coefficient will be described with reference to FIGS.

【0019】なお、以下の説明では、圧延材aの接合部
で走間板厚を変更する場合、すなわち、圧延材aの走間
変更点a1が先行する先行材と後行する後行材の接合点
の場合であり、ドラフトスケージュール(各スタンドで
の目標値)が予め設定されているものとする。
In the following description, in the case where the running thickness is changed at the joint of the rolled material a, that is, the running distance change point a1 of the rolled material a is determined by the preceding material and the following material. This is the case of a junction point, and it is assumed that a draft schedule (a target value at each stand) is set in advance.

【0020】いま、圧延材aの板厚変更があると、実績
値獲得処理部17は、圧延材aの接合点が、第1スタン
ド1〜第7スタンド7の各スタンドを通過する前後の板
厚、圧延材温度、ロール速度などの圧延に関する実績値
データを獲得する(ステップS1)。ただし、スタンド
間には、板厚計や温度計が配置されていないので、その
直接獲得出来ない部分の圧延材aの板厚は、入側板厚計
11と出側板厚計12の各測定板厚に基づいて実績値獲
得処理部17が求め、その直接獲得できない部分の圧延
材aの温度は、入側温度計14と出側温度計15の各測
定温度に基づいて実績値獲得処理部17が求める。
If there is a change in the thickness of the rolled material a, the actual value acquisition processing unit 17 determines that the joining point of the rolled material a is the plate before and after passing through each of the first to seventh stands 7. The actual value data related to rolling such as thickness, rolled material temperature, and roll speed is obtained (step S1). However, since a thickness gauge or a thermometer is not arranged between the stands, the thickness of the rolled material a in a portion that cannot be directly obtained is determined by the measurement thickness of the entrance thickness gauge 11 and the exit thickness gauge 12. The actual value acquisition processing unit 17 obtains the actual value acquisition processing unit 17 based on the thickness, and calculates the temperature of the rolled material a in the part that cannot be directly acquired based on the measured temperatures of the entrance thermometer 14 and the exit thermometer 15. Asks.

【0021】圧延荷重算出部18は、その実績値獲得処
理部17が獲得した圧延材aの接合点が第1スタンド1
〜第7スタンド7の各スタンドを通過する直前の各圧延
データに基づいて、その通過直前における各スタンドの
圧延荷重PCiを(1)式により算出する(ステップS
2)。同様に、圧延荷重算出部18は、その実績値獲得
処理部17が獲得した圧延材aの接合点が第1スタンド
1〜第7スタンド7の各スタンドを通過した直後の各圧
延データに基づいて、その通過直後における第1スタン
ド1〜第7スタンド7の各圧延荷重PDiを(2)式によ
り算出する(ステップS2)。
The rolling load calculation unit 18 determines that the joining point of the rolled material a acquired by the actual value acquisition processing unit 17 is the first stand 1
Based on each rolling data just before passing through each stand of the seventh stand 7, the rolling load P Ci of each stand just before the passing is calculated by the formula (1) (step S).
2). Similarly, the rolling load calculating unit 18 calculates the rolling data a based on the rolling data immediately after the joining point of the rolled material a acquired by the actual value acquiring processing unit 17 has passed through each of the first to seventh stands 7. Then, the rolling loads P Di of the first stand 7 to the seventh stand 7 immediately after the passage are calculated by the formula (2) (step S2).

【0022】 PCi=b×kmi×Opi×{Ri ’(Hi −hi )}1/2 ・・・(1) PDi=b×kmi×Opi×{Ri ’(Hi −hi )}1/2 ・・・(2) i(添字):第1スタンド〜第7スタンドの番号 b:板幅 kmi:平均変形抵抗 Opi:圧下力関数 Ri ’:偏平ロール半径 Hi :入側板厚(実績値) hi :出側板圧(実績値) 上記の平均変形抵抗kmiは(3)式に示すような要素に
より求まり、上記の圧下力関数OPiは(4)式に示すよ
うな要素により求まり、さらに上記の偏平ロール半径R
i ’は(5)式により求まる。
P Ci = b × k mi × O pi × {R i ′ (H i −h i )} 1/2 (1) P Di = b × k mi × O pi × {R i ′ (H i −h i )} 1/2 (2) i (subscript): number of the first to seventh stands b: plate width k mi : average deformation resistance O pi : rolling force function R i ′ : flat roll radius H i: thickness at entrance side (actual value) h i: output mean deformation resistance k mi of the side plate pressure (actual value) above approximated by the element as shown in (3), the above rolling force function O Pi is determined by an element as shown in equation (4), and the above flat roll radius R
i ′ is obtained by equation (5).

【0023】 kmi=g(Hi 、hi 、Ti 、VRi、m、n他)・・・(3) OPi=f(Hi 、hi 、R’)・・・(4) Ri ’=R{1+〔(C・Pi )/b(Hi −hi )〕}・・・(5) (3)式のm、nは定数、Ti は圧延材の温度、VRi
圧延速度であり、(5)式のCは定数である。
[0023] k mi = g (H i, h i, T i, V Ri, m, n other) ··· (3) O Pi = f (H i, h i, R ') ··· (4 ) R i ′ = R {1 + [(C · P i ) / b (H i −h i )]} (5) m and n in the equation (3) are constants, and T i is the temperature of the rolled material. , V Ri are rolling speeds, and C in equation (5) is a constant.

【0024】実測値獲得部16は、圧延材aの接合点
が、第1スタンド1〜第7スタンド7の各スタンドを通
過する前後のタイミングで、第1スタンド1〜第7スタ
ンド7に設置されている各荷重計13が測定する圧延材
aの圧延荷重をそれぞれ獲得する。そして、圧延材aの
接合点が各スタンドを通過する直前のタイミングで獲得
した各圧延荷重をPEiとし、圧延材aの接合点が各スタ
ンドを通過した直後のタイミングで獲得した各圧延荷重
をPFiとする(ステップS3)。なお、このステップS
3の処理は、ステップS1およびステップS2の処理よ
りも前に行うようにしても良い。
The actual measurement value acquiring section 16 is installed in the first stand 7 to the seventh stand 7 at a timing before and after the joining point of the rolled material a passes through each of the first stand 7 to the seventh stand 7. The rolling load of the rolled material a measured by each load cell 13 is obtained. Each rolling load obtained at the timing immediately before the joining point of the rolled material a passes through each stand is defined as P Ei, and each rolling load obtained at the timing immediately after the joining point of the rolled material a passes through each stand is represented by P Ei. P Fi is set (step S3). This step S
The processing of 3 may be performed before the processing of steps S1 and S2.

【0025】学習係数算出部19は、実測値獲得部16
が獲得した圧延荷重の実測値PEi、PFiと、圧延荷重算
出部18で算出された圧延荷重PCi、PDiとに基づい
て、後述のように学習に供される瞬時的(一時的)な学
習係数ZPi’と学習係数ZQi’を(6)(7)式により
求める(ステップS4)。
The learning coefficient calculating section 19 includes an actual measured value acquiring section 16.
Based on the actual measured values P Ei , P Fi of the rolling loads acquired by the rolling load calculating unit 18 and the rolling loads P Ci , P Di calculated by the rolling load calculating unit 18, an instantaneous (temporary) ) learning coefficients Z Pi 'learning coefficient Z Qi' (6) (7) obtained by equation (step S4).

【0026】 ZPi’=PEi/PCi・・・(6) ZQi’=PFi/PDi・・・(7) このように求められる瞬時的な学習係数ZPi’、ZQi
は真値(最適値)との間にずれがあると考えられるの
で、学習により真値を得るようにするのが好ましい。そ
こで、学習部17は、その学習係数算出部19が求めた
学習係数ZPi’、ZQi’を用いて、例えば(8)(9)
式により学習を行い、学習係数ZPi、ZQiを逐次更新さ
せる(ステップS5)。
Z Pi ′ = P Ei / P Ci (6) Z Qi ′ = P Fi / P Di (7) The instantaneous learning coefficients Z Pi ′ and Z Qi ′ thus obtained
Since it is considered that there is a deviation from the true value (optimum value), it is preferable to obtain the true value by learning. Therefore, the learning unit 17 uses the learning coefficients Z Pi ′ and Z Qi ′ obtained by the learning coefficient calculation unit 19 to calculate, for example, (8) and (9)
Learning is performed by the equation, and the learning coefficients Z Pi and Z Qi are sequentially updated (step S5).

【0027】 ZPi=ZPi-1+α(ZPi’−ZPi-1)・・・(8) ZQi=ZQi-1+α(ZQi’−ZQi-1)・・・(9) (8)式中の右辺のZPi’は学習係数算出部19で算出
された学習係数であり、その右辺のZPi-1は前回の
(8)式の左辺の学習係数ZPiである。同様に、(9)
式中の右辺のZQi’は学習係数算出部19で算出された
最新の学習係数であり、その右辺のZQi-1は前回の
(9)式の左辺の学習係数ZQiである。また、(8)
(9)式中のαは、0〜1の範囲の数値である。
Z Pi = Z Pi-1 + α (Z Pi '-Z Pi-1 ) (8) Z Qi = Z Qi-1 + α (Z Qi ' -Z Qi-1 ) ... (9) In the equation (8), Z Pi ′ on the right side is a learning coefficient calculated by the learning coefficient calculating unit 19, and Z Pi-1 on the right side is a learning coefficient Z Pi on the left side in the previous equation (8). . Similarly, (9)
Z Qi ′ on the right side of the equation is the latest learning coefficient calculated by the learning coefficient calculation unit 19, and Z Qi-1 on the right side is the learning coefficient Z Qi on the left side of the previous equation (9). Also, (8)
Α in the expression (9) is a numerical value in the range of 0 to 1.

【0028】(8)式について具体的に説明すると、学
習係数算出部19で最初の学習係数が求められた場合に
は、その最初の学習係数は右辺のZPi’に代入され、こ
のときにはα=1にするとともに右辺のZQi-1に代入す
る前回のデータが存在しないので、学習部20での学習
係数(左辺のZPi)はその代入された最初の学習係数Z
Pi’となる。一方、学習係数算出部19で2回目以後の
学習係数ZPi’が求められると、この求められた学習係
数は(8)式の右辺のZPi’に代入され、その右辺のZ
Pi-1には前回に学習された学習係数(左辺のZPi)が代
入される。このとき、αの値が適当に小さければ学習係
数ZPi、ZQiは最適な値に収束していく。なお、短時間
に学習係数ZPi、ZQiを収束させたい場合には、αを学
習の初期には1に近い値に設定し、学習の進むに従って
0に近づけるように設定する。
Describing the equation (8) specifically, when the first learning coefficient is obtained by the learning coefficient calculating section 19, the first learning coefficient is substituted into Z Pi ′ on the right side. = 1 and there is no previous data to be substituted for Z Qi-1 on the right side, so that the learning coefficient (Z Pi on the left side) of the learning unit 20 is the first learning coefficient Z
Pi '. On the other hand, when the learning coefficient Z Pi ′ for the second time or later is obtained by the learning coefficient calculating unit 19, the obtained learning coefficient is substituted into Z Pi ′ on the right side of the equation (8), and Z Pi ′ on the right side is obtained.
The learning coefficient (Z Pi on the left side) previously learned is substituted for Pi-1 . At this time, if the value of α is appropriately small, the learning coefficients Z Pi and Z Qi converge to optimal values. If it is desired to converge the learning coefficients Z Pi and Z Qi in a short time, α is set to a value close to 1 at the beginning of learning, and is set to approach 0 as learning progresses.

【0029】このようにして学習部20により予め学習
されている学習係数ZPi、ZQiは、圧延材aの走行中に
製造仕様の変更によりその接合点で板厚が変更されるた
びに、図3に示すように、圧下位置変更量算出部21が
第1スタンド1〜第7スタンド7の圧下位置の各変更量
を求めるために使用される。そこで、圧下位置変更量算
出部21がその圧下位置の変更量を求める処理手順につ
いて、図3を参照して以下に説明する。
The learning coefficients Z Pi and Z Qi learned in advance by the learning section 20 in this way are calculated each time the sheet thickness is changed at the joining point due to a change in the manufacturing specification during the running of the rolled material a. As shown in FIG. 3, the roll-down position change amount calculation unit 21 is used to obtain the change amounts of the roll-down positions of the first stand to the seventh stand 7. Therefore, a processing procedure in which the roll-down position change amount calculating section 21 calculates the change amount of the roll-down position will be described below with reference to FIG.

【0030】まず、圧下位置変更量算出部21は、先行
材の尾端における第1スタンド1〜第7スタンド7の各
圧延荷重の予測値PAiと、後行材(次行材)の先端にお
ける第1スタンド1〜第7スタンド7の各圧延荷重の予
測値PBiとを、上記のようにしてあらかじめ学習されて
いる学習係数ZQi、ZPiを用いることにより、(10)
(11)式で求める(ステップS11)。
First, the rolling position change amount calculating section 21 calculates a predicted value P Ai of each rolling load of the first to seventh stands 7 at the tail end of the preceding material and the leading end of the following material (the next material). By using the learning coefficients Z Qi and Z Pi learned in advance as described above, the predicted values P Bi of the respective rolling loads of the first stand 7 to the seventh stand 7 in (10) are obtained.
It is obtained by equation (11) (step S11).

【0031】 PAi=ZQi×b×kmi×OPi×{Ri ’(Hi −hi )}1/2 ・・・(10) PBi=ZPi×b×kmi×OPi×{Ri ’(Hi −hi )}1/2 ・・・(11) (10)(11)式で圧延荷重の予測値PAi、PBiを求
める場合には、各スタンドでの目標値(ドラフトスケジ
ュール)は予め決定されているものを使用する。
P Ai = Z Qi × b × k mi × O Pi × {R i ′ (H i −h i )} 1/2 (10) P Bi = Z Pi × b × k mi × O Pi × {R i ′ (H i −h i )} 1/2 (11) (10) In order to obtain the predicted values P Ai and P Bi of the rolling load by the formulas (11), it is necessary to use each stand. The target value (draft schedule) is determined in advance.

【0032】次に、圧下位置変更量算出部21は、その
求めた圧延荷重の予測値PAi、PBiを用いて、先行材の
尾端での圧下位置(ワークロールの軸心の位置)の予測
値S Aiと、後行材の先端での圧下位置の予測値SBi
を、次の(12)(13)式により求める(ステップS
12)。
Next, the rolling position change amount calculating section 21 calculates
Predicted rolling load value PAi, PBiUsing the preceding material
Prediction of the rolling position at the tail end (the position of the axis of the work roll)
Value S AiAnd the predicted value S of the rolling position at the tip of the following materialBiWhen
Is obtained by the following equations (12) and (13) (step S
12).

【0033】 SAi=hAi−{(PAi+2FAi)/K}+SO ・・・(12) SBi=hBi−{(PBi+2FBi)/K}+SO ・・・(13) K:ミル剛性係数 FAi、FBi:ロールベンディング力 SO :ロールギャップ零点補正項 さらに、圧下位置変更量算出部21は、その求めた圧下
位置の予測値SAi、S Biを用いて、第1スタンド1〜第
7スタンド7の圧下位置(ワークロールの軸心の位置)
の変更量ΔSi を、(14)式により求める(ステップ
S13)。
SAi= HAi− {(PAi+ 2FAi) / K} + SO... (12) SBi= HBi− {(PBi+ 2FBi) / K} + SO... (13) K: Mill stiffness coefficient FAi, FBi: Roll bending force SO: Roll gap zero correction term Further, the rolling position change amount calculating section 21 calculates the calculated rolling reduction.
Predicted position value SAi, S BiUsing the first stand 1-
7 Roll-down position of stand 7 (position of work roll axis)
Change amount ΔSiIs obtained by equation (14) (step
S13).

【0034】ΔSi =SBi−SAI・・・(14) このように求められた第1スタンド1〜第7スタンド7
の圧下位置の各変更量ΔSi は圧下位置調節装置22に
供給され、圧下位置調節装置22は、圧延材aが接合点
が各スタンドに到着した際に、その各変更量だけ各スタ
ンドの圧下位置を変更させる。
ΔS i = S Bi −S AI (14) The first to seventh stands 7 determined in this way.
The change amount ΔS i of the rolling position is supplied to the rolling position adjusting device 22. When the rolling material a reaches the stand at the joining point, the rolling position adjusting device 22 lowers the rolling position of each stand by the changed amount. Change the position.

【0035】次に、この実施形態と従来の方法とでオフ
ゲージ長さを比較した場合の一例について、図4を参照
して説明する。このデータは、先行材が板厚2.3m
m、板幅1020mmで、後行材の板厚2.0mm、板
幅1000mmの場合であり、そのサンプル数が100
個の場合の平均値である。この結果によれば、この実施
形態の方法では、従来の方法に比べてオフゲージ長が半
減していることがわかる。
Next, an example in which the off-gauge length is compared between this embodiment and the conventional method will be described with reference to FIG. This data shows that the preceding material is 2.3m thick
m, the board width is 1020 mm, the following material has a board thickness of 2.0 mm, and the board width is 1000 mm.
It is the average value of the case. According to this result, it is understood that the off-gauge length is reduced by half in the method of this embodiment as compared with the conventional method.

【0036】以上説明したように、この実施形態によれ
ば、圧延材の接合部で板厚の変更がある場合に、その接
合部が各スタンドを通過する前後の圧延に関するデータ
をそれぞれ獲得し、この獲得したデータに基づいて学習
を行って学習係数を求めておき、圧延材の接合点で板厚
の変更があった場合に、その求めてある学習係数に基づ
いてその接合点の前後での各スタンドにおける圧延荷重
を予測し、その予測値に基づいて各スタンドのロールの
圧下位置の変更量を求めるようにした。このため、圧延
荷重の予測精度が向上し、その結果、接合点前後の寸法
精度が改善され、圧延材の歩留りが向上する。
As described above, according to this embodiment, when there is a change in the sheet thickness at the joint of the rolled material, the data on the rolling before and after the joint passes through each stand is acquired. Learning is performed based on the acquired data to obtain a learning coefficient, and when there is a change in the sheet thickness at the joining point of the rolled material, the learning coefficient before and after the joining point is determined based on the obtained learning coefficient. The rolling load at each stand was predicted, and the amount of change in the rolling position of the roll of each stand was determined based on the predicted value. For this reason, the prediction accuracy of the rolling load is improved, and as a result, the dimensional accuracy before and after the joining point is improved, and the yield of the rolled material is improved.

【0037】ここで、請求項3に記載のデータ獲得手段
は、図1の実測値獲得部16、実績値獲得処理部17、
および圧延荷重算出部18が対応し、学習係数算出手段
は学習係数算出部19および学習部20が対応し、圧延
荷重予測手段は圧下位置変更量算出部21が対応する。
Here, the data acquisition means according to the third aspect comprises an actual measurement value acquisition section 16, an actual value acquisition processing section 17,
And the rolling load calculating unit 18, the learning coefficient calculating unit corresponds to the learning coefficient calculating unit 19 and the learning unit 20, and the rolling load predicting unit corresponds to the rolling position change amount calculating unit 21.

【0038】なお、上記の実施形態では、主に走間変更
制御における板厚制御について説明したが、その他の板
幅制御やクラウン・形状制御などについても本発明の圧
延荷重の予測値を適用できるので、板厚やクラウン・形
状の精度が向上するという効果が得られる。
In the above embodiment, the thickness control in the running change control is mainly described. However, the predicted value of the rolling load of the present invention can be applied to other width control, crown / shape control, and the like. Therefore, the effect of improving the accuracy of the thickness, crown and shape can be obtained.

【0039】また、上記の実施形態では、圧延材aの走
間板厚変更点a1を圧延材aの接合点として説明した
が、その走間板厚変更点a1は圧延材aの接合点である
必要はない。
Further, in the above-described embodiment, the change point a1 in the running thickness of the rolled material a has been described as the joining point of the rolled material a. No need to be.

【0040】[0040]

【発明の効果】以上説明したように、請求項1および請
求項3にかかる発明では、圧延材の製造仕様が変更され
る走間変更点が前記スタンドを通過する前後の圧延に関
するデータをそれぞれ獲得し、この獲得したデータに基
づいて学習を行って学習係数を予め求めておき、製造仕
様の変更があった場合に、その求めてある学習係数に基
づいて圧延材の走間変更点の前後の圧延荷重を予測する
ようにした。このため、圧延荷重の予測精度が向上し、
その結果、圧延材の走間変更点前後の寸法精度が改善さ
れ、圧延材の歩留りが向上可能となる。
As described above, according to the first and third aspects of the present invention, data relating to rolling before and after passing between the stands at the point where the running specification at which the manufacturing specification of the rolled material is changed is acquired. Then, a learning coefficient is obtained in advance by performing learning based on the obtained data, and when there is a change in the manufacturing specification, before and after the running distance change point of the rolled material based on the obtained learning coefficient. The rolling load was predicted. For this reason, the prediction accuracy of the rolling load is improved,
As a result, the dimensional accuracy of the rolled material before and after the change in running distance is improved, and the yield of the rolled material can be improved.

【0041】また、請求項2および請求項4にかかる発
明では、さらに、圧延材の走間変更点がスタンドに到着
したときに、その予測した圧延荷重に基づいてスタンド
の圧下を調節するようにした。このため、圧延荷重の予
測精度が向上し、その結果、圧延材の走間変更点前後の
寸法精度が改善され、圧延材の歩留りが向上する。
Further, in the invention according to claims 2 and 4, when the point of change in running distance of the rolled material arrives at the stand, the rolling reduction of the stand is adjusted based on the predicted rolling load. did. For this reason, the prediction accuracy of the rolling load is improved, and as a result, the dimensional accuracy of the rolled material before and after the change in running distance is improved, and the yield of the rolled material is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を複数のスタンドを有する仕上熱間圧延
機の完全連続圧延の圧下位置変更に適用した場合におけ
る実施形態の装置のブロック図である。
FIG. 1 is a block diagram of an apparatus according to an embodiment in a case where the present invention is applied to a change in a rolling position of a complete continuous rolling of a finishing hot rolling mill having a plurality of stands.

【図2】学習係数を求めるためのデータの処理手順を示
すフローチャートである。
FIG. 2 is a flowchart illustrating a data processing procedure for obtaining a learning coefficient.

【図3】圧下位置の変更量を求めるデータの処理手順を
示すフローチャートである。
FIG. 3 is a flowchart illustrating a processing procedure of data for obtaining a change amount of a rolling-down position;

【図4】この実施形態と従来の方法とのオフゲージ長さ
の比較例を示す図である。
FIG. 4 is a diagram showing a comparative example of an off-gauge length between this embodiment and a conventional method.

【符号の説明】[Explanation of symbols]

a 圧延材 1〜7 スタンド 11、12 板厚計 13 荷重計 14、15 温度計 16 実測値獲得部 17 実績値獲得処理部 18 圧延荷重算出部 19 学習係数算出部 20 学習部 21 圧下位置変更量算出部 22 圧下位置調節装置 a Rolled material 1-7 Stand 11,12 Thickness gauge 13 Load cell 14,15 Thermometer 16 Actual measurement value acquisition unit 17 Actual value acquisition processing unit 18 Rolling load calculation unit 19 Learning coefficient calculation unit 20 Learning unit 21 Change amount of rolling position Calculation unit 22 Roll-down position adjustment device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1つのスタンドを有する圧延
機の走間変更制御方法において、 圧延材の製造仕様が変更される走間変更点が前記スタン
ドを通過する前後の圧延に関するデータをそれぞれ獲得
し、 この獲得したデータに基づいて学習を行って学習係数を
予め求めておき、 圧延機の製造仕様の変更を行う際に、その求めてある学
習係数に基づいて前記圧延材の走間変更点の前後の圧延
荷重を予測することを特徴とする圧延機の走間変更制御
方法。
1. A running change control method for a rolling mill having at least one stand, wherein data on rolling before and after a running change point at which a manufacturing specification of a rolled material is changed passes through the stand is acquired. A learning coefficient is obtained in advance by performing learning based on the acquired data, and when a manufacturing specification of a rolling mill is changed, before and after a change point between running distances of the rolled material based on the obtained learning coefficient. A method for controlling a change in running distance of a rolling mill, wherein a rolling load of the rolling mill is predicted.
【請求項2】 前記圧延材の走間変更点が前記スタンド
に到着したときに、その予測した圧延荷重に基づいて前
記スタンドの圧下を調節することを特徴とする請求項1
に記載の圧延機の走間変更制御方法。
2. The rolling machine according to claim 1, wherein when the change point between the running distances of the rolled material arrives at the stand, the rolling reduction of the stand is adjusted based on the predicted rolling load.
3. A method for controlling a change in running distance of a rolling mill according to claim 1.
【請求項3】 少なくとも1つのスタンドを有し、かつ
熱間圧延中に前記スタンドの圧下を調節可能な圧延機の
走間変更制御装置において、 圧延材の製造仕様が変更される走間変更点が前記スタン
ドを通過する前後の圧延に関するデータをそれぞれ獲得
するデータ獲得手段と、 このデータ獲得手段が獲得したデータに基づいて学習を
行って学習係数を予め求める学習係数算出手段と、 圧延機の製造仕様の変更を行う際に、前記学習係数算出
手段で求めてある学習係数に基づいて前記圧延材の走間
変更点の前後の圧延荷重を予測する圧延荷重予測手段
と、 を備えたことを特徴とする圧延機の走間変更制御装置。
3. A running distance change control device for a rolling mill having at least one stand and capable of adjusting a reduction in the height of said stand during hot rolling, wherein a manufacturing specification of a rolled material is changed. Data acquisition means for acquiring data relating to rolling before and after passing through the stand, learning coefficient calculation means for learning in advance based on the data acquired by the data acquisition means to obtain a learning coefficient, and manufacturing a rolling mill. When the specification is changed, rolling load prediction means for predicting a rolling load before and after a change point between running distances of the rolled material based on a learning coefficient obtained by the learning coefficient calculation means, A change control device for the running distance of a rolling mill.
【請求項4】 製造仕様の変更にかかる圧延材の走間変
更点が前記スタンドに到着したときに、前記圧延荷重予
測手段が予測した圧延荷重に基づいて前記スタンドの圧
下を調節する手段を備えたことを特徴とする請求項3に
記載の圧延機の走間変更制御装置。
4. A means for adjusting a rolling reduction of the stand based on a rolling load predicted by the rolling load predicting means when a change point between running distances of a rolled material according to a change in manufacturing specifications arrives at the stand. The running distance change control device for a rolling mill according to claim 3, wherein:
JP10099236A 1998-04-10 1998-04-10 Method for controlling flying change of rolling mill and device therefor Pending JPH11290920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10099236A JPH11290920A (en) 1998-04-10 1998-04-10 Method for controlling flying change of rolling mill and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10099236A JPH11290920A (en) 1998-04-10 1998-04-10 Method for controlling flying change of rolling mill and device therefor

Publications (1)

Publication Number Publication Date
JPH11290920A true JPH11290920A (en) 1999-10-26

Family

ID=14242060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10099236A Pending JPH11290920A (en) 1998-04-10 1998-04-10 Method for controlling flying change of rolling mill and device therefor

Country Status (1)

Country Link
JP (1) JPH11290920A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021133415A (en) * 2020-02-28 2021-09-13 Jfeスチール株式会社 Model learning method, flying plate thickness changing method, steel plate manufacturing method, model learning device, flying plate thickness changing device and steel plate manufacturing device
JP2022021794A (en) * 2020-07-22 2022-02-03 Jfeスチール株式会社 Tension variation prediction method, generation method of tension variation prediction model, flying plate thickness changing method, and manufacturing method of steel plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021133415A (en) * 2020-02-28 2021-09-13 Jfeスチール株式会社 Model learning method, flying plate thickness changing method, steel plate manufacturing method, model learning device, flying plate thickness changing device and steel plate manufacturing device
JP2022021794A (en) * 2020-07-22 2022-02-03 Jfeスチール株式会社 Tension variation prediction method, generation method of tension variation prediction model, flying plate thickness changing method, and manufacturing method of steel plate

Similar Documents

Publication Publication Date Title
JP5293405B2 (en) Roll gap setup method in reverse rolling
KR0148612B1 (en) Reverse rolling control system of pair cross rolling mill
JPH11290920A (en) Method for controlling flying change of rolling mill and device therefor
JP3610338B2 (en) Method and apparatus for temper rolling of metal strip
JPH09276915A (en) Dynamic setup method in continuous rolling mill
JPS6224809A (en) Method for controlling sheet width in hot rolling
JPH0413411A (en) Method for controlling strip thickness when strip is passed through in hot continuous mill
JPH05111712A (en) Method for controlling sheet thickness/crown in continuous mill
JP2825428B2 (en) Strip crown control method in rolling mill
JPH0413413A (en) Method for controlling strip thickness at passing time on hot continuous rolling mill
JP3396774B2 (en) Shape control method
JP2953334B2 (en) Manufacturing method of tapered thick steel plate
JP2950182B2 (en) Manufacturing method of tapered steel plate
JP2719216B2 (en) Edge drop control method for sheet rolling
JPH0763747B2 (en) Thickness control method during strip running in hot continuous rolling mill
JP2002205106A (en) Method for changing distribution of rolling load in tandem mill
JP2661497B2 (en) Strip crown control device and strip crown control method during hot rolling
JP2697573B2 (en) Control method of continuous rolling mill
JPH08332506A (en) Method for controlling thickness of taper plate
JPH11285718A (en) Method for controlling width in hot rolling
JPH0441010A (en) Method for controlling edge drop in cold rolling
JPH08300024A (en) Method for controlling plate width in hot rolling
JPS63207408A (en) Rolling method for preventing sheet form bending in hot rough rolling stage
JPH09239422A (en) Method for automatically controlling thickness at time of passing through
KR20020045697A (en) A method for manufacturing strips having uniform thickness in widthwise

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304